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Abstract

These notes combine results from two papers by the present authors viz., Part I
(arXiv:2205.10299) and Part II (arXiv:2212.13028) into one streamlined version for
better readability, along with a review on theory of complex multiplication for non-
singular complex projective varieties and complex tori that is aimed at string theorists.
We think that it is worth posting this edition as a separate entry in arXiv for those
reasons, although this edition contains no essential progress beyond Part I and Part II.

S. Gukov and C. Vafa proposed a characterization of rational N = (1, 1) supercon-
formal field theories (SCFTs) on 1+1 dimensions with Ricci-flat Kähler target spaces
in terms of the Hodge structure of the target space, extending an earlier observation
by G. Moore. We refined this idea and obtained a conjectural statement on necessary
and sufficient conditions for such SCFTs to be rational, which we indeed prove to be
true in the case the target space is T 4. In the refined statement, the algebraicity of the
geometric data of the target space turns out to be essential, and the Strominger–Yau–
Zaslow fibration in the mirror correspondence also plays a vital role.

http://arxiv.org/abs/2408.00861v1
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1 Introduction

This manuscripts combines the materials and results in [KOW22] and [OW22] into a single,

streamlined vesion together with an extensive pedagogical section. Portions of discussions in

[KOW22] have been dropped, while more review materials have been added (Expansion of

§2.1.1 and inclusion of appendix A).

1.1 String Theoretic Introduction

1.1.1 Motivation and Background

N = (1, 1) supersymmetric non-linear sigma models in 1 + 1 dimensions (2d) have a non-

trivial moduli space when the target spaceM is a Ricci–flat Kähler manifold. These theories,

which are superconformal field theories (SCFTs), define a compactification of Type II string

theory. These SCFTs are rational CFTs1 only at special points in the moduli space. The

question that this note addresses is: At what points in the moduli space ofM are those SCFTs

rational?

1There are many ways to define a rational CFT. A simple way of explaining what rational CFTs are to
string theorists is that the left-moving and the right-moving superchiral algebras both have a finite number
of irreducible representations (see [MS89] and references therein).
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A complete analysis has been done for the case of M = T n in the bosonic string and

superstring case in [Wen00], and in the Heterotic string [Mooa, Moob]. It seems almost

impossible to go beyond toroidal compactifications. G. Moore pointed out, however, that

M = T 2-target bosonic and superstring are rational SCFTs if and only if both the elliptic

curve M (as a complex manifold) and its mirror W have complex multiplications (reviewed

in section 2.1.1), and the imaginary quadratic fields of M and W are isomorphic to each

other. In Gepner constructions for K3 and Calabi–Yau compactifications, which are also

rational SCFTs, the non-trivial rational Hodge structure of the cohomology groups are also

characterized by number fields (finite dimensional algebraic extension fields over the field of

rational numbers Q). Based on these observations, S. Gukov and C. Vafa conjectured the

following [GV04]:

Conjecture 1.1. [GV04, §7] Consider the N = (1, 1) supersymmetric non-linear sigma model

for a Ricci-flat Kähler manifold (M ;G,B; I), where M is a differentiable manifold of real

2n-dimensions, G a Riemannian metric on M , B a closed 2-form on M (called the B-field)

and I a complex structure so that (M ;G; I) is Kähler. This SCFT is rational if and only

if (i) both the complex manifold (M ; I) and its mirror (W ; I◦) are of CM-type, and (ii) the

endomorphism fields of (M ; I) and (W ; I◦) are isomorphic.

Being CM-type is a property of complex structure of a manifold (or of Hodge structure on a

cohomology group) that generalizes the notion of complex multiplication ofM = T 2. We be-

lieve that the Appendix A of this manuscript (combined with the appendix of of [OW24]) will

be useful for string theorists who are not familiar with the theory of complex multiplication

beyond the case of elliptic curves covered in [Mooa], [Moob].

Giving (and establishing) such a characterization is a well-defined question in mathemat-

ical physics, which may be of interest in its own right. Apart from the idea in Conj. 1.1,

our knowledge of rational SCFTs has been mostly construction based. Not much is known

beyond the Gepner constructions, and lattice vertex operator algebras and their orbifolds. If

the criteria for rationality of SCFTs are proven to be something close to the one in Conj. 1.1,

that means that there are more rational SCFTs than those obtained by these constructional

approaches. Those rational SCFTs will include the ones in the small-volume limit region in

the moduli space; rational SCFTs will be an ideal (and a rare) tool to study how string theory

captures geometry at the short-distance (high-energy) region in a situation where classical

Einstein gravity is not a good approximation.2

2Open problem: Understand how close such rational points are to each other in the moduli space of
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Further progress can be expected in a couple of other directions, when the observation in

Conj. 1.1 is understood better, with more systematically constructed examples of rational

SCFTs with geometric interpretations. For example, on the side of arithmetic geometry, it is

known that complex analytic CM-type manifolds M are known to admit arithmetic models

[Sch37, Shi97, PSS73, Riz], at least when M is either an abelian variety or a K3 surface, and

some of the L-functions defined for these arithmetic models are expected to have modular

transformation properties. It will be an interesting subject of research to explore relations

between such modular objects in arithmetic geometry and g = 1 chiral correlation functions

of the corresponding rational SCFTs in string theory. References [KW19, KW22] studied

that for the case where the target space is a CM elliptic curve. To undertake a similar study

for abelian varieties and K3 surfaces, a better understanding of the relation between CM

manifolds and rational SCFTs is a necessary starting point.

In particle phenomenology, too, the work of Ref. [GV04] is of significance. In Type

IIB Calabi–Yau orientifold compactifications, the gravitino mass and the cosmological con-

stant are not generically much smaller than the Planck scale of the effective theory on

3 + 1−dimensions due to non-zero fluxes [Den08]. When the complex structure of the

Calabi–Yau threefold has period integrals characterized by number fields (such as in Refs.

[GV04, DGKT05, AK05]), then the gravitino mass can be much smaller than the Planck

scale for a much larger fraction of flux configurations [Moo07, DGKT05, KW17]. If the ob-

servation by Gukov–Vafa is true, then we may attribute particle phenomenologies such as

electroweak gaugino dark matter, gauge coupling unification and small gravitino mass, to

large chiral algebra on the worldsheet theory, and not to a larger symmetry of the spacetime

field theory.

1.1.2 Prior-, Present-, and Future Work

The characterization conditions in Conj. 1.1 have been tested only for M = T 2 and a

few Gepner constructions. An obvious direction of research to test if those conditions are

satisfied for other known constructions; such a study has not been done systematically even

for M = T 4 so far (apart from one article [Che08], on which we say more shortly). Whereas

Ref. [Wen00] already worked out in the case ofM = Tm when the bosonic CFT (and SCFT)

of (M ;G,B)M=Tm is rational, the conditions on G and B are stated there in a language

that makes sense only for tori, not in a language as in Conj. 1.1 that makes sense for a

broader class of target-space manifolds. One may also be interested in whether all the data

SCFTs.
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(M ;G,B; I) satisfying the conditions in Conj. 1.1 yield a rational SCFT. One may further

be interested in constructing such rational SCFTs explicitly. This would broaden the list of

rational SCFTs tremendously.

In being realistic and formal, however, and one can easily find that some concepts in Conj.

1.1 need to be clarified and the conditions there to be stated more precisely, in order for the

Conjecture to be testable even in the case M = T 4 or a Calabi–Yau threefold. Refinement of

these ideas formally will allow us come up with a functioning version of the conjecture which

we can test, prove or disprove.

Reference [Che08] is the only published record3 the present authors are aware of that has

pushed the frontier forward along the line of the idea in Conj. 1.1 after Ref. [GV04]. The

work [Che08] by Meng Chen in fact contains an example of (M ;G,B)|M=T 4 that seems to

have the properties stated in Conj. 1.1 but the corresponding CFT/SCFT is not rational.

The present authors do not regard the example as an indication that the idea in Conj. 1.1 is

entirely wrong, but that the conditions stated there are not enough. We will explain in more

details in section 4 in this article.

In this article, we begin by pointing out the aspect in which Conj. 1.1 needs to be

refined for it to be a functioning conjectural statement applicable to a general Ricci-flat

Kähler manifold (section 2.1.2). Although those observations are not particularly difficult,

discussions pertaining to these observations have (as far as the authors are aware) not been

recorded. It is therefore a task worth undertaking.

We will use the case M = T 4, where it is known which sets of data (M ;G,B)|M=T 4 are

for rational SCFT [Wen00], to refine the idea Conj. 1.1 both in concepts as well as in the

precise choice of conditions. The refined conjecture which will arrive at is the following:

Conjecture 1.2. (for self-mirrorM): LetM be a real 2n-dimensional manifold which admits

a Ricci-flat Riemannian metric G such that there exists a complex structure I ′ on M with

which (M ;G; I ′) is Kähler. Let B be a closed 2-form on M . Suppose, further, that the family

of such (M ;G,B) is self-mirror in that hp,q(M) = hn−p,q(M) for 0 ≤ p, q ≤ n.

The non-linear sigma model N = (1, 1) SCFT associated with the data (M ;G,B) is a

rational SCFT if and only if the following conditions are satisfied:

1. There exists a polarizable complex structure I so that (M ;G; I) is Kähler, B(2,0) = 0,

and the following four conditions are satisfied;

3Reference [OW24] is also an effort to make progress along this line. It addresses a math problem (Question
2.5 in p. 16) related to Conj. 1.1.
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2. The rational Hodge structure on H∗(M ;Q) is of strong CM-type;

3. The complexified Kähler parameter (B + iω), where ω(−,−) := 2−1G(I−,−) is the

Kähler form, is in the algebraic part (H2(M ;Q)∩H1,1(M ;R))⊗ τ r(n0)(K
r), where Kr is

the endomorphism CM field of the level-n rational Hodge structure [Hn(M ;Q)]ℓ=n and

τ r(n0) its embedding associated with the Hodge (n, 0) component;

4. There exists a geometric SYZ-mirror of the N = (1, 1) SCFT; there may be more than

one; the data of such a mirror is denoted by (W ;G◦, B◦; I◦);

5. (Strong) For any one of the geometric SYZ-mirror SCFTs, there is a Hodge isomorphism

φ∗ : H∗(M ;Q) → H∗(W ;Q) such that φ∗ is the identity map on the vector subspaces

π∗
M : H∗(B;Q) →֒ H∗(M ;Q) and π∗

W : H∗(B;Q) →֒ H∗(W ;Q); here, πM : M → B

and πW : W → B are the SYZ T n-fibrations over a common base manifold B of real

dimension n. In other words,

φ∗ ◦ π∗
M = π∗

W

(
i.e., φ∗|π∗(H∗(B;Q)) = idπ∗(H∗(B;Q))

)
. (1)

5. (Weak) There exists a geometric SYZ-mirror SCFT for which there is a Hodge iso-

morphism φ∗ : H∗(M ;Q) → H∗(W ;Q) such that φ∗ is the identity map on the vector

subspaces π∗
M : H∗(B;Q) →֒ H∗(M ;Q) and π∗

W : H∗(B;Q) →֒ H∗(W ;Q).

In these notes, we will prove Conj. 1.2 when M = T 4. This version Conj. 1.2 makes sense

only for families ofM that are self-mirror. So, as a wild speculation, a couple of trial versions

of the characterization conditions are presented also for cases for M that are not self-mirror

(Conj. 6.1 in section 6).

The characterization condition 2 for a rational SCFT in Conj. 1.2 was already in Conj.

1.1; this article only adds a proof that it is a part of necessary and sufficient conditions in the

caseM = T 4. Condition 5 (weak/strong) in Conj. 1.2 is stronger than condition (ii) in Conj.

1.1; without the extra property (1), we find that there are sets of data (M ;G,B; I)|M=T 4

satisfying all the other conditions in Conj. 1.2, whereas the corresponding CFT/SCFTs are

not rational (see section 5.5 (section 5.5.1 in particular)). This observation also proves that

the SYZ mirror fibration (not just mirror symmetry) plays a vital role in characterizing the

geometric data for SCFTs that are rational. Conditions 1 and 3 both state that the geometric

data (M ;G,B; I) for a rational SCFT have to be not just complex analytic Riemannian

manifolds but have an implementation as algebraic varieties, and have Kähler metrics that

are also of algebraic nature (should be in the cone generated by divisors); the results of

Meng Chen [Che08, Thm. 2.5 & Prop. 3.10] play a vital role in finding that condition 1 in
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Conj. 1.2 is essential (see discussion in section 3.1), and the present authors read that the

apparent counter example of [Che08, §4] to Conj. 1.1 as the necessity for adding condition

3 in Conj. 1.2. Overall, we observe that all of complex multiplications, algebraicity of the

target manifold and the SYZ-mirror fibration morphisms are a vital part of the conditions

for the corresponding SCFTs to be rational, at least for the case M = T 4, and possibly for

a broader class of target manifolds if the version Conj. 1.2 (or Conj. 6.1) is true.

It may seem that a case study for M = T 4 is nothing more than a straightfoward

generalization of the case M = T 2. In fact, it is not. Conceptual issues such as polar-

izability of complex structure (condition 1) and the difference between the algebraic part

H2(M ;Q)∩H1,1(M ;R) and the whole H2(M ;Q) (condition 3) are non-trivial when M = T 4

and K3, while they are not when M = T 2. The case study with T 4 is practically the best

way to figure out the right choice of statements when it comes to those conceptual issues.

Our discovery using T 4 that condition (1)—best stated in terms of the Strominger–Yau–

Zaslow torus fibration—is a vital part of the suffcient condition lends support for the idea

that mirror symmetry might play an important role in the characterization of rational CFTs

(Conj. 1.1). If the characterization conditions were to involve only the rational Hodge

structure of the cohomology group H∗(W ;Q) of the mirror manifold, the same conditions

may well be translated into those on H∗(M ;Q) with one more set of rational Hodge structure

without referring to a mirror geometry (cf. [KOW22] and references therein). We now know

that necessary and sufficient conditions should involve both the rational Hodge structure on

H∗(W ;Q) and the compatibility condition (1), at least when M = T 4. It is therefore much

more economical to state the conditions by referring to mirror symmetry.

The goal of these notes is to find a version of statements (such as Conj. 1.2 and Conj. 6.1)

that is testable and is not “obviously” false for a broader class of Ricci-flat Kähler manifolds

M , for which purpose we used a case study with T 4. Although section 6 of this article runs

a few checks on formal perspectives, providing positive and concrete evidence for Conj. 1.2

and 6.1 in string theory (or even at the level of mathematical rigour) with M such as a K3

surface and Calabi–Yau manifolds is beyond the scope of these notes. The word “Conjecture”

is synonymous to “A Testable Version of the Statements” in these notes.

1.2 Mathematical Introduction and Summary

Superstring theory does a couple of things. One among them is to set up a dictionary

between the three totally different setups: physical systems in a spacetime, modular invariant

superconformal field theories on Riemann surfaces, and geometric data of a compactification
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manifold. The latter two can be treated formally in a purely mathematical framework. So

string theory provides a non-trivial map between the moduli spaces of SCFTs, and geometric

data. Even without the physical motivation described in section 1.1.1, these maps between

the two aforementioned objects can be a question of mathematical interest.

To be more specific, let M be a manifold of certain topology that admits a Riemannian

metric G and complex structure I so that (M ;G; I) is Kähler. For such a manifold M , we

have a moduli space of (M ;G;B) of Ricci-flat Riemannian metric G and a closed 2-form B

on M . There is also a moduli space of the SCFTs given by the N = (1, 1) non-linear sigma

model for the target space (M ;G;B), and there is a map between the two moduli spaces. The

question to be addressed in this article is to identify in the moduli space of geometric data

the points that are mapped to the moduli space of SCFTs where the SCFTs are rational.

Virtually nothing has been known on this question, except for the complete answer in

the case of M = Tm (see [Mooa, Moob, Wen00]), some scattered examples of other rational

SCFTs and an idea Conj. 1.1 for a possible answer to the question intended for manifolds M

of more general topological types. From the point of view of mathematical formality there

is, however, much room to polish the idea in Conj. 1.1, for the reasons reviewed in section

2.1.2. These notes primarily report research in string theory, where the authors find most

value in identifying the way one should polish and refine the idea Conj. 1.1 into a form (or

forms) of mathematical conjectures that are functional and testable. For that reason, Conj.

1.2 (and Conj. 6.1) is the main string theoretic result. One will be able to come up with

various ideas on further research in string theory made possible by those Conjectures. It is

not hard to imagine, at the same time, that readers with a mathematical background would

be interested in whether any solid result has been obtained here. From that perspective, the

following is the main result:

Theorem 1.3. There is a proof for Conj. 1.2 for the case M = T 4, where n = 2. Conditions

1–5 (strong) on (M ;G,B; I)|M=T 4 are necessary when the corresponding SCFT is rational,

and the set of conditions 1–5 (weak) is sufficient for the corresponding SCFT to be rational.

Note that the N = (1, 1) SCFT for (Tm;G,B) is rational if and only if the bosonic CFT for

(Tm;G,B) is rational.

1.3 How to Read These Notes

We begin in section 2.1.2 with identifying which aspects of the original idea Conj. 1.1 need to

be refined (cf p. 5). After some review materials in sections 2.1.1, 2.2, 2.3 and the appendix
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A, we will prove that conditions 1–5 are necessary for the N = (1, 1) SCFT of (T 4;G,B) to

be rational in sections 3–5 (except section 5.3). The proof that the set of conditions 1–5 is

also sufficient is completed within sections 5.3–5.5. Some of necessary technical calculations

are found in the appendix B.

In section 6, we present a few variations of how Conj. 1.2 may be generalized to a case

the target-space manifold M is not necessarily self-mirror; the arguments there are a little

more speculative. Section 7 collects immediate consequences that we can extract after the

study in sections 3–6, assuming that Conj. 1.2 is true.

String theorists who just want to dive into the main content of these notes are encouraged

to have a look at Conj. 1.1, Conj. 1.2, Thm. 1.3 and Conj. 6.1. Section 2.1.2, Rmk. 4.3

and section 5.5.1 are also recommended to a string theorist. The lead-in paragraphs of

sections 3 and 4, and also section 5.2 are easier to read, and will explain what is being done

in other technical parts of this article. Although discussions in sections 5.3.2–5.5 and the

appendix B are long, bulk of the materials there is elementary computations in T-duality of

torus compactifications, Hodge theory and Galois theory; almost all the ideas are captured

in Lemma 5.6 and the illustrative example in section 5.5.1.

For string theorists who intend to read this manuscript seriously, it is important to have

some level of familiarity with Hodge theory and the theory of complex multiplication. Ap-

pendix A will be a useful guide for this purpose.

2 Preliminaries

2.1 The Gukov–Vafa Conjecture

2.1.1 Observations

Elliptic Curves: To get started, we review the observation of [Mooa, Moob] that established

a possible connection between rational CFTs and complex multiplication. The following

pedagogical review does not add anything new to the contents of [Mooa, Moob]; we simply

recall relevant details here.

Let (M ;G,B)|M=T 2 be a set of data of a T 2-compactification (a bosonic CFT and also

an N = (1, 1) SCFT). In this case of M = T 2, one can always find a complex structure

I uniquely so that (M ;G; I) is Kähler; ω(−,−) = 2−1G(I−,−) is the Kähler form. The

combination ρ :=
∫
M
(B + iω)/[(2π)2α′] is called the complexified Kähler parameter. The

complex manifold (M ; I) has a presentation C/(Z ⊕ τZ) for some complex parameter τ in
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the complex upper half plane ∈ H. So, one may extract a pair of complex parameters τ and

ρ (their SL2Z orbits in fact) from (M ;G,B) for a T 2 compactification. The mirror CFT (and

the mirror geometry) of this set-up is known to be the one where τ and ρ are exchanged;

the mirror complex manifold C/(Z ⊕ ρZ) is denoted by (W ; I◦) where W ≃ T 2 and I◦ the

complex structure on W .

For the CFT (and SCFT) of (M ;G,B) to be rational, it is necessary and sufficient that

there is a rank-2 subgroup in the space of

H1(M ;Z)⊕H1(M ;Z) =
{
w1α + w2β + n1α̂ + n2β̂ | w1, w2, n1, n2 ∈ Z

}
(2)

of winding and Kaluza–Klein charges where the complexified right-moving momentum

pCR ∝
(
n2 − n1τ + w1ρ+ w2τρ

)
(3)

vanishes. This mathematical condition is equivalent to the condition that (*1) ρ is in the

GL2(Z) orbit of τ and that (*2) τ ∈ H is subject to a quadratic equation

aττ
2 + bτ τ + cτ = 0 (4)

for some set of mutually prime integers (aτ , bτ , cτ ).

The combination of the two conditions (*1) and (*2) can also be reorganized into a form

that is democratic between τ and ρ. Both of the field Q(τ) ⊂ C and Q(ρ) ⊂ C, the minimum

subfield of C obtained by adjoining τ and ρ respectively to the field Q of rational numbers,

should be quadratic and totally imaginary extensions (**1):

Q(τ) ∼= Q[x]/(aτx
2 + bτx+ cτ ) ∼=vect.space {p+ qx | p, q ∈ Q} , (5)

Q(ρ) ∼= Q[y]/(aρy
2 + bρy + cρ) ∼=vect.space {p+ qy | p, q ∈ Q} (6)

for some mutually prime integers (aρ, bρ, cρ), and the two fields should be isomorphic (**2),

i.e., Q(τ) ∼= Q(ρ).4

Condition (**1) on Q(τ) is in fact equivalent [Mooa, Moob] to the presence of complex

multiplication in the complex manifold (M ; I) ∼= C/(Z ⊕ τZ); condition (**1) on ρ is for

(W ; I◦). Here is a very first step of introduction to the theory of complex multiplication, using

the complex manifold (M ; I) = C/(Z⊕ τZ) as an example. Consider the set of holomorphic

and addition-law preserving maps of (M ; I) to itself, where the addition law descends from

the addition law of vectors in the complex plane C = R2 before the quotient. These set

4[KW17, Appendix A] provides a quick guide to the relevant concepts of field theory
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of maps End(M ; I) forms a ring. Whatever the value of the parameter τ ∈ H is, this ring

always contain a ring Z 〈(1×)〉 = {(n×) | n ∈ Z} of multiplying an integer n to the complex

analytic coordinate; the period rank-2 lattice Z ⊕ τZ is mapped to itself (not necessarily

surjectively) so the map T 2 → T 2 is well-defined. When the complex parameter τ is subject

to the condition (4), however, there is one more generator in the ring End(M ; I), (aτ τ×) that

multiplies the complex number aττ on the complex analytic coordinate of C/(Z ⊕ τZ); the

period lattice (Z⊕ τZ) is mapped to aτ τZ ⊕ aτ τ
2Z = τ(aτZ)⊕ (−bτ τ − cτ )Z ⊂ Z ⊕ τZ, so

a map T 2 → T 2 is well-defined. It is the definition of having complex multiplications for an

elliptic curve (M ; I) that the ring End(M ; I) is of rank-2 rather than rank-1; see Def. A.3,

Thm. A.4 and Ex. A.5. Generalization of this notion to higher-dimensional complex tori is

reviewed in the appendix A.1.

The ring End(M ; I) was introduced above by using the holomorphic and addition-law

preserving maps from (M ; I) = C/(Z ⊕ τZ) to itself, but the same ring can be introduced

as that of Hodge-structure preserving endomorphisms of H1(M ;Z); the geometric maps of

C/(Z ⊕ τZ) have their action on H1(M ;Z) by the pull-backs. The complex multiplication

(aττ×) ∈ End(M ; I), for example, acts on the homology cycles through

(aττ×) : (1, τ) 7−→ (aττ, aττ
2) = (1, τ)

(
0 −cτ
aτ −bτ

)
(7)

with integer coefficients, and on the integral cohomology basis by pull-back through

(aττ×)∗ : (α̂, β̂) 7−→ (α̂, β̂)

(
0 aτ

−cτ −bτ

)
, (8)

so (1,0)-forms and (0,1)-forms in H1(M ;C) are eigenvectors,

α̂ + τ β̂ 7−→ aττ(α̂ + τ β̂), (9)

α̂ + τ̄ β̂ 7−→ aτ τ̄ (α̂+ τ̄ β̂), (10)

and the eigenvalues aττ and aτ τ̄ of the action (aττ×)∗ are Galois conjugates of one another.

For any geometric map (p+qaτ τ)× in End(M ; I), with p, q ∈ Z, both the (1,0)-form (α̂+τ β̂)

and the (0,1)-form (α̂+ τ̄ β̂) are simultaneous eigenvectors, with their eigenvalues (p+ qaττ)

and (p+ qaτ τ̄) Galois conjugate to each other. The same argument can be repeated for the

mirror (W ; I◦). Discussion in this paragraph is just an elementary translation of condition

(**1) without introducing anything new, but is meant to be a very pedagogical introduction

to the theory of complex multiplication. Thm. A.11, Rmk. A.12, Lemma A.50, Rmk. A.63

11



and Prop. A.64 deal with the materials along this line5 for complex tori with sufficiently

many complex multiplications of arbitrary dimensions; we will come back in section 2.3 and

elaborate a little more on Lemma A.50 and Rmk. A.63.

Both conditions (**1) and (**2) deal with the field of fractions Q(τ) of the ring End(M ; I)

and the field of fractions Q(ρ) of the ring End(W ; I◦). The fields Q(τ) and Q(ρ) are

in fact the algebra of Hodge-structure preserving Q-linear endomorphisms of H1(M ;Q)

and H1(W ;Q), respectively, instead of H1(M ;Z) and H1(W ;Z). Such algebras are de-

noted by End(H1(M ;Q))Hdg and End(H1(W ;Q))Hdg, respectively, and are called the en-

domorphism algebra, which are determined for the information how Hodge decomposition

over C is introduced relatively to the reference frame of the vector spaces over Q such as

H1(M ;Q) and H1(W ;Q) (rational Hodge structure).6 Condition (**2) in the present context

of M ∼= W ∼= T 2 states that the rational Hodge structure on H1(M ;Q) and H1(W ;Q)—

both with complex multiplications—are isomorphic. We therefore arrive at the following

statement: the SCFT for (M ;G,B) is rational if and only if the rational Hodge structures

on H1(M ;Q) and H1(W ;Q) are both with complex multiplications and are isomorphic.

The Fermat Quintic Gepner Construction, and the Likes: Let us consider another

example: the Z5-orbifold of the tensor product of five copies of the 2d N = (2, 2) minimal

model with the central charge cL = cR = 3k/(k + 2) and k = 3, denoted by 3⊗5/Z5. This

SCFT is rational, and is interpreted as a 2d non-linear sigma model whose target space is a

quintic Calabi–Yau threefold with a very special complex structure and a very special com-

plexified Kähler parameter. The complexified Kähler parameter is chosen at the small volume

limit within the complex 1-dimensional moduli space, and the complex structure parameter

is chosen at the Fermat point7 of the complex 101-dimensional moduli space. So, both the

4-dimensional vector space H3(W ;Q) and the 204-dimensional vector space H3(M ;Q) are

given very specific Hodge decomposition (rational Hodge structure).

5Although there is a string-theorist-friendly quick review of theory of complex multiplication in the ap-
pendix B of [KW17], large fraction of the materials there are covered and superseded by the combination of
the appendix A of this article and the appendix A of [OW24] now. The appendix A of [KW17] provides a
quick summary on rudiments on number fields, which some of readers with non-math background may still
find useful.

6Appendix A.2 develops the concepts of rational Hodge structure, endomorphism algebras and related
things and their math for cases more general than elliptic curves. We will need some of them already in
Discussion 2.2 and the rest of them heavily in section 2.3 onwards.

7The 101-dimensional moduli space of complex structure corresponds to choosing an arbitrary homoge-
neous function F (Φi=1,··· ,5) of degree-5 on P4 that defines a threefold M through M = {[Φi] ∈ P4 | F (Φ) =

0} ⊂ P4. The Fermat point in the moduli space corresponds to the choice F =
∑5

i=1(Φi)
5.
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The notion of complex multiplication for T 2 has been generalized to complex manifolds

of higher dimension; it is conventional to use the word CM-type for projective varieties other

than elliptic curves instead of complex multiplications. There are variations in how the notion

is generalized, in fact, as we will review in Discussion 2.2 below; see also Ref. [OW24] and

references therein. If we set those issues aside for the moment, then it is known that the

rational Hodge structure on the 4-dimensional H3(W ;Q) is of CM-type in the sense of Def.

A.52, with the endomorphism field being the cyclotomic field Q(ζ5) of a primitive fifth root

of unity ζ5; the cohomology group H3(M ;Q) also contains a rational Hodge substructure

that is 4-dimensional over Q, level-3, and is of CM-type (Def. A.52); the CM-field is Q(ζ5)

on this substructure. So, the endomorphism fields of both sides are isomorphic to each other,

just like in (**2) in the case of M = T 2. It was this observation that led Gukov and Vafa

to propose the idea Conj. 1.1 with an intention to cover a broad class of Ricci-flat Kähler

manifolds.

2.1.2 Necessary Refinements

Although Conj. 1.1 seems elegant, a closer inspection on its formal aspects reveals that there

are a few points that need clarification in order to have a conjecture that we can test. The

observations/issues raised in Discussions 2.1, 2.2 and 2.6 below are not particularly difficult

ones, but they should be written down as we start off. The study in section 3 and onwards is

not just for testing/refuting Conj. 1.1, but also for resolving conceptual issues in Discussions

2.1, 2.2 and 2.6.

2.1. Continuous deformation of complex structure: Since Conjecture 1.1 tries to char-

acterize rational SCFTs by using a Hodge structure, there is no way of interpreting the con-

ditions there without choosing a complex structure. Now, consider a case where the target

space (M ;G) is either a torus T 2n of real 2n dimensions with n ≥ 2, or a hyper-Kähler

manifold. On one hand, for such a smooth manifold M and a Riemannian metric G on it,

there is a continuous freedom in choosing a complex structure I with which the metric G is

compatible. On the other hand, a 2d non-linear sigma model is specified by only the data

(M ;G), without referring to a complex structure on M . Whether the SCFT is rational or

not should therefore be a property of (M ;G), not of the data (M ;G; I).

One option is to give up on applying the idea along the line of Conj. 1.1 to such Rie-

mannian manifolds (M ;G) where the choice of complex structure I is not unique. Those

geometries are just as valid as target spaces of string theory as Calabi–Yau n-folds with

13



n > 2, however. If the observations/ideas in Conj. 1.1 are not mere coincidence but re-

flection of deeper connection between SCFTs and arithmetic geometry/number theory, the

observation will somehow be extended to cover broader class of qualified target spaces. If we

wish to find a version of conjecture that is applicable to the class of manifolds we are referring

to here, then we should add a few more conditions8 on the choice of I that is implicit in Conj.

1.1; our proposal9 is to include condition 1 in Conj. 1.2, based on discussions in sections 3.1

and 3.2.

2.2. Variations in the definition of CM-type: (the authors assume that the readers

are already familiar with materials reviewed in the appendices A.2 and A.5) Let (M ;G; I)

be a Ricci-flat Kähler manifold of complex dimension n; the cohomology group Hn(M ;Q) is

endowed with a rational Hodge structure by the complex structure of (M ; I). The rational

Hodge structure on Hn(M ;Q) is not necessarily simple, but has a decomposition into simple

Hodge substructures

Hn(M ;Q) ∼= ⊕a∈A[H
n(M ;Q)]a , (11)

if (M ; I) is projective (like all the Calabi–Yau n-folds with n > 2 are); see Prop. A.22. Let

Da := End([Hn(M ;Q)]a)
Hdg be the algebra of Hodge endomorphisms of a simple component

[Hn(M ;Q)]a; it is always a division algebra. The endomorphism algebra of (Hn(M ;Q), I) is

of the form (see Lemmas A.33, A.34, Rmk. A.38 and Prop. A.22)

End(Hn(M ;Q))Hdg ∼= ⊕α∈AMnα
(Dα); (12)

simple Hodge substructures labeled by a ∈ A are grouped into classes labeled by α ∈ A by

Hodge isomorphisms, A = A/ ∼; the endomorphism algebras Da for a ∈ A that belong to

α ∈ A are all common, and are denoted by Dα; nα is the number of simple components (a’s)

in a Hodge isomorphism class α.

Take the Fermat quintic Calabi–Yau threefold M as an example. The 204-dimensional

vector space H3(M ;Q) has a decomposition into simple rational Hodge substructures [Shi82,

§3],

[H3(M ;Q)]ℓ=3 ⊕
(
⊕50

a=1[H
3(M ;Q)]ℓ=1,a

)
, (13)

8It is impossible to read condition (i) in Conj. 1.1 for all I forming a continuous family. Even when
(M ;G; I) is of CM-type, the Kähler manifold (M ;G; I ′) with a complex structure I ′ infinitesimally deformed
from I does not have sufficiently many complex multiplications.

9In the previous preprint version of this manuscript [KOW22], an alternative choice of conditions on I is
also discussed. See §5.2.3 of [KOW22].
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and each one of the components is of 4-dimensional over Q, supporting a simple rational

Hodge substructure. Just one of them, one with the subscript ℓ = 3, contains the 1-

dimensional Hodge (3,0) component, while all the other 50 substructures only contain a

2-dimensional Hodge (2,1) component and a 2-dimensional Hodge (1,2) component. Those

50 simple substructures are Hodge isomorphic to each other, and share the same endo-

morphism field Dα
∼= Q(ζ5). So, the endomorphism algebra as a whole has the form of

Q(ζ5)⊕M50(Q(ζ5)).

The notion of complex multiplications of elliptic curves has been generalized to the notion

of CM-type of rational Hodge structure (see Def. A.52). In the example of the Gepner

construction 3⊗5/Z5 referred to in section 2.1.1, all the 51 rational Hodge substructures of

H3(M ;Q) are of CM-type, and the rational Hodge structure of H3(W ;Q) is also of CM-type.

There is a variation in how we introduce the notion of CM-type to complex projective

non-singular varieties (M ; I) of higher dimensions, instead of Def. A.52 on rational Hodge

(sub)structures of H∗(M ;Q).

Definition 2.3. A complex projective non-singular varietyM is said to be of strong CM-type

when all the rational Hodge substructures of H∗(M ;Q) are of CM-type in the sense of Def.

A.52.

A complex n-dimensional projective non-singular varietyM with a choice of a polarization

DP is said to be of CM-type(mid-dim-primCoh) when the primitive component of the middle

dimensional cohomology group [Hn(M ;Q)](0) (see footnote 41) is of CM-type in the sense of

Def. A.52.

For M to be of CM-type(mid-dim-primCoh), the Hodge structure on Hk(M ;Q) with 0 <

k < n do not have to be of CM-type; the two conditions may be different when M is an

abelian variety of n ≥ 3 dimensions,10 a hyper-Kähler manifold of real 8-dimensions and

higher, or a Calabi–Yau fourfold with h2,1(M) > 0 (see [BW15, (90)]), for example. Even a

weaker version is available when the variety (M ; I) has a trivial canonical bundle (as in the

case (M ; I) has a Ricci-flat metric).

Definition 2.4. Let (M ; I) be a complex n-dimensional projective non-singular variety with

a trivial canonical bundle; hn,0(M) = 1 then. The weight-n rational Hodge structure on

Hn(M ;Q) has just one simple rational Hodge substructure on the vector subspace, denoted

10In the case M is an abelian surface, the two conditions (and even the weak-CM condition below) are
known to be equivalent [OW24].
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by [Hn(M ;Q)]ℓ=n, whose ⊗C contains the Hodge (n, 0) and (0, n) components. This sub-

structure is called the level-n component. The variety M is said to be of weak CM-type when

the level-n rational Hodge substructure on [Hn(M ;Q)]ℓ=n is of CM-type (in the sense of Def.

A.52).

The Hodge structure on the level-n component is of special importance in the perspective

of string theory, because this substructure always exists and can be extracted uniquely from

(H∗(M ;Q), I), and also because this particular Hodge substructure carries the information

of the complexified Kähler parameter of the mirror (W ; I◦).

The variations in the notion of CM-type of a geometry are in fact absent if “ye” is the

right answer to the following

Question 2.5. whether a projective non-singular variety (M ; I) with a trivial canonical

bundle is of strong CM-type when it is of weak CM-type.

This remains to be an open question in mathematics; one can find an update on this math

question in [OW24], which has proved for certain cases—including abelian surfaces—that the

weak CM-type condition onM implies the strong CM-type property (trivial for K3 surfaces).

The Fermat quintic Calabi–Yau threefold is also regarded as another non-trivial example. To

the best of knowledge of the authors, there is no known example of a weak CM-type that is

not of strong CM-type.11

In the absence of a known example that sits in between different definitions, we cannot

determine at this moment whether we should read condition (i) in Conj. 1.1 as strong CM-

type, weak CM-type, or any other variations in between.12 We have chosen to state the

conditions in Conj. 1.2 with the strong CM-type property, but that can also be the weak

CM-type property, because the test study in this article uses M ∼= T 4 (abelian surfaces)

where the weak CM property implies the strong CM property (and vice versa) [OW24]. In

another trial version of the Conjecture, Conj. 6.1, we will choose to employ the weak CM-

type property and seek for theoretically possible condition statements. At least, we aim to

raise the level of alertness to the subtlety involved in the definition of CM-type property of

a variety. If Question 2.5 is resolved affirmatively, this subtlety on the conditions in Conjs.

1.2 and 6.1 is also gone, however.

11We thank Profs. Goto and Yui for letting us updated in the state of affairs in this field.
12 Calabi–Yau threefolds of the form of Borcea–Voisin orbifolds [Bor98, Voi93] will be a good testing ground

in resolving this issue in math; see [GLY13], for example. To work on this class of cases in string theory,
however, we should work on K3 surfaces first.
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Condition (ii) in Conj. 1.1 refers to the fields of CM-type Hodge structures of M and

the mirror manifold W . An easy way to make sense of this condition is to think of them

as the endomorphism fields of the level-n rational Hodge substructures [Hn(M ;Q)]ℓ=n and

[Hn(W ;Q)]ℓ=n. Condition (ii) is almost equivalent to existence of a Hodge isomorphism

between the two level-n components (the latter is a little stronger; see a review in 2.11).

If one should require other simple components to be of CM-type, as discussed before, then

one may also have to refine the condition (ii); whether it is read as a Hodge isomorphism

of the level-n components on both sides, or as Hodge isomorphisms of some pairs of simple

components ofH∗(M ;Q) andH∗(W ;Q). In general, dimQ[H
n(M ;Q)] is not necessarily equal

to dimQ[H
n(W ;Q)], so there is no natural choice of pairs of simple components besides the

pair of the level-n components.

2.6. The mirror: The statement of Conjecture 1.1 is written by referring to a mirror

manifold W . It is not always guaranteed, however, that an N = (2, 2) SCFT with a non-

linear sigma model interpretation (M ;G,B; I) has a mirror-equivalent N = (2, 2) SCFT that

can be interpreted as a non-linear sigma model of a mirror geometry (W ;G◦, B◦; I◦). Even

when there is, it is not guaranteed that there is a unique choice of the mirror geometry data.

It is an interesting question whether there is always such a mirror manifold when the

(M ;G,B; I)-target N = (2, 2) SCFT is rational. Given the absence of guarantee of existence

of a mirror, or absence of uniqueness of mirrors, it is an option to write down the conditional

statements of Conj. 1.1 without referring to the mirror geometry; that is possible by formally

introducing yet another rational Hodge structure on H∗(M ;Q) by using the complexified

Kähler parameter instead of the complex structure of (M ; I); the present authors indeed did

that in the preprint version [KOW22].

Further investigation in the preprint version [OW22] has made us change our minds,

however. In the study using M ∼= T 4 in this article, we will find that we have to impose a

condition—the latter half of condition 5 in Thm. 1.3—to have a sufficient condition for the

SCFTs to be rational, and the condition is best stated by using the language of Strominger–

Yau–Zaslow (SYZ) torus fibration of mirror correspondence. This observation based on the

case M ∼= T 4 encouraged us to formulate the refined version Conj. 1.2 as it is, especially in

conditions 4 and 5.
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2.2 Rational CFTs with Torus Target

Since rational CFTs in torus compactifications have been completely classified, we may use

the established results to refine and test Conjecture 1.1. In this section 2.2, we quote results

from Ref. [Wen00] relevant to our analysis.

Proposition 2.7. [Wen00, Lemma 4.5.1] Let Tm = Rm/Z⊕m be a real m-dimensional torus

with a smooth structure, and XIs with I = 1, · · · , m a set of coordinates of Rm with periodicity

∆X (i.e., XI ∼ XI + ∆X). Let G = GIJdX
I ⊗ dXJ be a constant Riemannian metric on

Tm (i.e., GIJ ∈ R are independent of the coordinates XK ’s), and B = 2−1BIJdX
I ∧ dXJ a

2-form on Tm where BIJ are independent of the coordinates.

The bosonic CFT for the data (Tm;G,B) is rational if and only if 13

(
∆X

(2π)
√
α′

)2

GIJ ∈ Q,

(
∆X

(2π)
√
α′

)2

BIJ ∈ Q. (14)

The condition for the N = (1, 1) SCFT associated with the data (Tm;G,B) to be rational is

also the same as above.

We are interested in the cases where m = 2n, when there is a possibility of introducing a

complex structure on the target space Tm. Wendland has further derived this

Corollary 2.8. [Wen00, Thm. 4.5.5] Let (T 2n;G,B) be a set of data for which the (S)CFT is

rational. Then there exists a surjective homomorphism ϕ : T 2n ∼= R2n/Z⊕2n −→ ∏n
a=1C/(Z⊕

τaZ) with respect to the abelian group law on R2n and Cn that has the following properties.

Each one of C/(Z⊕ τaZ) is a CM elliptic curve (i.e., [Q(τa) : Q] = 2), and there is a metric

on C/(Z ⊕ τaZ), given by ds2 = ga(du
a ⊗ dūā + h.c.) with14 ga ∈ Q so that the pull-back of

the metric ds2 by ϕ agrees with the metric G on T 2n.

This result was a part of supporting evidence for Conj. 1.1 in the following sense. Firstly,

there is already an implicit choice of complex structure I0 on
∏

aC/(Z ⊕ τaZ), with which

the metric ds2 is compatible. The metric G on Tm is compatible with the complex structure

I = ϕ∗(I0). The complex torus (T 2n; I) is of CM-type since
∏

aC/(Z⊕ τaZ) is of CM-type.

13The author of [Wen00] adopts the convention ∆X = 2πR, R =
√
α′ and α′ = 2. We will use the

convention ∆X = 2π
√
α′ throughout this article. The metric and B-field satisfying (14) are therefore said

to be rational.
14ua with a = 1, · · · , n are the complex coordinates of the a-th elliptic curve C/(Z⊕τaZ) with the periodicity

ua ∼ ua + 1 ∼ ua + τa.
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The metric ga ∈ Q should be split into ga = Im(ρa)/Im(τa) so that Im(ρa) parametrizes the

volume of C/(Z⊕ τaZ). It then also follows that Q(iIm(ρa)) ∼= Q(τa).

It remains to be an open question whether the class of complex structures of the form

I = ϕ∗(I0) are all of those (or a part of those) where a Gukov–Vafa-like statement holds true

(this issue was raised in Discussion 2.1). We will discuss those issues, starting in section 3.

2.3 Coarse Classification of CM-type Abelian Surfaces

In our attempt to prove the refined version of the conjecture (Conj. 1.2) for M ∼= T 4, which

includes the condition 2 on the CM-type Hodge structure, we need to deal with complex

abelian surfaces of CM-type. As a preparation for the study in the following sections, there-

fore, we quote a known result on classification of CM-type abelian surfaces. Abelian varieties

of n-dimensions constitute a small special subclass of complex tori of n-dimensions. The

following quoted results only cover abelian surfaces, not complex torus (T 4; I); although we

will add in the appendix A a little more information on complex tori other than abelian

varieties, eventually we do not need them in the study after section 3.1.

For the purpose of this article, we do not need to work on each one of infinitely many

isomorphism classes of abelian surfaces of CM-type, it is enough to deal with their modulo-

isogeny classes. Here, as we have already explained in section 2.1.1, Def. A.7 and Rmk. A.9,

one complex torus (M ; I) has sufficiently many complex multiplications if and only if (iff)

another complex torus (M ′; I ′) isogenous to (M ; I) does. Equivalently, the rational Hodge

structure on H1(M ;Q) by I has sufficiently many complex multiplications iff the rational

Hodge structure H1(M ′;Q) by I ′ has and there is a Hodge isomorphism between the two

rational Hodge structures (Def. A.13). In fact, we even find that we can write down just one

proof for infinitely many isogeny-classes so long as their endomorphism algebra share the same

Galois-theoretical structure. So, the result quoted below15 is the classification of CM-type

abelian surfaces by the Galois-theoretical structure of their endomorphism algebras.16

2.9. (Classification) Any complex abelian varieties (M ; I) is isogenous to the product of

simple abelian varieties (Prop. A.22 and Rmk. A.46). When it comes to an abelian surface,

it is either simple on its own, or isogenous to the product of two elliptic curves.

15The primary resource of this classification is [Shi97, §5 + pp.64–65 Ex.8.4.(2)]; one may also look at
[BL04]. The combination of Prop. A.22, Rmk. A.46 and Rmk. A.63 reviewed in the appendix of this article
also has enough information.

16Interested readers might find in [OW24, §4.1] and references therein a theory for similar classification of
CM-type abelian varieties of higher dimensions. The study in this article does not need them, however.
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Think of the case an abelian surface (M ; I) is simple, first. When such (M ; I) is of CM-

type, then the algebra End(H1(M ;Q))Hdg is a CM-field K that is a degree-4 extension over

Q. It is known that there are two possibilities [Shi97, pp.64–65 Ex.8.4.(2)]

(B) The extension K/Q is Galois. In this case,17 the field K is isomorphic to

Q[x, y] / (y2 − d, x2 − p− qy), (15)

d ∈ N>1\(N>1)
2, p, q ∈ Q, p < 0, q 6= 0, d′ := p2 − q2d > 0

satisfying d′ ∈ d(Q×)2. The totally real subfield is Q[y]/(y2 − d) =: K0. The Galois

group is Gal(K/Q) ∼= Z4.

(C) The extension K/Q is not Galois. The field K in this case is also isomorphic to (15)

with d′/∈d(Q×)2 instead. The totally real subfield is Q[y]/(y2 − d) =: K0. The Galois

group of the normal closure Knc of K is of the form Gal(Knc/Q) ∼= Z4 ⋊ Z2.

In most of the situations that we encounter in this article, it suffices to use the common

algebraic structure (15) of the endomorphism fields in the cases (B) and (C), so the two cases

can often be treated simultaneously.

When an abelian surface (M ; I) is isogenous to the product of two elliptic curves E1×E2,

instead, and is of CM-type, there are two other possibilities in the Galois theoretical property

of the endomorphism algebra; the case (A) is when E1 and E2 are isogenous to each other

(and are both of CM-type), and the case (A’) when E1 and E2 are not isogenous to each

other (but both are of CM-type). In the case (A), therefore, (M ; I) is isogenous to E × E

where E is a CM elliptic curve. It is known that

(A) End(H1(M ;Q))Hdg ∼= M2(K
(2)) where K(2) = End(H1(E;Q))Hdg has the structure of

an imaginary quadratic field K(2) ∼= Q[x]/(x2 − p) for some p ∈ Q<0,

(A’) End(H1(M ;Q))Hdg ∼= K
(2)
1 ⊕ K

(2)
2 where K

(2)
i = End(H1(Ei;Q))Hdg is an imaginary

quadratic field K
(2)
i

∼= Q[x]/(x2 − pi) for some pi ∈ Q<0 for each i = 1, 2. In the case

(A’), p2/p1/∈(Q×)2.

An isogeny between (M ; I) and E1 ×E2 is chosen, fixed and used implicitly in the cases (A)

and (A’), already here, and also in the rest of this article. For both of case (A) and (A’),

17 The cyclotomic field K = Q(ζ5), where ζ5 := e2πi/5, is an example. To see this, note first that
Q(ζ5) ∼= Q[x]/(x4 + x3 + x2 + x+ 1). It contains a totally real subfield K0 := Q(ζ5 + ζ−1

5 ) ∼= Q[y]/(y2 − 5/4)
(note that (x + 1/x)2 + (x + 1/x)− 1 = 0, equivalently (x + 1/x+ 1/2)2 − 5/4 = 0); the field K = Q(ζ5) is
generated by adjoining ξ := x − x−1 to K0; ξ

2 = (x − 1/x)2 = −(x + 1/x)− 3 = −y − 5/2. So, p = −5/2,
q = −1 and d = 5/4. In this example, d′ = 5 ∈ d(Q×)2 indeed.
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the imaginary quadratic fields K(2)/Q are Galois, with Gal(K(2)/Q) ∼= Z2 generated by the

complex conjugation. The totally real subfield K0 is Q.

2.10. (Weight-1 rational Hodge structure and embeddings) The weight-1 rational

Hodge structure of complex tori with sufficiently many complex multiplications (incl. abelian

varieties of CM-type) is tightly constrained so much that all the abelian surfaces that belong

to each one of the four cases can be studied simultaneous in this article. The tight constraint

on the weight-1 Hodge structure on H1(M ;Q) is already reviewed in Lemma A.50 along with

an elementary proof; here, we illustrate how to use in practice, while preparing notations to

be used in the following sections.

The CM-field K of degree-4 acts on the four-dimensional vector space H1(M ;Q) faithfully

in the case (B, C), and the CM-field (imaginary quadratic field) K(2) [resp. K
(2)
i ] of degree-2

does on the two-dimensional vector space H1(E;Q) [resp. H1(Ei;Q)] in the case (A) [resp.

case (A’)]. As explained in Lemma A.50 and Rmk. A.54, the action of those fields can

be diagonalized over C simultaneously, and there is one-to-one correspondence between the

set of the eigenvectors/spaces and the set of embeddings18 of the fields into C; each of the

eigenspaces is in just one Hodge (p,q) component; each of the Hodge (p,q) components—only

the Hodge (1,0) and (0,1) components in the case of H1(M ;Q)—has a basis that consists of

a part of those eigenvectors. This dictionary, while elementary, will be exploited countless

times in this article. If a reader does not find that this explanation is enough, we recommend

to take time to read Lemma A.50 and Rmk. A.54.

We have stated in Lemma A.50 that the simultaneous eigenstates of the action of a field

F on a vector space VQ = SpanQ{eI}, with [F : Q] = dimQ VQ, is of the form

vρa :=

[F :Q]∑

I=1

eIρa(ηI), ρa ∈ Homfield(F,Q) (16)

for some basis {ηI} of F over Q; when we change a Q-basis {eI} of VQ, the basis {ηI} also

changes accordingly so that the eigenspace Cvρa remains to be the same. Conversely, we

may choose a basis {ηI} of F/Q in any way we like, and then a Q-basis {eI} of VQ changes

accordingly. It will be convenient to set {ηI} = {1, y, x, xy} in the cases (B, C) and to set

18To take the CM field K = Q[x]/(x4 + x3 + x2 + x + 1) in footnote 17 as an example, the set of
embbedings of K is {ρa | a ∈ 1, 2, 3, 4}, where ρa : x 7→ e2πia/5. In the component [H3(M ;Q)]ℓ=3 of the
Fermat quintic Calabi–Yau threefold M (see (13)), for example, the Hodge (3,0) component has a generator∑4

I=1 eIe
2πiI/5 =

∑4
I=1 eIρa=1(x

I), and the Hodge (2,1) component a generator
∑4

I=1 eIρa=2(x
I), for some

basis {eI} of the vector space [H3(M ;Q)]ℓ=3 over Q; this is an example of the structure (16).
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{1, xi} in the cases (A, A’) in our analysis. The corresponding basis {eI} of VQ is denoted by

{α̂1, α̂2, β̂1, β̂2} ⊂ H1(M ;Q) in the cases (B, C), and by {α̂i, β̂i} ⊂ H1(Ei;Q) in the cases (A)

and (A’). Although there are still infinitely many CM-type abelian surfaces (see also section

7 and Rmk. A.6) after specifying the endomorphism algebra End(H1(M ;Q))Hdg, the uniform

treatment by the basis {α̂1, α̂2, β̂1, β̂2} of H1(M ;Q) and the convenient basis {ηI} of K/Q is

possible for each of the cases (B,C), (A) and (A’); the difference among those infinitely many

CM-type abelian surfaces is hidden in how each of the elements of the basis {α̂1, α̂2, β̂1, β̂2}
is placed relatively to the integral subspace H1(M ;Z) ⊂ H1(M ;Q).

2.11. (CM pair) When there are two abelian varieties (M ; I)1 and (M ; I)2 of dimension n

that are both CM-type and are isogenous to each other (equivalently, the weight-1 rational

Hodge structure of (H1(M1;Q), I1) and (H1(M2;Q), I2) are Hodge isomorphic), the endomor-

phism algebra End(H1(M1;Q))Hdg and End(H1(M2;Q))Hdg are isomorphic. The converse is

not true, so the endomorphism algebra End(H1(M ;Q))Hdg alone is not enough in specifying

an isogeny class of abelian varieties.

Let (M ; I) be an n-dimensional complex abelian variety of CM-type where there is a

totally imaginary field F of degree 2n in End(H1(M ;Q))Hdg acting on H1(M ;Q). Then the

2n embeddings of F into C, Homfield(F,Q), is grouped into those—Φ(1,0)—that correspond

to the Hodge (1,0) component and Φ(0,1) to the Hodge (0,1) component (cf Rmk. A.54). The

pair (F,Φ(1,0)), called a CM pair, contains enough information to specify an isogeny class of

CM-type abelian varieties.19

The Galois theoretical classification of CM-type abelian varieties of n-dimensions should

therefore deal with CM pairs, not CM fields. In the case n = 2 (and also n = 1), however, the

classification of CM pairs is no finer than that of the endomorphism algebras that ended up

with (B), (C), (A) and (A’). Let us explain why in the following, while preparing notations

to be used in the analysis in this article.

Let us begin with an imaginary quadratic field K(2) ∼= Q[x]/(x2 − p), where p ∈ Q<0.

The endomorphism field of a CM elliptic curve is always of this form, and this field is also

relevant to the abelian surfaces in the cases (A) and (A’). There are two embeddings of the

field Q[x]/(x2 − p):

τ± : x 7−→ ±√
p = ±i√−p ∈ C; (17)

19This notion can be generalized to a rational Hodge structure (VQ, φ) that are not necessarily polarizable,
not necessarily of weight-1. It is a pair (F,∐p,qΦ

(p,q)) of a number field F ⊂ End(VQ, φ) with [F : Q] =
dimQ VQ and a decomposition of embeddings Homfield(F,Q) such that the complex conjugation of Φ(p,q) is
Φ(q,p).

22



here, and throughout this article, we adopt a convention that
√
d ∈ R for d ∈ R>0 is the

square root in the real positive axis, and
√
p ∈ C for p ∈ R<0 the square root in the upper

complex half plane.20 The two embeddings of K(2), one in Φ(1,0) and the other in Φ(0,1), are

regarded as the two embeddings {τ±} of the field Q[x]/(x2 − p), but which one of τ+ and

τ− corresponds to Φ(1,0) depends on the choice of an isomorphism K(2) ∼= Q[x]/(x2 − p).

It is always possible to let the embedding Φ(1,0) of K(2) correspond to τ+ by modifying the

isomorphism by Aut(K(2)/Q) ∼= Z2. It is for this reason that the classification for n = 1 and

the cases (A) and (A’) for n = 2 is fine enough.

Let us now have a look at the degree-4 field in (15) that is isomorphic to the endomorphism

field of simple CM-type abelian surfaces (i.e., cases (B, C)). The four embeddings of the field

Q[x, y]/(y2 − d, x2 − p− qy) are denoted by τ±±, where

τ±∗ : y 7→ ±
√
d, τ±+ : x 7→

√
p± q

√
d = i

√
−p∓ q

√
d, (18)

τ±− : x 7→ −
√
p± q

√
d = −i

√
−p∓ q

√
d. (19)

We introduce a short-hand notation
√
+ :=

√
p+ q

√
d and

√− :=

√
p− q

√
d for the pure

imaginary complex numbers in the upper half plane and use it for the sake of compactness of

notation in this article. For one fixed isomorphism End(H1(M ;Q))Hdg = K ∼= Q[x, y]/(y2 −
d, x2−p−qy), the two embeddings in Φ(1,0) of End(H1(M ;Q))Hdg = K may correspond to any

one of the four pairs that are not the complex conjugation pairs {τ++, τ+−} or {τ−+, τ−−}.
By replacing the totally real generator y and totally imaginary generator x of the field

Q[x, y]/(y2 − d, x2 − p− qy) appropriately (so the rational numbers d, p and q will change),

however, it is always possible to have Φ(1,0) = {τ++, τ−+} in the new choice of the generators.

It is for this reason that the classification ending up with (B) and (C) is enough. In the

analysis in this article, we understand that this change in the presentation is always made,

and work only with the CM pairs (K, {τ++, τ−+}) in the cases (B, C).

With those conventions, we may choose {dz1, dz2} := {va=++, va=−+} as a basis of

H1,0(M ;C) in the case (B, C):

(dz1, dz2) = (α̂1, α̂2, β̂1, β̂2)




1 1√
d −

√
d√

p+ q
√
d

√
p− q

√
d√

p+ q
√
d
√
d −

√
p− q

√
d
√
d




=: (α̂i, β̂i)

(
ZT

αT

)
; (20)

20In this convention,
√
p1
√
p2 = −√

p1p2 for p1, p2 ∈ R<0.
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Z is real-valued and α pure-imaginary valued; both are 2 × 2 matrices. In the case (A) and

(A’), we may choose {dz1, dz2} := {α̂1 +
√
p1β̂1, α̂

2 +
√
p2β̂2} as a basis of H1,0(M ;C); in

the case (A),
√
p1 =

√
p2 =

√
p. In the matrix form,

(dz1, dz2) = (α̂i, β̂i)

(
ZT

αT

)
, Z := diag(1, 1), α := diag(

√
p1,

√
p2). (21)

2.12. (The level-n Hodge structure and the reflex field) Let (M ; I) be a abelian variety

of complex n dimensions that is of CM-type under the definition Def. A.3, and equivalently

Rmk. A.62. This definition based on the rational Hodge structure of weight-1 implies that

(M ; I) is of strong CM-type, and consequently, of weak CM-type. The level-n rational Hodge

structure, supported on the vector subspace [Hn(M ;Q)]ℓ=n ⊂ Hn(M ;Q), is always simple;

the endomorphism field of this level-n substructure is known to be calculable systematically

from the weight-1 rational Hodge structure (H1(M ;Q), I) of the abelian variety (M ; I), as

we review in the following (cf [Shi70, Prop. 1.9.2]).

Let K = ⊕iFi ⊂ End(H1(M ;Q))Hdg be an algebra in the form of the direct sum of totally

imaginary fields with the property
∑

i[Fi : Q] = 2n. Let Φ
(1,0)
Fi

be the [Fi : Q]/2 embeddings

of Fi that correspond to the Hodge (1,0) components. Then the reflex field for the pair

(⊕iFI , {Φ(1,0)
Fi

}) is defined by (e.g., [Shi97, §8] and [Mil22, Def. 1.17]) the field generated by

Kr := Q

(
∪i

{∑
τ∈Φ

(1,0)
Fi

τ(xi) | xi ∈ Fi

})
⊂ C. (22)

Although there is ambiguity in the choice of the algebra K = ⊕iFi ⊂ End(H1(M ;Q))Hdg in

a case more than one simple Hodge substructures are mutually Hodge-isomorphic, the reflex

field Kr in this definition is known not to depend on the ambiguity [Shi97, §8].

The number field Kr here is introduced as a subfield of C. On the other hand, the

endomorphism field of the CM-type simple rational Hodge structure on [Hn(M ;Q)]ℓ=n has

dimQ[H
n(M ;Q)]ℓ=n embeddings into C. Because hn,0(M) = 1, there is just one embedding

of this endomorphism field, Φ(n,0) = {τ r(n0)}; the image of the field End([Hn(M ;Q)]ℓ=n)
Hdg by

this embedding τ r(n0) is the subfield Kr ⊂ C ([Shi70, Prop. 1.9.2]). So, we will often identify

Kr with the endomorphism field of the level-n component with this embedding τ r(n0) in this

article.

Here is a little more detail on the reflex field (the endomorphism field of the level-n

component), which we use in the analysis in this article. Just a straightforward computation

is enough to verify the following statements.
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In the case (A), the reflex field is isomorphic toKr ∼= Q[ξ]/(ξ2−p) when the endomorphism

algebra of the weight-1 rational Hodge structure is M2(Q(
√
p)). The level-2 component (a

reminder: dimCM = n = 2 now) must be of 2-dimensions over Q because [Kr : Q] = 2.

In the case (A’), Kr ∼= Q[ξ1, ξ2]/(ξ
2
1 − p1, ξ

2
2 − p2). It is also possible to adopt ξ := ξ1 and

η := ξ1ξ2 as generators, when Kr ∼= Q[ξ, η]/(ξ2 − p1, η
2 − p1p2). The four embeddings of Kr

may be denoted by τ rǫ′,ǫr , where τ
r
±∗ : η 7→ ±√

p1p2 and τ r∗± : ξ 7→ ±√
p1.

In the case (B, C),

Kr ∼= Q[η, ξ]/(η2 − d′, ξ2 − 2p+ 2η). (23)

Let us introduce notations τ r±± for the four embeddings of the reflex field Kr →֒ Q.

τ r±∗ : η 7→ ±
√
d′, τ r±+ : ξ 7→

√
p+ q

√
d±

√
p− q

√
d, (24)

τ r±− : ξ 7→ −
(√

p+ q
√
d±

√
p− q

√
d

)
. (25)

We will use the fact that

τ r±+(2q/ξ) =

(√
p+ q

√
d∓

√
p− q

√
d

)
/
√
d. (26)

Definition 2.13. For a general compact Kähler manifold (M ; I) of dimension n,

H2(MI) := H1,1(MI ;R) ∩H2(M ;Q) (27)

is said to be the algebraic part of H2(M ;Q). When n = 2, H2(M ;Q) is not just a vector

space, but is endowed with a bilinear form H2(M ;Q)×H2(M ;Q) −→ H4(M ;Q) ∼= Q. The

orthogonal complement

TM ⊗Q :=
[
H2(MI)

⊥ ⊂ H2(M ;Q)
]

(28)

with respect to the bilinear form is said to be the transcendental part. It is known that bilinear

form restricted to the algebraic part H2(MI) is non-degenerate when the Kähler manifold

(M ; I) is polarizable (i.e., an algebraic variety, such as an abelian variety (cf. Rmk. A.16)).

So, there is an orthogonal decomposition of the vector space H2(M ;Q) ∼= H2(MI)⊕(TM⊗Q).

This is a decomposition of rational Hodge structure; the substructure on H2(MI) is of level-0

and that on TM ⊗Q of level-2 (cf Ex. A.21).

For a 2-form ψ ∈ H2(M ;R), its decomposition into (H2(MI)⊗R)⊕ (TM ⊗R) is denoted

by ψalg + ψtransc, and are called the algebraic and transcendental parts/components.

25



Lemma 2.14. [well known in math literatures (e.g., [Shi97, Mil22, Che08])] Let (M ; I) be

a CM-type abelian variety of n dimensions, with a CM field F ⊂ End(H1(M ;Q))Hdg such

that [F : Q] = 2n. Then the algebraic part H2(MI) ⊂ H2(M ;Q) contains an n dimensional

subspace H2(MI)gen specified below (h1,1(M) = n2, so that is possible). The proof also

introduces a basis on H2(MI)gen and also explains how to construct a polarization within

H2(MI)gen ⊂ H2(MI).

Proof. Let F0 be the totally real subfield of F , and Φ(1,0) = {τa=1,··· ,n} be the embeddings

of F corresponding to H1,0(M ;C). There must be a basis {eI=1,··· ,2n} of H1(M ;Q) and a

basis {ηI=1,··· ,2n} of F/Q so that {dza := eIτa(ηI) | a = 1, · · · , n} are the n independent

holomorphic 1-forms (cf Lemma A.50).

Now, let ξ∗ ∈ F be a generator of F/F0 (i.e., F = F0(ξ∗)) so that ξ2∗ ∈ F0 (there is not

such structure in a general totally imaginary field, so there is not an analogue for complex

tori with sufficiently many complex multiplications). Then for any element ξ ∈ ξ∗F
×
0 ,

Q(ξ) :=

n∑

a=1

2τa(ξ)dz
a ∧ dz̄ā, (29)

= eI ∧ eJ
n∑

a=1

(τa(ξηI η̄J)− τa(ξη̄IηJ)) ,

= eI ∧ eJ
n∑

a=1

(
τa(ξηI η̄J) + τa(ξ̄η̄IηJ)

)
= eI ∧ eJTrF/Q[ξηI η̄J ] ∈ H2(M) (30)

(for any field extension E/F , TrE/F [x] ∈ F for x ∈ E; see [KW17, A.1.15] or any intro-

ductory textbook on field theory). Linearly independent choices of ξ from ξ∗F0 generate an

n-dimensional subspace of H2(MI), which is denoted by H2(MI)gen.

For the (1,1) form Q(ξ) to be a polarization (see Def. A.42–Rmk. A.44 and Rmk. A.16),

first, choose {eI} to be an integral basis of H1(M ;Z), and restrict ξ such that TrF/Q[ξηI η̄J ] ∈
Z for all the pairs (I, J); the basis {ηI} should be those that correspond to the integral basis

{eI}. Second, impose inequalities on ξ ∈ ξ∗K0 so that it is positive definite.

Lemma 2.15. Let MI = (M ; I)|M=T 2n be an abelian variety of CM-type. Then

dimQ H2(MI) ≥ dimCMI .

Proof. We can split the vector space H1(M ;Q) into its components ⊕a∈A[H
1(M ;Q)]a sup-

porting simple Hodge substructures; let Ka be the CM field End([H1(M ;Q)]a)
Hdg. Thus, it
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is enough to prove the statement for a simple abelian variety, and that was done in Lemma

2.14.

Lemmas 2.14 and 2.15 above imply that

H2(M)⊗ C ⊃ H2(M)gen ⊗ C = SpanC {dza ∧ dz̄ā} , (31)

which can be accompanied by

TM ⊗ C ⊂ T gen
M ⊗ C = SpanC

{
(dza ∧ dzb)a<b, (dz̄

ā ∧ dz̄b̄)a<b, (dz
a ∧ dz̄b̄)a6=b

}
, (32)

to have H2(M ;C) ∼= (H2(MI)gen ⊗ C) ⊕ (T gen
M ⊗ C). For a CM abelian surface (M ; I),

where n = 2, (T gen
M ⊗ C) is orthogonal to H2(MI)gen ⊗ C with respect to the bilinear form

H2(M)×H2(M) → H4(M) ∼= C.

2.16. n = 2, Cases (B, C, A’): In the cases (B, C, A’) of CM abelian surfaces (M ; I), we

already know that TM ⊗Q = [H2(M ;Q)]ℓ=2 is of dimension [Kr : Q] = 4. This means that

TM ⊗ C = T gen
M ⊗ C, which also means that H2(MI)gen ⊗ C = H2(MI)⊗ C.

In the case (B, C),

dz1 ∧ dz̄1̄ = −2

√
p+ q

√
d
{
(α̂1β̂1) + d(α̂2β̂2) +

√
d(α̂1β̂2 + α̂2β̂1)

}
, (33)

dz2 ∧ dz̄2̄ = −2

√
p− q

√
d
{
(α̂1β̂1) + d(α̂2β̂2)−

√
d(α̂1β̂2 + α̂2β̂1)

}
, (34)

so

H2(MI) = SpanQ

{
(α̂1β̂1) + d(α̂2β̂2), (α̂

1β̂2 + α̂2β̂1)
}
, (35)

TM ⊗Q = SpanQ

{
(α̂1α̂2), (β̂1β̂2), (α̂

1β̂2 − α̂2β̂1), (α̂
1β̂1 − dα̂2β̂2)

}
. (36)

We will use the following notation later:

e1 := α̂1β̂1 + dα̂2β̂2, e2 := α̂1β̂2 + α̂2β̂1. (37)

The following generator of the Hodge (2, 0) component is in TM ⊗ C indeed:

−dz
1 ∧ dz2
2
√
d

=
[
α̂1α̂2 + (

√
+−

√
−)/(2

√
d) [α̂1β̂1 − dα̂2β̂2]

+(
√
++

√
−)/2 [α̂1β̂2 − α̂2β̂1] +

√
d′ β̂1β̂2

]
. (38)
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Here, we used the notation introduced below (19). This generator has the form of (16), where

{ηI} = {1, η, ξ/2, q/ξ} is the basis of Kr/Q when the basis {eI} of TM ⊗ Q is the one in

(36), and the embedding τ r++ corresponds to the 1-dimensional (h2,0 = 1) eigenspace for the

Hodge (2,0) component, i.e., τ r(20) = τ r++.

In the case (A’),

dz1 ∧ dz̄1̄ = −2
√
p1α̂

1β̂1, dz2 ∧ dz̄2̄ = −2
√
p2α̂

2β̂2, (39)

so dz1 ∧ dz2 = (α̂1α̂2)−√
p1p2(β̂1β̂2) +

√
p2(α̂

1β̂2) +
√
p1(β̂1α̂

2) is in TM ⊗ C below:

H2(MI) = SpanQ

{
(α̂1β̂1), (α̂

2β̂2)
}
, (40)

TM ⊗Q = SpanQ

{
(α̂1α̂2), (β̂1β̂2), (α̂

1β̂2), (α̂
2β̂1)

}
. (41)

The generator dz1 ∧ dz2 of the Hodge (2,0) component in TM ⊗Q has the form of (16), with

the embedding τ r++ for the Hodge (2,0) component (i.e., τ r(20) = τ r++); {1,−η,−η/ξ, ξ} is the

basis of Kr/Q that corresponds to the basis (41) of TM ⊗Q.

In the case (A),21

TM ⊗Q = SpanQ

{
(α̂1α̂2 + pβ̂1β̂2), (α̂

1β̂2 + β̂1α̂
2)
}
, (42)

generated by the real and imaginary part of dz1 ∧ dz2 = (α̂1 +
√
pβ̂1)(α̂

2 +
√
pβ̂2).

H2(MI) = SpanQ

{
(α̂1β̂1), (α̂

2β̂2), (α̂
1α̂2 − pβ̂1β̂2), (α̂

1β̂2 − β̂1α̂
2)
}
, (43)

generated by dz1 ∧ dz̄1̄/(−2
√
p) and dz2 ∧ dz̄2̄/(−2

√
p) in H2(M)gen, along with the real and

imaginary part of dz1 ∧ dz̄2̄.

3 Choice of Complex Structure (Conditions 1 & 2)

As we have remarked in Discussion 2.1, there is no way not to choose a complex structure

on T 2n when we wish to establish a Gukov–Vafa-like characterization of rational T 2n-target

(S)CFTs. On one hand, it is desirable to find a characterization statement that works

well for a broader class of complex structures. On the other hand, if there is a choice of

21 The case (A), where (M ; I) is isogenous to a product of two copies of a CM elliptic curve, is known
[SM74] to be the case of rank-2 TM .
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complex structure I that is well-motivated in string theory, there is a chance that we have a

sharper/clearer characterization statement for such a smaller class of complex structure I.

Mathematicians tend favor of algebraic varieties over general complex analytic manifolds,

of abelian varieties over general complex tori (e.g. [Che08]). String theorists, however,

do not have any apriori reason to restrict attention only to the objects in the category of

algebraic varieties; it is rather desirable that no set of geometric data (M ;G,B) for an SCFT

is overlooked because of limited range of attention. As reviewed in the appendix A.2, a

complex manifold (M ; I) is regarded as an algebraic variety if and only if I is polarizable.

So, this issue is whether it is righteous to restrict our attention to the choice of complex

structure that is polarizable.

In the case M ∼= T 2n, there is always a choice of complex structure I that is polarizable

(isogenous to the product of n CM elliptic curves), if a set of data (M ;G;B) that corresponds

to a rational CFT (Cor. 2.8). So we may argue that no set of data (M ;G,B) for a rational

SCFT is lost immediately by demanding that there exists a polarizable complex structure I

(with which (M ; I) is of strong CM-type), at least in the case study for M = T 2n. That is a

passive support for demanding that I is polarizable. In section 3.1, however, we will argue

that there is also a positive support for restricting our attention only to polarizable complex

structures, even from the perspective of string theorists.

There is one more choice of complex structure I for a set of data (M ;G,B) that is felt

better motivated by string theorists. Instead of demanding that I is polarizable, we may

reduce arbitrariness in the choice of I by demanding that the Hodge (2,0) component of

the two-form B vanishes with respect to I; when the two-form B is generic, this demand

uniquely determines the choice of I, and the arbitrariness in Discussion 2.1 is gone. That is

also a choice that is often made when string theorists deal with a case M is a K3 surface,

or a hyper-Kähler manifold. Those two restrictions on I are independent, however, and are

not compatible in general. We will see in section 3.2, however, that the two requirements are

always compatible when M = T 4, and the SCFT for (M ;G,B) is rational.

That was how the present authors were led to set condition 1 in Conj. 1.2 as it is.

Existence of such a complex structure is therefore non-trivial for a generic data (M ;G,B)

of an SCFT; a proof of existence (condition 1), done in this section for M = T 4, already

provides a non-trivial characterization for geometric data (M ;G,B)|M=T 4 that correspond to

rational SCFTs.
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3.1 Polarization

3.1. (Complex tori with sufficiently many complex multiplications vs CM-type

abelian varieties) Definitions of sufficiently many complex multiplications of a complex

torus and the CM-type property of an abelian variety are quoted and reviewed in the appendix

A.1, Thm. A.11 and Rmk. A.12, Def. A.42–Rmk. A.44 and Def. A.52. The key intuitive

properties of those complex tori and abelian varieties, which also carry the same information

as the definitions, are stated in Prop. A.64 and Rmk. A.63, respectively.

To string theorists, CM-type abelian varieties must look very much like ordinary complex

tori with sufficiently many complex multiplications. Whether or not they have an implemen-

tation as algebraic varieties (than complex analytic manifolds) would not usually matter in

physics. Although one can introduce a notion of polarization and argue whether a geome-

try/Hodge structure has it or not, possible existence of a polarization22 does not immediately

give any physics intuition for something non-trivial to exist. In fact, that is not right. To see

this, let us consider the following result by Meng Chen [Che08].

Proposition 3.2. [Che08, Thm. 2.5] Let (M ; I)|M=T 2n be an abelian variety, i.e., a complex

torus that admits a polarization. If there exists a constant metric G compatible with I that

is rational in the sense of (14), then the polarizable rational Hodge structure on H1(M ;Q) is

of CM-type.

For a set of data (T 2n;G,B) for which the (S)CFT is rational, there is always a complex

structure I with which G is compatible and which admits a polarization (see Cor. 2.8 and the

discussion that follows). So, Prop. 3.2 above is not an empty statement for any T 2n-target

rational (S)CFTs. This is already a proof that condition 2 in Conj. 1.2 (in conjunction with

condition 1) is a necessary condition for the rationalness of the SCFT.

The statement of Prop. 3.2 does not say what happens if we choose a non-polarizable

complex structure I for a set of data (M ;G,B)|M=T 2n of a rational SCFT. By reading between

the lines of the proof of [Che08, Thm. 2.5 + Prop. 2.4], however, we can find an answer to

this question, as follows.

22In math literature, discussions are developed sometimes for a triple (M ; I;Q) of a complex torus (M ; I)
that admits polarizations along with a choice Q of a polarization (alternatively, along with an embedding of
(M ; I) into a projective space), not just demanding existence of Q’s. The automorphism group of (M ; I;Q)
is finite in the case of abelian varieties [BL04, Cor. 5.1.9], for example, and the moduli space of (M ; I;Q)
has a nicer math property than that of (M ; I). In this article as a research in string theory, however, only
the possible existence of polarizations matters, not a choice of it.
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The following two conditions on a complex torus (M ; I)|M=T 2n of n dimensions are known

to be equivalent:23

(i) The algebra End(H1(M ;Q))Hdg over Q contains a commutative semi-simple subalgebra

of dimension 2n.

(ii) The Hodge group Hdg(MI) of the Hodge structure is commutative.

Condition (i) is adopted as the definition for a complex torus to have sufficiently many

complex multiplications in Def. A.52 and Rmk. A.62 in this article. Prop. 2.4 of [Che08]

proves, with an abelian variety (M ; I) in mind, that the properties (i) and (ii) above are

equivalent to the property

(iii) the set of real points Hdg(MI)(R) of the Hodge group is compact.

Thm. 2.5 of [Che08] proves the compactness (iii) of Hdg(MI)(R) when there exists a rational

metric G that is compatible with I, and hence the CM property (i) and (ii). In proving

the equivalence between the properties (iii) and (i, ii), however, Ref. [Che08] uses the fact

that Hdg(MI)(R)
Ad(h(i)) is compact; to prove the compactness of this group, Thm. 1.3.16 of

[Roh09]24 uses the positive definiteness of a polarization of the rational Hodge structure.25

To conclude, the equivalence between the properties (iii) and (i, ii) breaks down when the

rational Hodge structure (H1(M ;Q), I) does not necessarily have a polarization.

In our context, even when there is a constant rational metric G of (M ;G; I)|M=T 2n, we

cannot derive the property (i), the presence of sufficiently many complex multiplications

(endomorphisms), if I is not polarized. We could pay attention to complex tori (M ; I)|M=T 2n

satisfying the property (i) above, but it is not obvious whether there exists26 a constant

rational metric compatible with the complex structure I. For this reason, we pay attention

only to complex structures I that admit polarization in the rest of this article.

23The proof of Props. 17.3.4 and 17.3.5 of [BL04] does not assume that the Hodge structure in question
admits a polarization.
We do not write down a definition of a Hodge group in this article, but is found in many literatures. It

is enough in reading the main text of this article just to know that there is a widely accepted definition for
this jargon. If a reader wants to find a review on a Hodge group or a Mumford–Tate group written by string
theorists for string theorists, the appendix A.3 of [OW24] will be an option.

24We refer to the LNM version, not to its arXiv versions.
25For a stringy reader who wants a more down-to-earth presentation on how polarizability of a rational

Hodge structure makes a difference, an example in the appendix A.7 might serve as an antidote to the chain
of abstract logic here.

26Although Thm. 2.5 of [Che08] constructs rational metrics satisfying (14) by (141), this construction
exploits properties of CM fields that are not available to a general totally imaginary field.
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3.3. For a given M = T 4 and a not-necessarily-rational constant metric G on it, there are

infinitely many choices of complex structure I that is compatible with G and is polarizable.

We can see this as follows. Recall, first, that the metric G determines the real 3-dimensional

vector subspace ΠG of H2(T 4;R) that consists of 2-forms that are self-dual under the Hodge-*

operation with respect to the metric G. Choice of a complex structure I compatible with

G is to specify one semi-line R>0ω for ω = 2−1G(I−,−) within the subspace ΠG; so, the

choice of I comes with a variety S2 [Asp96, §2]; the two directions in ΠG orthogonal to ω

with respect to the wedge product supports the holomorphic (2,0) form ΩM on T 4. Recall

also that any 2-form ψ ∈ H2(T 4;R) can be decomposed into the self-dual component and

the anti-self-dual component under the Hodge-* operation, ψ = ψ‖ + ψ⊥.

Now, choose any ψ ∈ H2(T 4;Q) with
∫
ψ ∧ ψ > 0; then ψ‖ 6= 0 because

∫
ψ ∧ ψ > 0.

One may then choose a complex structure so that ω ∈ R>0ψ‖ or ω ∈ −R>0ψ‖; with this

choice, ψ is in H2(T 4
I ); the condition

∫
ψ ∧ ψ > 0 implies that the Hermitian 2 × 2 matrix

{(ψ)ab̄}a,b=1,2 in ψ = iψab̄dz
a ∧ dz̄b̄ has a positive determinant, meaning that the product of

the two real-valued eigenvalues is positive. So, either ψ or −ψ is a polarization (DP in Rmk.

A.16). This procedure exhausts all the possible polarizable and compatible I for a given

(T 4;G). Prop. 3.2 by Meng Chen implies that (T 4; I) is of CM-type for all those I’s.

For a given M = T 2n and a constant rational metric G on it, there is yet another way

to realize that there are countably infinitely many complex structures I compatible with G

and is polarizable; one can find countably infinitely many choices of isogenies ϕ in Cor. 2.8

(proven in [Wen00]), and hence infinitely many such complex structures ϕ∗(I0); there can be

more of those outside of those of the form of ϕ∗(I0).

3.2 Transcendental Part of the B-field

Restricting attention only to complex structures I that are polarizable may certainly fit

for the taste of algebraic geometers, and is also necessary in setting up characterization

of rational SCFTs in terms of complex multiplications along the line of Conj. 1.2. There

is an alternative choice of complex structure I that has been often employed in studies

of string compactification on K3 surface (where h2,0(MI) is non-zero, just like in the case

M = T 2n); that is to set I so that the 2-form B of the SCFT data (M ;G,B) is purely of

Hodge (1,1) component, B(2,0) = 0. The two preferred choices of a complex structure are

actually compatible as we see in

Proposition 3.4. This is for the case n = 2. Let (T 2n;G,B)|2n=4 be a set of data for which
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the (S)CFT is rational. Then there exists a polarizable complex structure I on T 4 with which

G is compatible, and the B-field only has the Hodge (1, 1) component with respect to that I.

In particular, the B-field is in the algebraic part H2(T 4
I ).

Proof. When B‖ = 0, automatically there is no Hodge (2,0) or (0,2) component in B = B⊥,

regardless of which direction in ΠG is chosen (and of how a compatible complex structure I

is chosen). We just have to choose any I in S2 such that a polarization exists (such an I

exists; we have already seen that at the end of section 2.2).

When B‖ 6= 0, there is virtually no free choice for I after requiring that the Hodge (2,0)

component is absent; we have to choose ω ∈ RB‖. Choosing ω ∈ R<0B‖ instead of ω ∈
R>0B‖ is nothing more than declaring holomorphic coordinates on T 4 as anti-holomorphic

coordinates instead. So, we fix ω = 2−1G(I−,−) by the condition ω ∈ R>0B‖, and prove

that there is a polarization under I.

To this end, note that
∫
ΩM ∧B‖ = 0 and

∫
ΩM ∧B⊥ = 0, which is equivalent to

∫

T 4

ΩM ∧B = 0,

∫

T 4

ΩM ∧ (∗B) = 0. (44)

So, both B and ∗B are in H1,1(T 4
I ;R). We already know that B is also in H2(T 4;Q) when

(T 4;G,B) is for a rational (S)CFT (see (14)).

If R(∗B) = RB, then either ∗B = B or ∗B = −B. As we are in the case B‖ 6= 0 now,

∗B = B is the only option, and B‖ = B = ∗B. In that situation, either B or −B is a

polarization (repeat the argument in Discussion 3.3). This proves that either B or −B is

positive definite, besides being rational.

If ∗B and B are linearly independent in H2(T 4;R), then SpanR{B, ∗B} ⊂ H1,1(T 4;R) is

a 2-dimensional subspace, with signature (1, 1). Now, we claim that R(∗B) ∩ H2(T 4;Q) is

not {0}. To see this, it is enough to note that

(∗B)IJ =
√
det(G) ǫIJMN GMKGNLBKL

1

2
, (45)

where ǫIJKL is the {±1}-valued totally anti-symmetric tensor of rank-4; R(∗B) contains such

2-forms as
√

det(G)
±1
(∗B), which are rational, as promised. This means that H2(T 4

I ) =

H2(T 4;Q) ∩ H1,1(T 4
I ;R) is at least of 2-dimensions over Q of signature (1, 1). Moreover,

within the 2-dimensional H2(T 4
I ) ⊗ R, there is a line Rω along the Kähler form, and there

is a rational point of H2(T 4
I ) arbitrarily close to the line Rω in H2(T 4

I )⊗ R. Such a rational

point is a polarization.
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The last statement in Prop. 3.4 follows from Lemma 3.5 below. We review it below for

the benefit of the reader not familiar with it.

Such a complex structure in Prop. 3.4 is almost unique when B‖ 6= 0, and there will be

infinitely many when B‖ = 0 (all of those described in Discussion 3.3 are qualified).

Lemma 3.5. Let TM ⊗ Q be the transcendental part of a Kähler surface (M ; I) that has a

polarization in H2(M ;Q). When ψ ∈ TM ⊗Q is decomposed into ψ(2,0) + ψ(0,2) + ψ(1,1) and

ψ(2,0) = 0, then ψ = 0.

Proof. 27 The input ψ(2,0) = 0 implies ψ(0,2) = 0, because ψ ∈ TM ⊗ Q is real. This means

that ψ = ψ(1,1) is in H2(MI).

Since we have assumed that (M ; I) admits a polarization, MI = (M ; I) is algebraic, so

the intersection form on H2(MI) is non-degenerate (Hodge index theorem); H2(M ;Q) ∼=
H2(MI) ⊕ (TM ⊗ Q) then. So, ψ = ψ(1,1) is both in H2(MI) and TM ⊗ Q, which is possible

only if ψ = 0.

4 Kähler Form in the Algebraic Cone (Condition 3)

Meng Chen found an example of a mirror pair of CM-type abelian surfaces (M ; I) and

(W ; I◦) that are mutually isogenous. This set of data satisfies both conditions (i) and (ii) in

Conj. 1.1. One can also translate the information in (M ; I) and (W ; I◦) into a set of data

(M ;G,B; I) for which an SCFT is specified. Meng Chen pointed out that the SCFT in an

example is not rational [Che08, Prop. 4.1 and Cor. 5.11]. The present authors take this

observation/example as an indication that there are more necessary conditions besides (i)

and (ii).

In order to avoid various issues being mixed up, we postpone discussing mirror SCFTs to

the next section, and deal with the complexified Kähler form (B + iω) on (M ; I) instead of

the complex structure of (W ; I◦) in this section 4. We will extract one necessary condition

on (B + iω) ∈ H2(M ;C) for the SCFT of (M ;G,B; I) to be rational, as presented in Thm.

4.2. We have already seen in Prop. 3.4 that B ∈ H2(T 4
I ) when we choose a complex

structure I that is polarizable and compatible with G such that B(2,0) = 0; Thm. 4.2

says, among other things, that the Kähler form for a rational SCFT is also in the subspace

H2(T 4
I ) ⊗ R ⊂ H1,1(T 4;R) although that for a general SCFT can be in H1,1(T 4;R). In the

counter example to Conj. 1.1 found by Meng Chen, one can verify by computation that its

27This lemma is well established in Hodge theory.
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Kähler form is in H1,1(M ;R) but is outside of H2(M) ⊗ R, so the data (M ;G,B) of the

example do not satisfy the necessary condition in Thm. 4.2. This is now added as condition

3 in Conj. 1.2.

Note also that condition 3 in Conj. 1.2 is phrased by referring only to the Kähler form in

H2(M ;Q)⊗Q, an object available in any complex Kähler manifold. That is to be contrasted

with condition (14), which relies on periodic coordinates of Tm ∼= Rm/Z⊕m and the the

globally constant values of the component fields of the metric G and the 2-form B. So,

although Thm. 1.3 for the cases M = T 4 only reorganizes the information contained in the

original condition (14), the study being done here is motivated primarily to come up with a

version (Conj. 1.2 or Conj. 6.1) that may work for a broader class of target space geometry.

4.1. The first one of the conditions in (14)—one for the metric—involves an integral basis of

H1(T 2n;Z). This condition is still in the same form—the components are rational numbers

when we use a rational basis of H1(T 2n;Q). Let us translate this condition into that for the

Kähler form.

The metric G is Hermitian under the complex structure I, that is,

G = hab̄dz
a ⊗ dz̄b̄ + hābdz̄

ā ⊗ dzb (46)

for some constant Hermitian n × n matrix h = (hab̄). Here, we use a basis {dza, dz̄ā} of

H1(T 2n
I ;C) that are eigenvectors of the CM-field action. Using the linear relations such

as (20, 21), the rationality of the components GIJ in a rational basis is translated to the

rationality of all the components of the matrix

(
ZT Z

T

αT αT

)(
h

hT

)(
Z α
Z α

)
=

(
ZThZ + Z

T
hTZ ZThα+ Z

T
hTα

αThTZ + αThZ αThα+ αThTα

)
. (47)

That is,

ZThZ + Z
T
hTZ ∈ Mn(Q)sym, (48)

αThα + αThTα ∈ Mn(Q)sym, (49)

ZThα + ZhTα ∈ Mn(Q). (50)

We wish to solve those conditions in terms of the matrix h = (hab̄); this is done by working

separately for each of the cases (B, C), (A’) and (A). So, the analysis leading to Thm. 4.2 is

only for T 2n|2n=4. We will use the following parametrization of the 2× 2 matrix h:

h =

(
h1 c1 − ic′2

c1 + ic′2 h2

)
, h1,2, c1, c

′
2 ∈ R. (51)
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Case (B, C): Condition (48) implies that

h1 + h2 ∈ Q, h1 − h2 ∈
√
dQ, c1 ∈ Q, ∀c′2 ∈ R, (52)

and condition (49) on top of this implies that

c1 = 0. (53)

On the other hand, condition (50) is equivalent to c′2 = 0 with arbitrary h1,2 and c1. So, we

have28

h = diag(a+ b
√
d, a− b

√
d), ∃a, b ∈ Q; (54)

the corresponding Kähler form ω(−,−) = 2−1G(I−,−) is

ω = i(a + b
√
d)dz1 ∧ dz̄1̄ + i(a− b

√
d)dz2 ∧ dz̄2̄. (55)

Cases (A’) and (A): Condition (48) is translated to h1,2, c1 ∈ Q, and condition (49)

on top of this imposes c1 ∈ √
p1p2Q. So we should have c1 = 0 in the case (A’), while

c1 ∈ √
p1p2Q is equivalent to c1 ∈ Q in the case (A). On the other hand, condition (50)

implies c′2 ∈
√−p1Q∩√−p2Q; so we should have c′2 = 0 in the case (A’), while we just have

c′2 ∈
√−pQ. To summarize, we should have

(A′) : h = diag(a1, a2), a1,2 ∈ Q, (56)

(A) : h =

(
h1 c1 − c2

√
p

c1 + c2
√
p h2

)
, h1,2, c1, c2 ∈ Q, (57)

and the corresponding Kähler forms are

ω = ia1dz
1 ∧ dz̄1̄ + ia2dz

2 ∧ dz̄2̄, (58)

ω = i(dz1, dz2) ∧
(

h1 c1 − c2
√
p

c1 + c2
√
p h2

)(
dz̄1̄

dz̄2̄

)
, (59)

respectively. Having done this analysis, we are ready for this

Theorem 4.2. This is for n = 2. Let (T 2n;G,B)|2n=4 be a set of data for which the (S)CFT

is rational. For a polarizable complex structure I on T 4 with which G is compatible, the

Kähler form ω = 2−1G(I−,−) is always in the algebraic part of the 2-forms, H2(T 4
I )⊗ R.

Moreover, the combination iω is in H2(T 4
I ) ⊗ τ r(20)(K

r), where Kr is the reflex field in

Discussion 2.12. and τ r(20) its embedding for the Hodge (2, 0) component in TT 4
I
⊗ C.

28For the metric to be positive definite, a > 0 and a2 − b2d > 0.
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Proof. It is just necessary to write down the Kähler forms in (55, 58, 59) in the rational basis

in Discussion 2.16. In the case (B, C),

iω = 2τ r++(aξr + bqd/ξr)e1 + 2τ r++(bdξr + aqd/ξr)e2. (60)

The basis {e1, e2} of H2(T 4
I )⊗Q has been introduced in (37). In the case (A’),

iω = 2a1
√
p1(α̂

1β̂1) + 2a2
√
p2(α̂

2β̂2), (61)

while

iω =
√
p
[
2h1(α̂

1β̂1) + 2h2(α̂
2β̂2) + 2c1(α̂

1β̂2 − β̂1α̂
2) + 2c2(α̂

1α̂2 − pβ̂1β̂2)
]

(62)

in the case (A).

Remark 4.3. (stated already at the beginning of this section 4) Meng Chen presents in

[Che08, §4] an example of a pair of CM-type abelian surfaces (T 4; I) and (T 4; I◦) that are

geometric SYZ-mirror of each other, and are also isogenous to each other, and yet the SCFT

corresponding to (T 4;G,B; I) is not rational. This example satisfies both conditions (i) and

(ii) in Conj. 1.1. It also satisfies most of the conditions 1–5 in Conj. 1.2/Thm. 1.3. In the

example of [Che08, §4], however, one can verify by computations that the Kähler form is in

H1,1(T 4
I ;R), but is not within the algebraic part H2(T 4

I )⊗R; condition 3 of Thm. 1.3 is not

satisfied. So, this is a counter example of Conj. 1.1, but it is not for Conj. 1.2/Thm. 1.3.

5 Geometric SYZ-mirror and Hodge Isomorphisms

5.1 Implications of Meng Chen’s Paper (on Condition 5)

Besides Prop. 3.2, here we quote two more results from [Che08].

Proposition 5.1. [Che08, Prop. 3.10] Let (T 2n;G,B; I) and (T 2n;G◦, B◦; I◦) be a mirror

pair. When G and B satisfy the condition (14), then the complex torus (T 2n; I) and (T 2n; I◦)

are isogenous to each other.

Here,

Definition 5.2. Consider an N = (1, 1) SCFT that is further endowed with one U(1) current

JL in the left-moving sector and one more JR in the right-moving sector so that the N = 1

superconformal algebra is extended to an N = 2 superconformal algebra in both the left-

moving sector and the right-moving sector; we call such a collection of data an N = (1, 1)
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SCFT with an N = (2, 2) superconformal structure. A pair of such N = (1, 1) SCFTs with

an N = (2, 2) superconformal structure (by (JL, JR)) are said to be a mirror pair when there

is an isomorphism between those two N = (1, 1) SCFTs such that JL and JR of one of the

N = (1, 1) SCFTs is mapped to JL and −JR of the other.

When an N = (1, 1) SCFT with an N = (2, 2) superconformal structure is given by a set

of geometric data (M ;G,B; I) (the currents JL, JR are given by using I), we say that this

N = (1, 1) SCFT with an N = (2, 2) superconformal structure has a geometric SYZ-mirror,

if there is another N = (1, 1) SCFT with an N = (2, 2) superconformal structure given by

a geometric data (W ;G◦, B◦; I◦) such that the two N = (1, 1) SCFTs with an N = (2, 2)

superconformal structure forms a mirror pair.

Note that there always exists a mirror pair for an N = (1, 1) SCFT with an N = (2, 2)

superconformal structure, because we may always reset JR by −JR. Existence of a geometric

SYZ-mirror, on the other hand, is non-trivial. It is a belief widely accepted in string theory

community that a geometric SYZ-mirror pair has T n-fibrations πM : M → B and πW :

W → B over a common real n-dimensional manifold B (separately from the closed 2-form in

(M ;G,B; I); apologies for duplicate notations) so that the mirror correspondence is regarded

as the T-duality along the torus fiber.

In the proof of [Che08, Prop. 3.10], the complex structures I and I◦ are not assumed to

be polarizable, or to have the property that B(2,0) = 0 or (B◦)(2,0) = 0. It assumes, on the

other hand, a situation where there exists a set of data (T 2n;G◦, B◦; I◦) forming a geometric

SYZ-mirror pair with the SCFT for the set of data (T 2n;G,B; I).

Here is another result to quote:

Proposition 5.3. ([Che08, Thm. 3.11]) Let (T 2n;G,B; I) and (T 2n;G◦, B◦; I◦) be sets of

data so that their N = (1, 1) SCFTs with an N = (2, 2) superconformal structure forms a

mirror pair. Suppose further that I is polarizable, and that G and B satisfy condition (14).

Then (T 2n; I◦) is also of CM-type.

Proof. (as in [Che08]) It follows from the conditions given here that the pair of complex tori

(T 2n; I) and (T 2n; I◦) are isogenous to each other (Prop. 5.1). This means that the rational

Hodge structure on H1(T 2n;Q) by I and I◦ are isomorphic to each other. Now, recalling that

the rational Hodge structure on H1(T 2n;Q) by I is of CM-type (Prop. 3.2), we can conclude

that the rational Hodge structure (H1(T 2n;Q), I◦) is also of CM-type.

Given this situation, existence of a Hodge isomorphism (without imposing eq. (1)) in

condition 5 of Thm. 1.3 can also be derived for a set of data (T 4;G,B; I) when its SCFT is
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rational, once we confirm that there always exists a geometric SYZ-mirror pair.

5.2 Brief Comments on Condition 4

Let (T 2n;G,B; I) be a set of data for an N = (1, 1) SCFT with an N = (2, 2) superconformal

structure. We may take T-duality along n directions Γf
∼= Z⊕n ⊂ H1(T

2n;Z) while keeping n

other directions Γb
∼= Z⊕n ⊂ H1(T

2n;Z) intact, when Γf ⊕ Γb
∼= H1(T

2n;Z). This T-duality

yields a geometric SYZ-mirror of the N = (1, 1) SCFT with the N = (2, 2) superconformal

structure for (T 2n;G,B; I) if and only if [VE, Prop. 8]

ω|Γf⊗R = 0, B|Γf⊗R = 0. (63)

For a generic choice of moduli (G,B) and along with a choice of I, it is not possible to find

such Γf . Condition 4 in Conj. 1.2 / Thm. 1.3 is therefore non-trivial.

Note that condition (63) on the T-dual directions Γf depends on the complexified Kähler

parameter B + iω. In proving the existence of a geometric SYZ-mirror for a set of data

(T 4;G,B; I) of a rational SCFT (the property in condition 4), we may exploit the property

that (B + iω) ∈ H2(T 4
I )⊗ τ r(20)(K

r), as we have seen in Prop. 3.4 and Thm. 4.2, especially

the parametrization of iω given explicitly in the proof of Thm. 4.2. In proving that condition

5 (strong) is also a necessary condition for the SCFT to be rational, we also need to be able

to list up all the geometric SYZ-mirrors. We will do this in section 5.4.

When one wants to prove that the set of conditions 1–5 on (T 2n;G,B; I) is sufficient

for its SCFT to be rational, on the other hand, we can still use condition 3 on (B + iω),

but we should not use the parametrization of iω in Thm. 4.2 (i.e., (60, 61, 62)). For this

purpose, it is necessary to make the most out of condition 5, and we need to list the geometric

SYZ-mirrors along the way.

We therefore pause for a moment in section 5.3, and take the first step of analysis in

the converse direction, to prove that the set of conditions 1–5 is sufficient. By exploiting

conditions 1–4 and a part of 5, we will arrive at a parametrization of iω given in (B,C)–

(72;±), (A’)–(76), (A’)–(77) and (A)–(78) in section 5.3; those five classes of iω is a little

broader than those in the three classes of iω in (B,C)–(60), (A’)–(61) and (A)–(62), hinting

that the full content of condition 5 is essential part of a sufficient condition in Conj. 1.2. In

section 5.4, we will list up all the geometric SYZ-mirrors for this broader class of (B + iω);

the result in section 5.4 is used in section 5.5 for proving both the necessity and sufficiency

of the conditions.
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5.3 A First Step in the Converse Direction

This section 5.3 is for the proof in the converse direction, so it is not assumed that a set of

data (T 4;G,B; I) is for a rational SCFT. Instead, we impose conditions 1–3; we also assume

that at least there is one geometric SYZ mirror (condition 4) whose set of data is denoted by

(T 4;G◦, B◦; I◦); we also use a property that there is an isogeny φ∗ : H∗(T 4;Q) → H∗(T 4
◦ ;Q),

which is a part of condition 5; we will use T 4
◦ for T 4 as the mirror geometry. The compatibility

condition (1) can be used only after we find the list of SYZ torus fibrations in section 5.4.

5.3.1 Decomposition of the Complexified Kähler Form

5.4. (Decomposition of ℧) Let us first extract various properties of the complexified Kähler

form (B + iω) from the existence of a geometric SYZ-mirror. Think of a T-duality of T 2n

along n-directions Γf ⊂ H1(T
2n;Z) that fix n other directions Γb ⊂ H1(T

2n;Z). D-branes

in the original SCFT for (T 2n;G,B) have their corresponding D-branes that are physically

equivalent in the T-dual SCFT for (T 2n
◦ ;G◦, B◦). This correspondence sets an isomorphism

between H∗(T
2n;Z) and H∗(T

2n
◦ ;Z), and hence also an isomorphism g∗ : H∗(T 2n

◦ ;Z) →
H∗(T 2n;Z). This isomorphism has the property

g∗(H2n(T 2n
◦ ;Z)) = ∧n(Γ∨

b ), g∗(H0(T 2n
◦ ;Z)) = ∧n(Γ∨

f ),

g∗(H2n−1(T 2n
◦ ;Z)) = ∧n−1(Γ∨

b )⊕ (∧nΓ∨
b )⊗ Γ∨

f ,

g∗(H2n−2(T 2n
◦ ;Z)) = ∧n−2(Γ∨

b )⊕ (∧n−1Γ∨
b )⊗ Γ∨

f ⊕ (∧nΓ∨
b )⊗ (∧2Γ∨

f ),

where Γ∨
f and Γ∨

b in H1(T 2n;Z) are the 1-cocycles that are non-trivial on Γf and Γb, respec-

tively, and trivial on Γb and Γf , respectively.

Now, think of the case the T-duality is a geometric SYZ-mirror. The Hodge structure on

H2n−1(T 2n
◦ ;Z) by I◦ is such that

g∗(Hn,n−1(T 2n
◦ ;C)) = SpanC

{
℧e | e ∈ ∧n−1Γ∨

b

}
, (64)

g∗(Hn−1,n(T 2n
◦ ;C)) = SpanC

{
℧e | e ∈ ∧n−1Γ∨

b

}
, (65)

where ℧ := e(B+iω)/2. The description of the Hodge structure on H2n−m(T 2n;Z) for m ≥ 2 is

a little more involved; the condition (63) only implies that

(B + iω) ∈
[
(Γ∨

f ⊗ Γ∨
b )⊕ (∧2Γ∨

b )
]
⊗ C,

so (cf [GLO01], [KO03], [Hit03])
{
℧e, ℧e | e ∈ ∧n−2Γ∨

b

}
⊂ g∗

(
H2n−2(T 2n

◦ ;C)⊕H2n(T 2n
◦ ;C)

)
. (66)
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What is always true, in the case n = 2, is that the Hodge (2,0) component and the (0,2)

component of g∗(H2(T 4
◦ ;C)) are generated by the projection images of ℧ and ℧, respectively,

i.e., by ℧2 and ℧2 in

℧ = ℧4g
∗(e4,◦) + ℧2 ∈ g∗(H4(T 4

◦ ;C))⊕ g∗(H2(T 4
◦ ;C)), (67)

℧ = ℧4g
∗(e4,◦) + ℧2 ∈ g∗(H4(T 4

◦ ;C))⊕ g∗(H2(T 4
◦ ;C)); (68)

e4,◦ is a generator of H4(T 4
◦ ;Z).

Next, we combine the above property with condition 2 and the existence of a Hodge

isomorphism φ∗ in condition 5. Now, the rational Hodge structure on the level-2 component

[H2(T 4;Q)]ℓ=2 is of CM-type (condition 2), and the existence of a Hodge isomorphism φ∗ :

[H2(T 4;Q)]ℓ=2 → [H2(T 4
◦ ;Q)]ℓ=2 (a part of condition 5) implies that the rational Hodge

structure of the mirror, g∗([H2(T 4
◦ ;Q)]ℓ=2) by I◦ is also of CM-type. The rational Hodge

structure of g∗([H2(T 4
◦ ;Q)]ℓ=2) therefore has to be such that its Hodge (2, 0) component is

generated by ℧2, and also of CM-type.

This then indicates that the generator ℧2 has a form of (16) or in Lemma A.50; it is

not even necessary to rescale ℧2 by multiplying some complex number, because ℧2 and ℧

are identical in (∧0Γ∨
b )⊗ C = H0(T 4;C) and (∧2Γ∨

b ∧2 Γ∨
f )⊗ C = H4(T 4;C) (though not in

(∧2Γ∨
b )⊗C), which means in particular that ℧ = e(B+iω)/2 and ℧2 have a rational coefficient

with respect to a generator of H0(T 4;Q). Now, the following two facts follow. One is that

℧4 ∈ τ r(20)(K
r), because both (B+ iJ) and the 2-form part of ℧2 are in H

2(T 4;Q)⊗τ r(20)(Kr).

The other fact is that the (℧2)
σ for each σ ∈ Gal((Kr)nc/Q)—the Galois transformations on

the coefficients of ℧2 with respect to a rational basis of g∗([H2(T 4
◦ ;Q)]ℓ=2)—is in a definite

Hodge component of the rational Hodge structure (g∗(H2(T 4
◦ ;Q)), I◦). We can choose the

vectors of the form (℧2)
σ to have a basis of each of the Hodge components (cf Lemma A.50).

5.5. For a complex n-dimensional projective Kähler manifold (M ; I), a vector subspace

A(MI)⊗Q := ⊕n
m=0

(
H2m(M ;Q) ∩Hm,m(MI ;R)

)
⊂ Heven(M ;Q) (69)

is given a bilinear form

(A(MI)⊗Q)× (A(MI)⊗Q) ∋ (ψ, χ) 7−→ (−1)
n(n−1)

2

n∑

m=0

∫

M

((−1)mΠ2mψ) ∧ χ, (70)

where Π2m is the projection to the component H2m(M ;Q) ∩Hm,m(MI ;R).

When (M ; I) is a complex torus (T 2n; I), and (B + iω) ∈ H2(MI) ⊗ τ r(n0)(K
r), a vector

subspace T v
M ⊗Q ⊂ A(MI)⊗Q is specified canonically, as follows. Expand ℧ = e(B+iω)/2 ∈
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(A(MI) ⊗ Q) ⊗ τ r(n0)(K
r) in the form of

∑
I eIτ

r
(n0)(ηI) for some basis {ηI} of Kr/Q and

{eI} ⊂ A(MI)⊗Q; then set T v
M ⊗Q ⊂ A(MI)⊗Q as SpanQ{eI}.

Now, think of a set of data (T 4;G,B; I) satisfying conditions 1–4 of Thm. 1.3 such that

there exists a Hodge isomorphism φ∗ : [H2(T 4;Q)]ℓ=2 → [H2(T 4
◦ ;Q)]ℓ=2. Then the homo-

morphism T v
M ⊗ Q →֒ Heven(T 4;Q) ։ g∗([H2(T 4

◦ ;Q)]ℓ=2) of vector spaces, an isomorphism

in fact, map

(T v
M ⊗Q)⊗Q ∋ ℧σ 7−→ (℧2)

σ ∈ g∗([H2(T 4
◦ ;Q)]ℓ=2)⊗Q (71)

for any σ ∈ Gal((Kr)nc/Q). Each one of (℧2)
σ’s is in one definite Hodge component, say

(p, 2−p) component in the Hodge structure of (g∗(H2(T 4
◦ ;Q)), I◦), so we may also introduce

a rational Hodge structure on the vector space T v
M ⊗Q by declaring that ℧σ is in the Hodge

(p, 2 − p) component. The rational Hodge structure on T v
M ⊗ Q so defined has a Hodge

isomorphism with that of g∗([H2(T 4
◦ ;Q)]ℓ=2) by construction.

The rational Hodge structure on [H2(T 4
◦ ;Q)]ℓ=2 ⊂ H2(T 4

◦ ;Q) has a pairing

(−,−) : (ψ, χ) 7−→
∫

T 4
◦

ψ ∧ χ ∈ Q.

It is known that this pairing in the mirror description on g∗([H2(T 4
◦ ;Q)]ℓ=2) agrees with the

pairing (70) on T v
M ⊗Q ⊂ A(MI)⊗Q; although general elements in T v

M ⊗Q are not purely

in g∗(Hn(T 2n
◦ ;Q)) they are still in g∗(⊕k≥nH

k(T 2n
◦ ;Q)) because of the condition (63); the

discrepancy ℧ − ℧2, which is in g∗(⊕k>nH
k(T 2n

◦ ;Q))|n=2, does not contribute in the paring

above on T 4
◦ . By combining all the discussion so far in this section 5.3, we have

Lemma 5.6. Let (T 4;G,B; I) be a set of data satisfying conditions 1–4 in Thm. 1.3, and

suppose further that there is a Hodge isomorphism φ∗ : (H∗(T 4;Q), I) → (H∗(T 4
◦ ;Q), I◦).

Then the polarized rational Hodge structure on [H2(T 4
◦ ;Q)]ℓ=2 has a Hodge isomorphism

with the polarized rational Hodge structure on T v
M ⊗Q constructed above. Since the pairing

(−,−) is a polarization on the ℓ = 2 component [H2(T 4
◦ ;Q)]ℓ=2, so is the pairing (70) on

T v
M ⊗Q.

In particular, the polarized rational Hodge structure on T v
M ⊗ Q, which is determined

by ℧ = e(B+iω)/2 and the Galois transformations on the coefficients, is of CM-type. The

endomorphism field is that of [H2(T 4;Q)]ℓ=2 and its embedding associated with the Hodge

(2, 0) component C℧ is that of the Hodge (2,0) component of [H2(T 4;Q)]ℓ=2.

Remark 5.7. The construction in Discussion 5.5 forM = T 4 can be repeated for a complex

projective K3 surface (M ;G,B; I)M=K3 with (B + iω) ∈ H2(MI)⊗ τ r(20)(K
r). The resulting
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lattice T v
M := (T v

M ⊗ Q) ∩ Heven(M ;Z) corresponds to T (ϕ)|ϕ=℧ in [Huy05, Def. 4.5] and

Lϕ′|ϕ′=℧ in [Kan24, Def. 3.1]. The lattice T v
M does not necessarily contain H0(M ;Z) ⊕

H4(M ;Z) ⊂ A(MI)⊗Q; the lattice TM := (TM ⊗Q)∩H2(M ;Z) does not necessarily contain

a copy of a self-dual lattice of signature (1,1); their absence in T v
M and TM is not an issue at

all in the mirror correspondence (cf [Kan24]).

5.3.2 Constraints on the Complexified Kähler Form

Lemma 5.6 is useful in narrowing down the possible choices of the complexified Kähler pa-

rameter (B + iω) satisfying the conditions in Thm. 1.3. Even though the derivation of

Lemma 5.6 exploited existence of a geometric SYZ-mirror (Condition 4) as well as existence

of a Hodge isomorphism φ∗ : H∗(T 4;Q) −→ H∗(T 4
◦ ;Q) with the mirror, the characterization

on (B + iω) extracted in Lemma 5.6 does not rely on the choice of a geometric SYZ-mirror

(or a choice of the T-dual directions Γf).

In the process of proving that the set of conditions 1–5 is sufficient for the SCFT of

(T 4;G,B; I) to be rational, of course we can use condition 2; the complex torus (T 4; I) is

therefore in one of the four cases reviewed in section 2.3. For each of the cases (B, C), (A’)

and (A), we may study the possible forms of (B + iω) satisfying the properties in Lemma

5.6. Details of the analysis is left to Lemmas B.1 and B.4; we quote the results here.

Case (B, C): when the CM-type abelian surface (T 4; I) is in the case (B, C), we found

in Lemma B.1 that the properties in Lemma 5.6 allow the following form of (B + iω):

(B + iω)/2 = Z1e1 + Z±
2 e2, (72)

where

Z1 := τ r++

(
A+

C ′

2
ξ +

D′

2d

2qd

ξ

)
, Z±

2 := τ r++

(
Ã± D′

2
ξ ± C ′

2

2qd

ξ

)
,

(
A, Ã, C ′, D′ ∈ Q, (C ′, D′) 6= (0, 0)

)
.

In these two classes of (B+iω), one with Z+
2 and the other with Z−

2 in (72), the geometric

data B is the real part, 2(Ae1 + Ãe2), which is rational (as in (14)). In the class of (B + iω)

with Z+
2 in (72), i.e., in (72;+), the imaginary part iω is precisely of the form in (60), when

we read 2a = C ′ ∈ Q and 2b = D′/d ∈ Q. So, we see that the set of data (T 4;G,B; I) is for
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a rational SCFT. On the other hand, in the class of (B + iω) in (72;−),

i

2
ω = τ r++

(
C ′

2
ξ +

D′q

ξ

)
e1 − τ r++

(
C ′qd

ξ
+
D′

2
ξ

)
e2,

=
C ′

2

(
e1(

√
++

√
−)− e2(

√
+−

√
−)

√
d
)

(73)

+
D′

2

(
−e2(

√
++

√
−) + e1(

√
+−

√
−)/

√
d
)
.

Rewriting this in terms of dz1 ∧ dz̄1̄ and dz2 ∧ dz̄2̄ according to (33) and (34),

i

2
ω =

p− q
√
d

4
√
d′

(
C ′ − D′

√
d

)
dz1 ∧ dz̄1̄ + p+ q

√
d

4
√
d′

(
C ′ +

D′

√
d

)
dz2 ∧ dz̄2̄. (74)

For this Kähler form to be fitted by the expression (60), we have

a = − 1

2
√
d′
(pC ′ + qD′), b =

1

2d
√
d′
(qdC ′ + pD′). (75)

The fitted parameters a, b are not rational when C ′, D′ ∈ Q. The metric corresponding to

this Kähler form does not satisfy the condition (14). The resulting metric is positive definite

for some region in (C ′, D′) ∈ Q2, so the class of (B + iω) in (72;−) on (T 4; I) of the case (B,

C) include physically sensible N = (1, 1) SCFTs that are not rational.

Case (A’): when the CM-type abelian surface (T 4; I) is in the case (A’), we found in

Lemma B.4 that the properties in Lemma 5.6 allow the following form of (B + iω):

(B + iω)/2 = (A+ C
√
p1) α̂

1β̂1 +
(
Ã+ C̃

√
p2

)
α̂2β̂2, A, Ã ∈ Q, C, C̃ ∈ Q6=0, (76)

or

(B + iω)/2 = (A+ C
√
p2) α̂

1β̂1 +
(
Ã+ C̃

√
p1

)
α̂2β̂2, A, Ã ∈ Q, C, C̃ ∈ Q6=0. (77)

In both classes of (B + iω), the real part—B—is rational. The imaginary part iω in the

class (76) reproduces all the rational metric G in (56, 61); a1 = C and a2 = C̃. In the

second class of solutions (77), the metric is not rational; if we are to fit iω in (77) into the

form of (61), then the dictionary is a1 = C
√
p2/p1/∈Q, and a2 = C̃

√
p1/p2/∈Q. There is a

region with a positive volume interpretation in the (a1, a2) space; in such parameter space,

the corresponding SCFT is not rational.
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Case (A): when the CM-type abelian surface (T 4; I) is in the case (A), the properties in

Lemma 5.6 do not yield an extra constraint on (B + iω) ∈ H2(T 4
I ) ⊗ τ r(20)(K

r), as we argue

briefly below. In other words,

B ∈ H2(T 4
I ), iω ∈ √

pH2(T 4
I ),

∫

T 4

ω ∧ ω > 0. (78)

This class of (B + iω) agrees with B in (14) and iω in (62). So, we have already seen that

the set of conditions in Thm. 1.3 is sufficient, if (T 4; I) is in the case (A), in guaranteeing

that the SCFT for (T 4;G,B; I) is rational.

To see that all of (B + iω) in (78) has the properties in Lemma 5.6, note first that

℧ = e(B+iω)/2 and ℧ in A(T 4
I )⊗ C satisfy (℧,℧) = 0, (℧,℧) = 0 in the pairing (70) without

imposing an extra constraint on (B+ iω). The underlying vector space T v
M ⊗Q ⊂ A(T 4

I )⊗Q

is generated by

Re(℧) = 1 +B/2 + (B2 − ω2)/8,
iIm(℧)√

p
= (iω/2 + iBω/4)/

√
p.

The rational Hodge structure on T v
M ⊗ Q has just 1-dimensional (2,0) component and 1-

dimensional (0,2) component, nothing else, as the rational Hodge structure on [H2(T 4;Q)]ℓ=2

does. So, we already have all the properties expected for the Hodge decomposition on T v
M ⊗

Q.

5.4 Listing Geometric SYZ Mirrors (Condition 4)

Recap: To prove Thm. 1.3, we both need to show that the properties 1–5 are necessary

for the SCFT of (T 4;G,B; I) to be rational (proof of necessity), and also to show that it is

sufficient to impose the conditions there for the SCFT to be rational (the converse direction).

In the proof of necessity, we still need to prove that a geometric SYZ-mirror exists (necessity

of condition 4); although the existence of a Hodge isomorphism φ∗ in condition 5 then follows

(see discussion in section 5.1), but still we need to prove the rest of the properties in condition

5. To this end, we need to list up geometric SYZ-mirrors for the choice of (B+ iω) in (72;+)

in the case (B, C), and also for (B + iω) in (76) in the case (A’); we will not need such a full

list for the case (A) in section 5.5 as we will see.

In completing the proof in the converse direction, all that we still need to do is to show

that the two classes of possibilities of (B + iω), namely the ones in (B, C)–(72;−) and in

(A’)–(77), are eliminated by the conditions that we have not exploited in section 5.3. What
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we have not exploited is the condition (1) of compatibility of the Hodge isomorphisms φ∗

with the SYZ torus fibration maps. So, we need to list up geometric SYZ-mirrors for (B+ iω)

in (72;−) in the case (B, C), and for (B + iω) in (77) in the case (A’), before examining the

compatibility with the torus fibration maps.

Preliminaries: In this section 5.4, we present the list of all the geometric SYZ-mirrors

for those four classes of (B + iω). Analysis is done in Lemmas B.2, B.5 and B.6; only the

results are quoted here. A few elementary remarks are in order here, to set up a common

language. First, it is enough to specify a 2-dimensional vector subspace ΓfQ ⊂ H1(T
4;Q) to

specify the T-dual directions; Γf := ΓfQ ∩H1(T
4;Z). The condition (63) is imposed on the

vector subspace ΓfQ. Second, it is always possible to find Γb ⊂ H1(T
4;Z) so that Γf ⊕ Γb

∼=
H1(T

4;Z). In the following discussion, we may use the notation ΓbQ := Γb ⊗Q ⊂ H1(T
4;Q).

Thirdly, the rest of discussions in this article does not depend on a choice of the T-dual-fixed

directions Γb, as we will see.

For a mirror geometry T 4
◦ , we abuse notations and write

H1(T
4
◦ ;Z)

∼= Γ∨
f ⊕ Γb, H1(T 4

◦ ;Z)
∼= Γf ⊕ Γ∨

b ; (79)

this is the map of the winding and Kaluza–Klein charges which identify closed string states

on both sides of the T-duality. The vector subspace Γ∨
bQ in H1(T 4;Q) as well as in H1(T 4

◦ ;Q)

can be seen as that of 1-cocycles of the base B = T 2 of the SYZ fibration, πM : T 4 → B and

πW : T 4
◦ → B, pulled back by πM and πW .

Case (B, C): for any (B+iω) in the form of (72;+) or of (72;−), the T-dualized directions

ΓfQ ⊂ H1(T
4;Q) of a geometric SYZ-mirror is of the form

ΓfQ = SpanQ{c, d}, c := c1α1 + c2β
1 + c3α2 + c4β

2,

d := dc3α1 + dc4β
1 + c1α2 + c2β

2, (80)

c1, . . . , c4 ∈ Q, c21 + c22 + c23 + c24 6= 0. (81)

Computations leading to this result is found in Lemma B.2.

The 2-dimensional subspace Γ∨
bQ of 1-cocycles of the base B = T 2 is where the pairing

with the directions of the T 2-fiber ΓfQ ⊂ H1(T
4;Q) vanishes. It is therefore generated by

ê := (c21 − dc23)β̂1 − (c1c2 − dc3c4)α̂
1 − d(c1c4 − c2c3)α̂

2, (82)

f̂ := (c21 − dc23)β̂2 − (c1c4 − c2c3)α̂
1 − (c1c2 − dc3c4)α̂

2, (83)

when (c1, c3) 6= (0, 0). There is a similar expression for ê and f̂ in the case (c2, c4) 6= (0, 0).

Although we could write down an expression valid for a general (c1, c2, c3, c4) 6= 0, it is a
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mess. It is much more convenient to do computations in the rest of this article only in the

case (c1, c3) 6= (0, 0), and confirm that the same line of argument also works in the case

(c2, c4) 6= (0, 0), to cover all possible (c1,2,3,4). Now, we may use {c, d, ê, f̂} as a basis of

H1(T 4
◦ ;Q).

As for a basis of H1(T 4;Q), we may use {ĉ′, d̂′, ê, f̂}, where

ĉ′ := c1α̂
1 − dc3α̂

2, d̂′ := −c3α̂1 + c1α̂
2. (84)

Although ĉ′ and d̂′ are not necessarily in the direction of Γ∨
fQ, that does not matter anywhere

in the rest of this article.

Case (A’): For any (B + iω) in the form of (76) or of (77), the T-dualized directions

ΓfQ ⊂ H1(T
4;Q) of a geometric SYZ-mirror is of the form

ΓfQ = SpanQ{c, d}, c := c1α1 + c2β
1, d := c3α2 + c4β

2, (85)

c1, . . . , c4 ∈ Q, (c1, c2), (c3, c4) 6= (0, 0); (86)

a little more details leading to this result are found in Lemma B.5.

The 2-dimensional subspace Γ∨
bQ of the 1-cocycles on the base B = T 2 common to both

is generated by

ê := −c2α̂1 + c1β̂1, f̂ := −c4α̂2 + c3β̂2; (87)

they vanish on ΓfQ. Now we may use {c, d, ê, f̂} as a basis of H1(T 4
◦ ;Q). As for a basis of

H1(T 4;Q) we use {ĉ′, d̂′, ê, f̂}, where

ĉ′ := c1α̂
1 + c2β̂1, d̂′ := c3α̂

2 + c4β̂2; (88)

although these ĉ′ and d̂′ are not necessarily chosen within Γ∨
fQ, that is not an issue in the rest

of this article.

Case (A): for any (B + iω) in the form of (78), we have confirmed in Lemma B.6 that

there always exists a choice of ΓfQ ⊂ H1(T
4;Q) for a geometric SYZ-mirror. Details are left

to Lemma B.6 in the appendix. In proving the compatibility property (1) in condition 5 in

this case (A)–(78), as we will do in section 5.5.4, an explicit list of choices of ΓfQ—one that

corresponds to (80, 85)—is not necessary.

Immediate consequences: We have seen that there are indeed geometric SYZ-mirrors

for (B + iω) in any one of the five classes of (B + iω). This means, on one hand, that the
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property in condition 4 of Thm. 1.3 is necessary; also the existence of the Hodge isomorphism

φ∗ in condition 5 of Thm. 1.3 follows because we can use Prop. 5.1 now.

In the converse direction of Thm. 1.3, we had combined the properties in conditions 1–4

and the existence of φ∗ in condition 5 to arrive at the characterization of (B+ iω) in Lemma

5.6, and then pointed out that (B + iω) has to be in one of the five classes quoted in section

5.3.2. Although the five classes of (B + iω) has the property described in Lemma 5.6, we

did not check whether the existence of a geometric SYZ-mirror (condition 4) and a Hodge

isomorphism φ∗ (condition 5) are guaranteed for any one of (B+ iω) in the five classes. Now,

the results quoted above in this section 5.4 guarantee that a geometric SYZ-mirror always

exists.

A Hodge isomorphism φ∗ also exists for any one of (B + iω) in the five classes. To

see this,29 pick any geometric SYZ-mirror, and fix. The level-2 component [H2(T 4
◦ ;Q)]ℓ=2

is of [Kr : Q] dimensions, with the signature (2,2) in the four classes in the case (A’, B,

C) and with the signature (2,0) in the case (A). So, the complex torus (T 4
◦ ; I

◦) has non-

trivial algebraic part H2(T 4
I◦) with the signature (1,1) and (1,3), respectively; this means

that the mirror complex torus (T 4
◦ ; I

◦) has a polarization, and is an abelian surface. It is

then possible to apply [OW24, Thm. 1.4] to see that (T 4
◦ ; I

◦) is of CM-type; its proof for the

case [Kr : Q] = 2, 4 further implies that the weight-1 rational Hodge structure is determined

uniquely modulo Hodge isomorphisms. This is enough to guarantee that there is a Hodge

isomorphism φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q), and hence φ∗ : H∗(T 4;Q) → H∗(T 4

◦ ;Q).

5.5 Compatibility with the Torus Fibration (Condition 5)

One of the crucial elements in the set of conditions in Conj. 1.2/Thm. 1.3 that updates

Conj. 1.1 is the compatibility (1) of a Hodge isomorphism φ∗ with the SYZ torus fibration

morphisms πM : M → B and πW : W → B. We have seen that the set of conditions 1–5 in

Conj. 1.2 except this additional characterizations on φ∗ fails to be sufficient in guaranteeing

that the SCFT of (T 4;G,B; I) is rational. In the rest of this section 5.5, we will see that φ∗

with the compatibility condition still exists for (B + iω) in the three classes (A’)–(76), (B,

C)–(72;+) and (A). On the other hand, condition 5 including the additional characterization

on φ∗ eliminates the two classes of sets of data (A’)–(77) and (B, C)–(72;−), where the SCFTs

are not rational. At the end of this section 5.5, therefore the proof of Thm. 1.3 is completed.

Before writing down a systematic proof of this claim, however, let us illustrate why the

29Instead of the argument in this paragraph, one may resort to explicit computations, as in Lemma B.3.
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additional characterization (1) on φ∗ makes a difference by using a simple pair of examples

in the case (A’).

5.5.1 The Idea

Consider an abelian surface MI = T 4
I in the case (A’) given by

MI = E1 × E2, Ei := C/(Z⊕√
piZ), dzi = α̂i +

√
piβ̂i (i = 1, 2), (89)

where H1(Ei;Z) ∼= Zα̂i ⊕ Zβ̂i for i = 1, 2. The integral basis of H1(Ei;Z) dual to {α̂i, β̂i}
is denoted by {αi, β

i}. In the presentation in section 5.5.1, we work on two choices of a

complexified Kähler parameter:

(B + iω) = C
√
p1α̂

1β̂1 + C̃
√
p2α̂

2β̂2, C, C̃ ∈ Q>0, (90)

which belongs to the class of (A’)–(76) (and the corresponding SCFT is rational), and the

other

(B + iω) = C
√
p2α̂

1β̂1 + C̃
√
p1α̂

2β̂2, C, C̃ ∈ Q>0, (91)

which belongs to the class of (A’)–(77) (so the corresponding SCFT is not rational).

The SYZ-mirror of the two T 4-target SCFTs are geometric,30 when we take T-duality

along Γf = SpanZ{α1, α2} and fix Γb = SpanZ{β1, β2}. Although there are infinitely many

different choices of Γf and Γb for the two T 4-target SCFTs here, and although one has

to deal with all those choices of Γf and Γb to discuss the the compatibility in condition

5(weak/strong), we will deal with just this one choice of Γf and Γb in this section 5.5.1 so

that one can focus on the key point of the idea.

With the first choice of (B + iω), the mirror geometry (T 4
◦ ;G

◦, B◦; I◦) is given by

(T 4
◦ ; I

◦) = E◦
1 × E◦

2 , E◦
1 = C/(Z⊕ C

√
p1Z), E◦

2 = C/(Z⊕ C̃
√
p2Z); (92)

with a notation H1(E
◦
i ;Z) = Zα◦

i ⊕ Zβi and H1(E◦
i ;Z) = Zα̂i

◦ ⊕ Zβ̂i, one may choose a set

of generators of H1,0(E◦
i ;C) to be

dz1◦ = α̂1
◦ + C

√
p1β̂1, dz2◦ = α̂2

◦ + C̃
√
p2β̂2, (93)

30Make sure that B|Γf
= 0 and ω|Γf

= 0 in (63).
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and (B◦ + iω◦) =
√
p1α̂

1
◦β̂1 +

√
p2α̂

2
◦β̂2. There is a Hodge isomorphism φ∗ : H1(T 4;Q) −→

H1(T 4
◦ ;Q)

φ∗ : β̂i 7−→ β̂i, α̂1 7−→ C−1α̂1
◦, α̂2 7−→ C̃−1α̂2

◦, dz1 7→ C−1dz1◦, dz2 7→ C̃−1dz2◦ . (94)

This map φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) is identity on the subspace Γ∨

bQ = SpanQ{β̂1, β̂2}
pulled back from the base of πM : (M = T 4) → (T 2 = B) and πW : (W = T 4

◦ ) → (T 2 = B).

With the second choice of (B + iω), on the other hand, the mirror is given by

(T 4
◦ ; I

◦) = E◦
1 × E◦

2 , E◦
1 = C/(Z⊕ C

√
p2Z), E◦

2 = C/(Z⊕ C̃
√
p1Z); (95)

with a notation H1(E
◦
i ;Z) = Zα◦

i ⊕ Zβi and H1(E◦
i ;Z) = Zα̂i

◦ ⊕ Zβ̂i, one may choose a set

of generators of H1,0(E◦
i ;C) to be

dz1◦ = α̂1
◦ + C

√
p2β̂1, dz2◦ = α̂2

◦ + C̃
√
p1β̂2, (96)

and (B◦+ iω◦) =
√
p1α̂

1
◦β̂1+

√
p2α̂

2
◦β̂2. Any Hodge isomorphism φ∗ : H1(T 4;Q) → H1(T 4

◦ ;Q)

for this second choice of (B + iω) has to be of the form

(α̂1, β̂1) 7−→ (C̃−1α̂2
◦, β̂2), (α̂2, β̂2) 7−→ (C−1α̂1

◦, β̂1), (97)

preceded by an endomorphism (complex multiplication) in Q(
√
p1)⊕Q(

√
p2) on H

1(T 4;Q),

and followed by an endomorphism on H1(T 4
◦ ;Q). That is precisely the existence of a rational

Hodge isomorphism imposed as a part of condition 5 in Thm. 1.3.

In the case of the second choice of (B + iω) in the class (A’)–(77), however, every one of

those rational Hodge isomorphisms φ∗ maps β̂1 ∈ Γ∨
bQ to SpanQ{α̂2

◦, β̂2}, and maps yet another

1-form of the base β̂2 ∈ Γ∨
bQ to SpanQ{α̂1

◦, β̂1}. So there is no rational Hodge isomorphism φ∗

that has the compatibility property (1) in condition 5.

We have confirmed that there exists a Hodge isomorphism φ∗ : H1(M ;Q)|M=T 4 →
H1(W ;Q)|W=T 4

◦
with the compatibility property (1) on H1(B;Q)|B=T 2

∼= Γ∨
bQ for the first

choice of (B+ iω). Condition 5 of Conj. 1.2/Thm. 1.3 demands, on the other hand, a Hodge

isomorphism φ∗ : H∗(T 4;Q) → H∗(T 4
◦ ;Q) with the property (1) on the entire H∗(B;Q)B=T 2 .

In fact, a Hodge isomorphism on φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) can be extended by the wedge

product (cup product) to a Hodge isomorphism on H∗(T 4;Q) → H∗(T 4
◦ ;Q); the property

that φ∗ is identity on the whole H∗(B;Q)B=T 2 also follows automatically because this prop-

erty is non-trivial only on H1(B;Q)B=T 2 . We will not repeat this argument in the rest of

this section 5.5.
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An elementary analysis so far shows that the set of data (89, 90) of a rational SCFT

has φ∗ in condition 5 (weak) including the compatibility with the torus fibration; one may

wonder if condition 5 (weak)—or even condition 5 (strong)—including the compatibility is

a part of necessary conditions of all the sets of data in (B,C)–(72;+), (A’)–(76) and (A) of

T 4-target rational SCFTs. We have also seen that the set of data (89, 91) of a non-rational

SCFT does not have the compatibility in the condition 5(strong); one may therefore wonder

if all the counter examples—(B + iω) in (B, C)–(72;−) and in (A’)–(77)—may be eliminated

by imposing the compatibility of φ∗ with the torus fibration in condition 5 (strong), or even

by imposing condition 5(weak). The rest of this section 5.5 is a systematic proof of this

expectation.

5.5.2 The Case (A’)

In this section 5.5.2, we will work on the two classes of sets of data, (A’)–(76) and (A’)–

(77). The essence of the following analysis is captured already in what we have done in

section 5.5.1. Here is one important difference, though. The analysis in section 5.5.1 was for

only one choice of the T-dualized directions Γf ⊂ H1(T
4;Z) and non-T-dualized directions

Γb ⊂ H1(T
4;Z). In order to prove that condition 5 (strong) is a part of necessary conditions

for the SCFT of (T 4;G,B; I) to be rational in case (A’)–(76), we have to show that a rational

Hodge isomorphism φ∗ compatible with the torus fibration exists for each one of the possible

choices of Γf and Γb (choices of geometric SYZ mirrors). In order to prove that the set

of conditions in Thm. 1.3 is sufficient (with condition 5 (weak) version), then we have to

show that a rational Hodge isomorphism φ∗ in the condition does not exist for each one of

geometric SYZ mirrors of (T 4;G,B; I) in the case (A’)–(77). Possible choices of Γf and Γb

have been studied and the results have been summarized in (85) in section 5.4 for the both

cases of (A’)–(76) and (A’)–(77), so we can use them for the analysis below.

First, we show that there is no Hodge isomorphism φ∗ with the compatibility in condition

5 (weak) in case (A’)–(77). This is a proof by contradiction.

Assume that a set of data (T 4;G,B; I) in the case (A’)–(77) satisfies condition 5 (weak);

let (Γf ,Γb) be the choice for a geometric SYZ-mirror and φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) be

the Hodge isomorphism in the condition. We will write down explicitly (i) what is implied

by the condition φ∗|Γ∨

bQ
= idΓ∨

bQ
and (ii) what is implied by φ∗ being a Hodge isomorphism,

and then show that there cannot be a φ∗ satisfying both (i) and (ii).
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(i) The condition φ∗|Γ∨

bQ
= idΓ∨

bQ
can be expressed in the form of

φ∗
(
ĉ′ d̂′ ê f̂

)
=
(
c d ê f̂

)(
rkl

0
1

)
, (98)

by using the basis {ĉ′, d̂′, ê, f̂} of H1(T 4;Q) and the basis {c, d, ê, f̂} of H1(T 4
◦ ;Q). Here, (rkl)

is a 4× 2 Q-valued matrix.

Now, the condition (98) implies that the holomorphic basis (cf Discussion 2.11 and (87,

88))

(
(c21 + c22)dz

1 (c23 + c24)dz
2
)
=
(
ĉ′ d̂′ ê f̂

)



c1 + c2
√
p1

c3 + c4
√
p2

−c2 + c1
√
p1

−c4 + c3
√
p2


 (99)

should be mapped by φ∗ into

φ∗
C

(
(c21 + c22)dz

1 (c23 + c24)dz
2
)
=
(
c d ê f̂

)(
rkl

0
1

)



c1 + c2
√
p1

c3 + c4
√
p2

−c2 + c1
√
p1

−c4 + c3
√
p2


 .

(100)

(ii) Next, we claim that φ∗ being a Hodge isomorphism is equivalent to the presence of

θ1 ∈ Q(
√
p1)

× and θ2 ∈ Q(
√
p2)

× such that

φ∗
C

(
(c21 + c22)dz

1 (c23 + c24)dz
2
)
=
(
dz2◦ dz1◦

)(θ1
θ2

)
; (101)

here, dz1◦ and dz
2
◦ are holomorphic 1-forms on (T 4

◦ ; I
◦) where the Hodge endomorphism algebra

K ∼= Q(
√
p1) ⊕ Q(

√
p2) acts through the factor Q(

√
p2) and Q(

√
p1), respectively. Those

holomorphic 1-forms on the mirror must be in the form of

(
λ′1dz

2
◦ λ′2dz

1
◦

)
=
(
d f̂ c ê

)



1
ρ′1

1
ρ′2


 (102)

for some λ′1, ρ
′
1 ∈ Q(

√
p1)

× and λ′2, ρ
′
2 ∈ Q(

√
p2)

×. Therefore, (101) becomes

φ∗
C

(
(c21 + c22)dz

1 (c23 + c24)dz
2
)
=
(
c d ê f̂

)



1
1

ρ′2
ρ′1



(
θ′1

θ′2

)
, (103)
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where θ′1 := θ1/λ
′
1 ∈ Q(

√
p1)

× and θ′2 := θ2/λ
′
2 ∈ Q(

√
p2)

×.

Now that the properties (i) and (ii) have been paraphrased as (100) and (103), respectively,

let us see that there is no common solution (rkl, θ
′
i) to (100) and (103) indeed, or equivalently,

no solution to

(
rkl

0
1

)



c1 + c2
√
p1

c3 + c4
√
p2

−c2 + c1
√
p1

−c4 + c3
√
p2


 =




1
1

ρ′2
ρ′1



(
θ′1

θ′2

)
, (104)

for any (c1–4, ρ
′
1,2). To see this, note that the both sides of (104) are 4 × 2 matrices after

multiplication, and look at the (3,1) entry:

r31(c1 + c2
√
p1) + (−c2 + c1

√
p1) = 0. (105)

Such r31 ∈ Q does not exist because of (c1, c2) 6= (0, 0) (see (86)). Similarly, we can also see

that there is no way this equality holds for the (4,2) entry.

The remaining task is to prove that φ∗ with the compatibility in condition 5 (strong) exists

in the case (A’)–(76). That is to construct a Hodge isomorphism φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q)

satisfying φ∗|Γ∨

bQ
= idΓ∨

bQ
for each one of geometric SYZ-mirrors for a set of data (T 4;G,B; I)

in the case of (A’)–(76).

To do so, think of a geometric SYZ-mirror for (Γf ,Γb), and derive a condition for such

a Hodge isomorphism φ∗, first. The derivation goes parallel to that for (104), except (101)–

(103) need to be modified a little bit. Consequently we obtain

(
rkl

0
1

)



c1 + c2
√
p1

c3 + c4
√
p2

−c2 + c1
√
p1

−c4 + c3
√
p2


 =




1
1

ρ′1
ρ′2



(
θ′1

θ′2

)
, (106)

where rkl ∈ Q and θ′i ∈ Q(
√
pi)

× are parameters for φ∗, while c1–4 ∈ Q and ρ′i ∈ Q(
√
pi)

depend on (Γf ,Γb).

Now, it is easy to see that a solution (rkl, θ
′
i) to (106) exists. The equation (106) at six

out of the 4× 2 entries imposes

r12 = r21 = r32 = r41 = 0, (107)

θ′1 = r11(c1 + c2
√
p1), θ′2 = r22(c3 + c4

√
p2), (108)
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and the remaining variables r11, r31, r22, r42 ∈ Q are constrained by

−c2 + c1
√
p1 = (ρ′1r11 − r31) (c1 + c2

√
p1), (109)

−c4 + c3
√
p2 = (ρ′2r22 − r42) (c3 + c4

√
p2), (110)

because of (106) at the two remaining entries. A solution (r11, r31, r22, r42) is determined by

elementary algebra in the imaginary quadratic fields Q(
√
p1) and Q(

√
p2). Moreover, r11 and

r22 turn out to be non-zero, which means that φ∗ is invertible. Since the above argument

holds for arbitrary choice of (Γf ,Γb), this completes the proof of condition 5(strong) for case

(A’)–(76).

5.5.3 Case (B, C)

In this section 5.5.3, we will work for the two classes of (B + iω), (B, C)–(72;+) and (B,C)–

(72;−). Let us first show for (B + iω) in the class (B,C)–(72;−) that a Hodge isomorphism

φ∗ in condition 5 cannot be chosen to be compatible with the SYZ torus fibration. We do so

in a proof by contradiction. The outline of the proof is the same as in section 5.5.2; it just

takes a little more time to do so.

Think of a set of data (T 4;G,B; I) in the case (B,C)–(72;−). Let (Γf ,Γb) be the choice for

a geometric SYZ-mirror, and φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) the Hodge isomorphism satisfying

the compatibility. We will write down explicitly (i) what is implied by the condition φ∗|Γ∨

bQ
=

idΓ∨

bQ
and (ii) what is implied by φ∗ being a Hodge isomorphism, and then show that there

cannot be φ∗ satisfying both (i) and (ii).

(i) The condition φ∗|Γ∨

bQ
= idΓ∨

bQ
can be expressed in the form of

φ∗
(
ĉ′ d̂′ ê f̂

)
=
(
c d ê f̂

)(
rkl

0
1

)
; (111)

here, (rkl) is a 4×2 Q-valued matrix. We only deal with the cases with (c1, c3) 6= (0, 0) here;

the following discussion can be repeated for the case of (c2, c4) 6= (0, 0) easily.

Now, the condition (111) implies that the holomorphic basis in (20) (cf also (82–84))

(
(c21 − dc23)dz

1 (c21 − dc23)dz
2
)
=
(
ĉ′ d̂′ ê f̂

)



c1 c3 c2 c4
dc3 c1 dc4 c2

1
1







1 1
τ++(y) τ−+(y)
τ++(x) τ−+(x)
τ++(xy) τ−+(xy)




(112)
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should be mapped by φ∗ into

φ∗
C

(
(c21 − dc23)dz

1 (c21 − dc23)dz
2
)
=
(
c d ê f̂

)(
rkl

0
1

)



τ++(Γ) τ−+(Γ)
τ++(Γy) τ−+(Γy)
τ++(x) τ−+(x)
τ++(xy) τ−+(xy)


 , (113)

where Γ := c1+ c3y+ c2x+ c4xy is an element of K = End(H1(T 4;Q))Hdg in the case (B, C).

(ii) Next, we will translate the condition that φ∗ is a Hodge isomorphism. The images of

the holomorphic basis elements

φ∗
C

(
(c21 − dc23)dz

1 (c21 − dc23)dz
2
)
=:
(
dz1◦ dz2◦

)
(114)

generate the Hodge (1,0) component of H1(T 4
◦ ;C); when the endomorphism fields are identi-

fied through Adφ∗ : K ∼= End(H1(T 4;Q))Hdg ∋ x′ 7−→ φ∗ ◦ x′ ◦ (φ∗)−1 ∈ End(H1(T 4
◦ ;Q))Hdg,

dz1◦ and dz2◦ are eigenvectors of the action of the field K, and the eigenvalues of x′ ∈ K are

its images by the embeddings τ++ and τ−+, respectively. We note also that both dz1◦ and dz2◦
are normalized so that they return a rational value for some rational elements in H1(T

4
◦ ;Q).

On the other hand, it is also possible to work out the rational Hodge structure on the

mirror cohomology group H1(T 4
◦ ;Q) by following the standard procedure for the mirror of

complex tori (that are not necessarily of CM-type). The Hodge (1,0) subspace H1,0(T 4
◦ ;C)

is generated by the two vectors

(dz1
′

◦ , dz
2′

◦ ) = (c, d, ê, f̂)




τ++(∓s0y) τ−+(∓s0y)
τ++(−s0) τ−+(−s0)

τ++((c1 ± c3y)Ξ±) τ−+((c1 ± c3y)Ξ±)
τ++((dc3 ± c1y)Ξ±) τ−+((dc3 ± c1y)Ξ±)


 , (115)

where s0 := (c21 − dc23) ∈ Q×. Here (and also until (120) below), the signs shown below in ±
and ∓ should be used for the case (B,C)–(72;−) under consideration now. The signs shown

above in (115–120) are for the case (B,C)–(72;+), which we will use in the latter half of this

section 5.5.3. Details of calculations leading to (115) is found in Lemma B.3. The rational

Hodge structure obtained in the computation manifestly has CM by the degree-4 CM field

K, and the basis elements {dz1′◦ , dz2
′

◦ } are the eigenstates of the action of K (cf Lemma A.51).

The K-diagonal basis {dz1◦ , dz2◦} in (114) must be proportional to yet another K-diagonal

basis {dz1′◦ , dz2
′

◦ } in (115); dz1◦ [resp. dz2◦ ] should be a complex multiple of dz1
′

◦ [resp. dz2
′

◦ ].

Furthermore, the proportionality constant should be found within τ++(K) [resp. τ−+(K)],

which follows from the fact that both dz1◦ and dz1
′

◦ return (not necessarily identical) rational
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numbers to (not necessarily identical) rational elements in H1(T
4
◦ ;Q). So, to conclude, the

condition (ii) that φ∗ is a Hodge isomorphism is translated to the existence of elements

θ+, θ− ∈ K× so that

φ∗
C

(
s0dz

1 s0dz
2
)

(116)

=
(
c d ê f̂

)



τ++(∓s0y) τ−+(∓s0y)
−s0 −s0

τ++((c1 ± c3y)Ξ±) τ−+((c1 ± c3y)Ξ±)
τ++((dc3 ± c1y)Ξ±) τ−+((dc3 ± c1y)Ξ±)



(
τ++(θ+)

τ−+(θ−)

)
.

Now that the properties (i) and (ii) have been paraphrased as (113) and (116;−), re-

spectively, let us see that there is no common solution (rkl, θ+, θ−) to (113) and (116;−) for

any c1–4; this then implies that there is no choice (Γf ,Γb) for a geometric SYZ-mirror where

condition 5 (weak) holds true in the case of (B,C)–(72;−).

Indeed, the compatibility condition on (rkℓ, θ+, θ−) is

(
rkl

0
1

)



τ++(Γ) τ−+(Γ)
τ++(Γy) τ−+(Γy)
τ++(x) τ−+(x)
τ++(xy) τ−+(xy)




=




τ++(∓s0y) τ−+(∓s0y)
−s0 −s0

τ++((c1 ± c3y)Ξ±) τ−+((c1 ± c3y)Ξ±)
τ++((dc3 ± c1y)Ξ±) τ−+((dc3 ± c1y)Ξ±)



(
τ++(θ+)

τ−+(θ−)

)
(117)

when (c1, c3) 6= 0. The two elements θ+, θ− ∈ K× have to be identical for the relations in the

second row to hold. Now, the 4× 2 relations among algebraic numbers in (117) are regarded

as four relations among the elements in the CM field K. To see that there is no solution

(rkl, θ) to (117;−), it suffices to focus on the lower two relations:

r31Γ + r32Γy + x = (c1 ± c3y)Ξ±θ, (118)

r41Γ + r42Γy + xy = (dc3 ± c1y)Ξ±θ. (119)

Comparing (118)× (±y) and (119), we can eliminate θ and obtain

[±dr32 − r41 + (±r31 − r42)y]Γ = axy, (120)

a =

{
0 in the case (B,C)–(72;+),
2 in the case (B,C)–(72;−).
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Recalling that Γ = c1 + c3y + c2x + c4xy and (c1, c3) 6= (0, 0), some easy algebra in the

number field K shows that this equation (120;a = 2) for the case (B,C)–(72;−) does not have

a solution (r31, r32, r41, r42).

The remaining task is to prove that condition 5 (strong) is satisfied in the case (B, C)–

(72;+). That is to construct a Hodge isomorphism φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) satisfying

φ∗|Γ∨

bQ
= idΓ∨

bQ
for each one of geometric SYZ-mirrors for a set of data (T 4;G,B; I) in the

case (B, C)–(72;+).

To do so, we will find a solution (rkl, θ) to the equation (117;+) for a given c1–4. Just as

a reminder, (rkl, θ) are parameters for φ∗, whereas c1–4 are determined by a given (Γf ,Γb) for

a geometric SYZ-mirror.

In fact, we can solve the equation (117;+) as follows. As already discussed above, the

lower two rows of the equation (117;+) lead to equations (118;+), (119;+), and (120; a = 0).

The last one (120; a = 0) is equivalent to

r42 = r31, r41 = dr32. (121)

In the same way, from the upper two rows of the equation (117;+), we find

r11 = dr22, r12 = r21, (122)

and

r21Γ + r22Γy = −s0θ. (123)

Now, by eliminating θ from (118;+) and (123), we have

s0r31 + s0r32y + r21Ξ
′
+ + r22Ξ

′
+y = −s0xΓ−1, (124)

where Ξ′
+ := (c1 + c3y)Ξ+. Since 1, y,Ξ′

+,Ξ
′
+y ∈ K are linearly independent over Q, this

equation (124) determines (r31, r32, r21, r22) uniquely.

It is easy to confirm that the equation (117;+) is satisfied whenever the parameters (rkl, θ)

are subject to the relations:

(124) : s0r31 + s0r32y + r21Ξ
′
+ + r22Ξ

′
+y = −s0xΓ−1,

(121) : r42 = r31, r41 = dr32,

(122) : r11 = dr22, r12 = r21,

(123) : s0θ = −(r21Γ + r22Γy).

57



So, indeed, there is a solution (rkℓ, θ) common to both (i) and (ii). Furthermore, the Hodge

morphism φ∗ specified by this (rkl, θ) is an isomorphism; if θ were zero (and hence φ∗ were

not invertible), then Γ, Γy, and x would not be linear independent over Q, according to

(118). Since the above argument holds for arbitrary choice of a geometric SYZ-mirror, this

completes the proof that condition 5 (strong)—including the compatibility—is a part of

necessary conditions for the case (B,C)–(72;+).

5.5.4 The Case (A)

We will show in section 5.5.4 the existence of a Hodge isomorphism φ∗ : H1(T 4;Q) →
H1(T 4

◦ ;Q) satisfying φ∗|Γ∨

bQ
= idΓ∨

bQ
for any choice of (Γf ,Γb) for a geometric SYZ-mirror in

the case (A).

To get started, let us have a few words about rational and holomorphic bases of H1(T 4)

and H1(T 4
◦ ) to be used in the analysis. Let {c, d} be a basis of ΓfQ, and {e, f} that of ΓbQ;

the subspaces Γ∨
fQ and Γ∨

bQ of H1(T 4;Q) are generated by {ĉ, d̂} and {ê, f̂}, respectively;
here, {ĉ, d̂, ê, f̂} is the dual basis of {c, d, e, f}. The (1,0)-forms dz1 and dz2 in the case (A)

entry in Discussion 2.9 are related to the rational basis by

(
dz1 dz2

)
=
(
ĉ d̂ ê f̂

)


λ11 λ12
...

...
λ41 λ42


 , (125)

with the coefficients λij in the imaginary quadratic field Q(
√
p).

We may change the holomorphic basis and rational basis a little bit so that the analysis

later in this section 5.5.4 is easier. Note first that the upper 2 × 2 block of the coefficient

matrix in (125) is invertible. This is because the holomorphic n-form on the T n fiber should

have a non-zero period in the SYZ mirror correspondence. So, one may change the basis

{dz1, dz2} by a GL2(Q(
√
p)) transform so that the upper 2× 2 block in (125) is the identity

matrix. Furthermore, it is possible to rearrange the rational basis of Γ∨
bQ, denoted by {ê′, f̂ ′}

now, so that the coefficient λ31 becomes rational. To summarize, there are a rational basis

{ĉ, d̂} of Γ∨
fQ, {ê′, f̂ ′} of Γ∨

bQ, and a holomorphic basis {dz̃1, dz̃2} of H1,0(T 4;C) so that

(
dz̃1 dz̃2

)
=
(
ĉ d̂ ê′ f̂ ′

)



1 0
0 1

λ̃′31 λ̃′32
λ̃′41 λ̃′42


 , where λ̃′31 ∈ Q, (126)
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and λ̃′32, λ̃
′
41, λ̃

′
42 ∈ Q(

√
p).

On the mirror side, we can regard {c, d, ê′, f̂ ′} as a rational basis of H1(T 4
◦ ;Q). Repeating

the same argument as in the case of T 4, one can find a basis {dz̃1◦, dz̃2◦} of H1,0(T 4
◦ ;C) so that

(
dz̃1◦ dz̃2◦

)
=
(
c d ê′ f̂ ′

)



1 0
0 1
ρ̃′31 ρ̃′32
ρ̃′41 ρ̃′42


 (127)

for some coefficients ρ̃′ij in Q(
√
p).

Having set the stage, we now demonstrate that condition 5 (strong) is satisfied, including

compatibility (1). As we have done earlier, we will translate (i) condition (1) and (ii) the

Hodge-ness condition of the isomorphism φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q), and then find a

common solution.

(i) The condition φ∗|Γ∨

bQ
= idΓ∨

bQ
is equivalent to the existence of a 4× 2 Q-valued matrix

(rkl) such that

φ∗
C

(
dz̃1 dz̃2

)
=
(
c d ê′ f̂ ′

)(
rkl

0
1

)



1 0
0 1

λ̃′31 λ̃′32
λ̃′41 λ̃′42


 . (128)

(ii) The condition that φ∗ is a Hodge isomorphism is equivalent to the existence of an invertible

matrix (θij) ∈M2(Q(
√
p)) such that

φ∗
C

(
dz̃1 dz̃2

)
=
(
c d ê′ f̂ ′

)



1 0
0 1
ρ̃′31 ρ̃′32
ρ̃′41 ρ̃′42



(
θ11 θ12
θ21 θ22

)
. (129)

Now that the properties (i) and (ii) have been paraphrased as (128) and (129), respectively,

let us see that there exists a common solution (rkl, θij) to (128) and (129) for a given (λ̃′ij, ρ̃
′
ij).

Just as a reminder, (rkl, θij) are parameters of φ∗, whereas (λ̃′ij , ρ̃
′
ij) depend on a given (Γf ,Γb)

for a geometric SYZ-mirror.

The compatibility condition of (128) and (129) is

(
rkl

0
1

)



1 0
0 1

λ̃′31 λ̃′32
λ̃′41 λ̃′42


 =




1 0
0 1
ρ̃′31 ρ̃′32
ρ̃′41 ρ̃′42



(
θ11 θ12
θ21 θ22

)
. (130)
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This equation (130) is read as the following relations in the 4× 2 matrix entries:

θij = rij (i, j = 1, 2), (131)

r31 + λ̃′31 = ρ̃′31r11 + ρ̃′32r21, (132)

r41 + λ̃′41 = ρ̃′41r11 + ρ̃′42r21, (133)

r32 + λ̃′32 = ρ̃′31r12 + ρ̃′32r22, (134)

r42 + λ̃′42 = ρ̃′41r12 + ρ̃′42r22. (135)

The parameters θij are fixed relatively to rkℓ ∈ Q. The parameters (r11, r21, r31, r41) are

determined from the equations (132) and (133) as follows. From the imaginary parts of (132)

and (133), we find

{
ρ̃
′(2)
31 r11 + ρ̃

′(2)
32 r21 = λ̃

′(2)
31 (= 0),

ρ̃
′(2)
41 r11 + ρ̃

′(2)
42 r21 = λ̃

′(2)
41 ,

(136)

where we introduced a notation µ = µ(1) +
√
pµ(2) (µ(1), µ(2) ∈ Q) for µ ∈ Q(

√
p). This

system of equations has a unique solution (r11, r21), because
(
ρ̃
′(2)
31 ρ̃

′(2)
32

)
and

(
ρ̃
′(2)
41 ρ̃

′(2)
42

)

are linearly independent; if not, it contradicts the fact that the 4 × 4 matrix

(
1 1
ρ̃′ij ρ̃′c.c.ij

)
is

a change-of-basis matrix from the rational one to the complex one of H1(T 4
◦ ;C), and hence

invertible. Now that we have obtained (r11, r21), we can also determine the remaining r31 and

r41 from (132) and (133), respectively. The parameters (r12, r22, r32, r42) are also determined

in the same way from (134) and (135).

This solution (rkl, θij) specifies a Hodge morphism φ∗ : H1(T 4;Q) → H1(T 4
◦ ;Q) satisfying

φ∗|Γ∨

bQ
= idΓ∨

bQ
. To make sure that this φ∗ is an isomorphism, we have to show that

(
θ11 θ12
θ21 θ22

)

or equivalently

(
r11 r12
r21 r22

)
for this solution is invertible. We will do this by contradiction as

follows.

Assume that the 2×2 Q-valued matrix

(
r11 r12
r21 r22

)
is not invertible. This implies that the

right-hand sides of the equations (132) and (134) coincide up to multiplication by rational

constant, and therefore we find that λ̃′32 can be written as a Q-linear combination of r31, r32

and λ̃′31. Since λ̃′31 is a rational number as in (126), both λ̃′31 and λ̃′32 are real valued, in

particular. This contradicts the fact that the 4 × 4 matrix

(
1 1

λ̃′ij λ̃′c.c.ij

)
is invertible. This

ends the proof of φ∗ being an isomorphism.

60



Since the above argument holds for arbitrary choice of a geometric SYZ-mirror, this

completes the proof of condition 5 (strong)—including the compatibility (1)—for case (A).

6 Towards Characterization of 2d Rational SCFTs

As is evident from what we wrote in Introduction, this section is still about 2d SCFTs that are

interpreted as non-linear sigma models with the target spaces and Ricci-flat Kähler metrics.

Having confirmed towards the end of the previous section that the conditions listed in

Conjecture 1.2 are necessary and sufficient for the N = (1, 1) SCFT for (M ;G,B; I) to be

rational when M = T 4, Thm. 1.3 has been proven. The conditions in Conj. 1.2 still makes

sense for a family of Ricci-flat Kähler manifolds that is self-mirror. It is therefore tempting

to think whether the statement in Conj. 1.2 may still be right as it is; there is no obvious

evidence that it is wrong at this moment, at least to the present authors. (Hence we describe

it as a conjecture in Introduction.) The material in the remainder of this section 6 is a

speculative outlook on where and how Conj. 1.2 should be generalized.

Properties in the conditions in Conj. 1.2 are still stated in the language of classical

geometry, such as (M ;G,B; I). This is not particularly an issue for the families of manifolds

with M = T 2n and M = K3; for a more general self-mirror family, however, treatment of

data and conditions on them should be not in terms of classical geometry, but in terms of

N = (1, 1) SCFT. A set of data (M ;G,B) corresponds to a point (one SCFT) in the moduli

space of N = (1, 1) SCFTs of the target space M , and the homology groups H∗(M ;Z) to

D-brane charges in the N = (1, 1) SCFT. A choice of a complex structure I must be encoded

as the additional N = (2, 2) superconformal structure (Def. 5.2); this choice determines

spectral flow operators in the N = (1, 1) SCFT, and supersymmetry charges of the effective

field theory after the compactification on “(M ;G,B).” The Hodge structures on H∗(M ;Z)

appearing in the conditions of Conjecture 1.2 should be phrased in terms of the central

charges of the effective field theory supersymmetry algebra. The pull back π∗
M : H∗(B;Q) −→

H∗(M ;Q) of an SYZ torus fibration is captured by introducing a filtration in the space of

D-brane charges. That will be an outline; details and gaps between the lines should still be

filled here and there in writing down Conjecture 1.2 in the abstract language of 2d SCFT.

There is no chance, however, that the properties in Conj. 1.2 hold true as they are, for all

the families of Ricci-flat Kähler manifolds M that are not self-mirror. A Hodge isomorphism

φ∗ in condition 5 would imply that bk(M) = bk(W ) for k = 0, 1, · · · , 2n, but examples of
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rational SCFTs (e.g., Gepner constructions) are known where the Betti numbers of M and

W are not the same. Relying on a random guess, we propose to modify the conditions as

follows:

Conjecture 6.1. (General): Let M be a real 2n-dimensional manifold which admits a Ricci-

flat Kähler metric G, and B a closed 2-form on M . The non-linear sigma model N = (1, 1)

SCFT associated with the data (M ;G,B) is conjectured to be a rational SCFT if and only if

the following conditions are satisfied:

1. there exists31 a polarizable complex structure I so that (M ;G; I) is Kähler, B(2,0) = 0,

and the following conditions are satisfied;

2. there exists a geometric SYZ-mirror of the N = (1, 1) SCFT with the N = (2, 2) su-

perconformal structure for (M ;G,B; I); there may be more than one geometric SYZ-

mirrors (geometric interpretations); the data of such a mirror is denoted by (W ;G◦, B◦; I◦);

3. (strong) for any one of the SYZ mirrors, one can find a decomposition of the ratio-

nal Hodge structure V
(k)
M ⊕ Ṽ

(k)
M

∼= Hk(M ;Q) and also a decomposition V
(k)
W ⊕ Ṽ

(k)
W

∼=
Hk(W ;Q) for each 0 ≤ k ≤ n that satisfy the following conditions (a–c); let Π

(k)
M and

Π
(k)
W be the projection from Hk(M ;Q) to V

(k)
M and Hk(W ;Q) to V

(k)
W , respectively;

(a) Π∗
M ◦ π∗

M : Hk(B;Q) → V
(k)
M and Π

(k)
W ◦ π∗

W : Hk(B;Q) → V
(k)
W are injective,

(b) the rational Hodge structure on V
(k)
M is of CM-type,

(c) there exists a Hodge morphism φ∗ : V
(k)
M → V

(k)
W such that φ∗◦(Π(k)

M ◦π∗
M) = Π

(k)
W ◦π∗

W .

4. the complexified Kähler parameter (B+iω), where ω(−,−) = 2−1G(I−,−) is the Kähler

form, is in (H2(M ;Q) ∩H1,1(M ;R))⊗ τ r(n0)(K
r). Here, Kr is the endomorphism field

of the CM-type rational Hodge structure ([Hn(M ;Q)]ℓ=n, I) and τ r(n0) the embedding of

Kr associated with the Hodge (n,0) component.

The conditions written above are only meant to be trial versions. One may think of

changing condition 3 from the one for arbitrary geometric SYZ mirrors as above, to the

one for some geometric SYZ mirrors, when the condition is referred to as condition 3 (weak).

Besides this strong vs weak variation, there is still a wide variety in modifying the conditions;

one might demand that the entire Hk(M ;Q) is of CM-type instead of condition 3(b) in Conj.

6.1, or demand a Hodge morphism φ∗ : Hk(M ;Q) → Hk(W ;Q) such that φ∗ ◦ π∗
M = π∗

W on

31When we think of M with h2,0(M) = 0 (for example, when M is a Calabi–Yau n-fold with n > 2), the
condition 1 is automatically satisfied.
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Hk(B;Q) instead of condition 3(c) in Conj. 6.1. At this moment, there is not much evidence

to pin down the right characterization conditions from study of SCFTs.

One may still run a few tests on formal aspects of Conjecture 6.1 to access its credibility.

We do so in the rest of this section 6. Condition 3 in Conj. 6.1 as it stands passes the two

tests below; reference to a substructure V
(k)
M is motivated in that context.

Let us take a moment before jumping into the first test, to prepare notations and cultivate

intuitions on what the substructure V
(k)
M should be like. Suppose that

Hk(M ;Q) ∼= ⊕α∈Ak(M)(⊕a∈αV
(k)
a ) =: ⊕α∈Ak(M)V

(k)
α (137)

is a decomposition into simple rational Hodge substructures (cf. Prop. A.22 and condition

1); simple rational Hodge substructures labeled by a are grouped together by Hodge isomor-

phisms among them (see (13) in Discussion 2.2 for an example); Hodge-isomorphism classes

are labeled by α ∈ Ak(M). First, whenever V
(k)
a of one a ∈ α ∈ Ak(M) is of CM-type, all

the other V
(k)
a′ with a′ ∈ α are of CM-type. So, whether a rational Hodge substructure of

Hk(M ;Q) is of CM-type or not can be asked for individual Hodge-isomorphism classes in

Ak(M). Secondly, one can see that the subspace V
(k)
α ⊂ Hk(M ;Q) for α ∈ Ak(M) does

not depend on a choice of a simple substructure decomposition. To see this, suppose that

there is another simple substructure decomposition, Hk(M ;Q) ∼= ⊕β∈A′ ⊕b∈β U
(k)
b ; the set

of Hodge-isomorphism classes A′ should be the same as Ak(M), and the Hodge isomor-

phism between ⊕α ⊕a∈α V
(k)
a and ⊕β ⊕b∈β U

(k)
b should be block-diagonal with respect to

α, β ∈ Ak(M). The subspace ⊕b∈αU
(k)
b ⊂ Hk(M ;Q) is therefore identical to V

(k)
α . As a

candidate of a rational Hodge substructure V
(k)
M ⊂ Hk(M ;Q) in condition 3 of Conj. 6.1, it

is enough to think of the form ⊕α∈Ak(M)subV
(k)
α , with the Hodge-isomorphism classes running

over some subset Ak(M)sub of Ak(M). The complement Ṽ
(k)
M is for Ak(M)\Ak(M)sub. Al-

though one may choose a polarization to determine a decomposition (137), the decomposition

V
(k)
M ⊕ Ṽ

(k)
M

∼= Hk(M ;Q) and the projection Π
(k)
M are independent of the chosen polarization

now.

There is a subset Ak
B(M) ⊂ Ak(M) characterized as the set of the Hodge-isomorphism

classes where the image of Π
(k)
α ◦π∗

M : Hk(B;Q) → V
(k)
α is non-zero; Π

(k)
α : Hk(M ;Q) → V

(k)
α is

the projection. The same set of notations (such as Ak(W ), Ak(W )sub, Ak
B(W )) is introduced

for the SYZ torus fibration πW : W → B. For the purpose of condition 3(a) in Conj. 6.1, it is

enough to chooseAk(M)sub ⊂ Ak(M) as large asAk
B(M). Condition 3(a) does not necessarily

require that Ak(M)sub should contain all of Ak
B(M), because the images of Hk(B;Q) in V

(k)
α ’s

with different α’s may be correlated in general.
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Here, we begin with the first test. Conditions 3(b) and 3(c) do not treat M and the

mirror W democratically, at least at first sight. If the Conj. 6.1 is to provide a necessary

and sufficient condition for an N = (1, 1) SCFT to be rational, then all of its mirror SCFTs

must be rational. So, we have to make sure that condition 3 implies condition 3[M ↔W ].

Condition 3(b)[M ↔ W ] follows from condition 3(a,b,c) in fact. To see this, think of the

subset Ak(W )sub sub ⊂ Ak(W )sub where the image of φ∗ in condition 3(c) is non-zero. Then

we may replace V
(k)
W = ⊕α∈Ak(W )subV

(k)
α by V

(k)
Wnew = ⊕α∈Ak(W )sub sub

V
(k)
α . This rational Hodge

substructure of Hk(W ;Q) still satisfies condition 3(a). Because they are in the non-zero

image from CM-type simple rational Hodge substructures (condition 3(b)), V
(k)
Wnew is also of

CM-type.

Condition 3(c)[M ↔ W ] also follows from conditions 3(a,b,c). Think of the subset

Ak(M)sub sub ⊂ Ak(M)sub where φ∗ in condition 3(c) is non-zero. Then there is one-

to-one correspondence between Ak(M)sub sub and Ak(W )sub sub. We may replace V
(k)
M =

⊕α∈Ak(M)subV
(k)
α by V

(k)
Mnew = ⊕α∈Ak(M)sub sub

V
(k)
α , and yet condition 3(a) is satisfied. Now, we

construct a Hodge morphism ψ∗ : V
(k)
Wnew → V

(k)
Mnew as follows, by focusing on each one-to-

one correspondence pair α ∈ Ak(M)sub sub and β ∈ Ak(W )sub sub. The vector space V
(k)
β ⊂

Hk(W ;Q) over Q can also be seen as a vector space over the CM fieldK of the simple rational

Hodge structures in α and β; choose any decomposition V
(k)
β = Im(φ∗)⊕ [Im(φ∗)]c as a vector

space over K, and fix it. The vector space V
(k)
α also has a decomposition Ker(φ∗)⊕ [Ker(φ∗)]c

as a vector space over K; choose this decomposition in a way [Ker(φ∗)]c contains the image

Π
(k)
α ◦ π∗

M (Hk(B;Q)). Then the Hodge morphism φ∗ : [Ker(φ∗)]c −→ Im(φ∗) is invertible;

the inverse ψ∗ may be extended to [Im(φ∗)]c ⊂ V
(k)
β by zero, so we have a Hodge morphism

ψ∗ : V
(k)
β → V

(k)
α . This completes the construction of a Hodge morphism ψ∗ : V

(k)
Wnew → V

(k)
Mnew.

By construction, φ∗ is an isomorphism between the injective images of Hk(B;Q) within

V
(k)
Mnew and V

(k)
Wnew, and ψ∗ gives the inverse of φ∗ on those injective images. So, condition

3(c)[M ↔W ] follows indeed.

The other test is to see if Conjecture 6.1 (general) is consistent with Conjecture 1.2 (self-

mirror); the latter is more reliable because it has been tested by the case M = T 4. When we

read condition 3 of Conjecture 6.1 for a self-mirror manifold M , they appear to be weaker

than conditions 2 and 5 of Conj. 1.2. This raises a concern that the conditions in Conj. 6.1

might not be strong enough to be a sufficient condition for an SCFT to be rational.

It is beyond the scope of this article to run this test on all the self-mirror families, but we

can do it on the family M = T 4 here. To see that conditions 2 and 5 of Conj. 1.2 follow from

condition 3 of Conj. 6.1 forM = T 4, note first that the rational Hodge structure onH1(M ;Q)
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(not necessarily of CM-type) either is simple (I), or splits into two simple Hodge substructures

(II). In the case (II), each of the two simple components of H1(M ;Q) contains 1-dimensional

subspace of π∗
M (H1(B;Q)); in any SYZ mirror, each complex coordinate contains both one

SYZ fiber direction and one base direction. This means that V
(k=1)
M in condition 3 of Conj.

6.1 should always be the entire H1(M ;Q), because of condition 3(a) in Conj. 6.1. Repeating

the same argument, one finds that V
(k=1)
W = H1(W ;Q) —(*). So, condition 3(b) of Conj. 6.1

implies that the rational Hodge structure on the entire H1(M ;Q) is of CM-type, regardless

of the case (I) or (II). The Hodge structures on Hk(T 4;Q) of all other k’s are also of CM-type

then (condition 2 of Conj. 1.2). Secondly, the Hodge morphism φ∗ : H1(M ;Q) → H1(W ;Q)

in condition 3(c) of Conj. 6.1 cannot have a kernel when M = T 4; even in the case (II), the

Hodge morphism φ∗ should map the two simple substructures of H1(M ;Q) to the two simple

substructures of H1(W ;Q) without a kernel, without a cokernel, to meet the requirement

on φ∗ in condition 3(c) (remember (*)). So, the Hodge morphism φ∗ must be a Hodge

isomorphism, as in the condition 5 of Conj. 1.2.

Here are three remarks. First, note that the first test motivated an idea of restricting the

range (i.e., V
(k)
M ⊂ Hk(M ;Q)) in which the Hodge morphism φ∗ is defined. One may wonder

what happens if we set V
(k)
M = Hk(M ;Q) and V

(k)
W = Hk(W ;Q) in condition 3 of Conj. 6.1.

We have not found how to prove existence of ψ∗ : Hk(W ;Q) → Hk(M ;Q) for 3[M ↔ W ]

by using conditions 3(a,b,c), then; so we would not have an obvious [M ↔W ] democracy if

condition 3 does not allow freedom to choose V
(k)
M in Hk(M ;Q).

Second, whenM is a Calabi–Yau n-fold and the base manifold B of the SYZ torus fibration

is Sn, condition 3(a) of Conj. 6.1 is non-trivial only in the middle dimensional cohomology,

k = n. Moreover, the generator of Hk(B;Q)|k=n—the Poincare dual of the point class in

H0(B;Q)—is pulled back by π∗
M and π∗

W to the Poincare dual of the T n fiber class PD[fibr] of

Hn(M ;Q) and Hn(W ;Q), respectively. Because the periods of the holomorphic (n,0)-form

over the T n fiber class is non-zero in an SYZ fibration, the projection of PD[fibr] to the

level-n components [Hn(M ;Q)]ℓ=n and [Hn(W ;Q)]ℓ=n are both non-zero. So, it is enough to

choose V
(n)
M = [Hn(M ;Q)]ℓ=n and V

(n)
W = [Hn(W ;Q)]ℓ=n, respectively, and condition 3(a) is

automatically satisfied. Condition 3(b) is equivalent to the weak CM condition on M .

Technically the conditions 3(a–c) as a whole are equivalent to existence of the Hodge

isomorphisms φ∗ of the level-n components on both sides. Although we should impose an

extra condition that φ∗ : Π
(n)
M (PD[fibrM ]) 7→ Π

(n)
W (PD[fibrW ]), it is always possible to adjust
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φ∗ so that this is the case,32 because the level-n Hodge substructure is always simple and of

CM-type. It should be reminded, however, that existence of a Hodge isomorphism is equiv-

alent to the isomorphism of the CM fields (as in condition (ii) of Conj. 1.1) and agreement

of the decomposition (172) on both sides; isomoprhism of the CM fields is not enough.

Finally, there is an alternative to Conjecture 6.1, which is to replace condition 3(b) by

3(b’) the rational Hodge structures on the entire Hk(M ;Q) and Hk(W ;Q) are of CM-type.

The alternative version, Conjecture 6.1’ also passes the first test (as well as the second one).

Conditions 3(b) and 3(b’) are different, if the answer to Question 2.5 ”no.” The Borcea–Voisin

orbifold Calabi–Yau threefolds will be good test cases both for the math question (Question

2.5) and for finding out which version of the conjecture is right then (cf. footnote 12).

7 Implications and Discussions

Whether Conjectures 1.2 and 6.1 are true is obviously one of research problems in the future.

Before closing this article, let us also make a little effort to extract some immediate implica-

tions when those Conjectures are right. Further progress beyond them should still be left for

future publications.

The Case of a Complex Torus: First, consider the family with M = Tm. We do

have a complete characterization [Wen00] of the sets of geometry data (M ;G,B) where the

corresponding (S)CFTs are rational (as quoted in Prop. 2.7). One may list up (G,B) on

M = Tm by following the condition (14). Alternatively, one may list up a pair (ΓL,ΓR) of

even and positive definite rank-m lattices where both ΓL and ΓR[−1] are primitive sublattices

of IIm,m
∼= H1(T

m;Z)⊕H1(Tm;Z) and are orthogonal to each other, as in [HLOY03]. Either

way, we do not need a Gukov–Vafa like characterization (Conj. 1.1) on (G,B)’s where the

(S)CFT is rational. We used this known characterization—(14) in Prop. 2.7 for the case

M = T 4—in this article to refine Conj. 1.1 into Conj. 1.2 and test the latter (Thm. 1.3).

Conjecture 1.2 along the line of the idea of Gukov and Vafa is still useful when we ask, for

a given complex manifold (T 2n; I), which choice of a complexified Kähler form (B+ iω) yields

a CFT that is rational. In string theory, we do not have to phrase a question in this way, but

still this is also a natural way to formulate a question when one’s favorite subject includes

32Although SYZ torus fibration therefore almost disappears from the surface when Conj. 6.1 is applied
exclusively to the Calabi–Yau cases with B = Sn, the study in this article reveals that SYZ torus fibration
is one of key concepts in finding characterization on SCFTs that are rational that cover general Ricci-flat
Kähler manifolds.
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Kähler geometry, algebraic geometry, or arithmetic geometry. Conjecture 1.2 indicates, if

it is true, that no rational CFT is overlooked by paying attention only to (T 2n; I) that are

abelian varieties (i.e., polarizable I’s); given the fact that all the CM-type abelian varieties

have algebraic-geometric implementations whose defining equations involve only algebraic

numbers, we see that (T 2n; I)-target rational CFTs may also have relevance to arithmetic

geometry (cf the second to last paragraph in section 1.1.1).

If Conj. 1.2 is true, as we continue from the previous paragraph, then T 2n-target rational

CFTs have the following (mutually non-exclusive) hierarchical classifications. At the crudest

level, polarizable CM-type rational Hodge structures (H1(T 2n;Q), I) are classified by the

Galois theoretical properties33 of the endomorphism algebra End(H1(T 2n;Q), I), as reviewed

in [OW24, §4.1]. There are still infinitely many different choices of the endomorphism algebras

End(H1(T 2n;Q), I) in each case. The ring of complex multiplications on (H1(T 2n;Z), I)—the

transpose of End(T 2n, I) (cf Notation A.2 and Thm. A.11)—is a subring of the semi-simple

algebra End(H1(M ;Q), I). At the end of this three layers of classification,34 there are a

finite number of isomorphism classes of CM-type abelian varieties that share the same ring

End(T 2n; I). For more review on the distributions of CM-type abelian varieties in the moduli

space of complex tori, readers are referred to the math literatures cited in [KW17, app.B].

This paragraph just provides to string theorists with hints on where to look at for more

resources; it does not add anything new.

We are then left with the task of identifying the list of the complexified Kähler forms

(B+ iω) on a given CM-type abelian variety (T 2n; I) so that the (S)CFTs for (T 2n; I;B+ iω)

are rational. Neither the condition (14) in Prop. 2.7 nor the conditions in Conj. 1.2 provides

an immediate answer to this question.35 The study in the case of n = 2 in section 4 of this

article, however, suggests the following as a natural guess. Suppose that

(T 2n; I) ∼
∏

α∈A

(Aα)
nα (138)

is the simple component decomposition modulo isogeny (Rmk. A.46); a pair Aα, Aβ with

distinct α, β ∈ A are not mutually isogenous. Let Kα be the endomorphism field of the

33When n = 2, the crudest classification is the distinction between the cases (A, A’, B, C) in this article.
There is just one case when n = 1, where the endomorphism field is an imaginary quadratic field.

34See [Mooa, Moob] or Rmk. A.6 for what the latter two layers of classification are in the case n = 1.
35For complex tori, it will be more involved to exploit the conditions in Conj. 1.2 instead of the condition

(14) in Prop. 2.7. It was not an elementary process for the case n = 2 already to exploit the compatibility
with the torus fibration, as we saw in section 5.5. There are some works to do.
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simple CM-type abelian variety Aα. Then the vector space

SpanQ

{
Q(α,ξα) | α ∈ A, ξα = (ξαij) ∈Mnα

(Kα), ξαij = −ξαji
}
⊂ H2(T 2n;Q) (139)

of dimension
∑

α∈A n
2
α[Kα : Q]/2 over Q, where

Q(α,(ξαij )) :=

nα∑

i,j=1

eαI,i ∧ eαJ,jTrKα/Q

[
ξαijη

α
I η̄

α
J

]
=

nα∑

i,j=1

[Kα:Q]/2∑

a=1

2τa(ξ
α
ij)dz

α,a
i ∧ dz̄α,āj , (140)

is likely to be equal to H2(T 2n
I ) (we have not proved this for n > 2 yet); no rational CFT is

overlooked when we scan B only within H2(T 2n
I ), if Conj. 1.2 is true.36 Rational metrics can

be constructed for a choice of

β = (βα)α∈A, βα ∈Mnα
(Kα) s.t. βα

ij = −βα
ji

(as in [Che08, Thm. 2.5] for the cases nα = 1) through

ω(β) :=
i

2

∑

α∈A

nα∑

i,j=1

[Kα:Q]/2∑

a=1

τa(ξ
α
∗ β

α
ij)(dz

a
i ⊗ dz̄āj − dz̄āj ⊗ dzai ), (141)

G(β) =
∑

α∈A

nα∑

i,j=1

TrKα/Q

[
ξα∗ β

α
ijη

α
I η̄

α
J

]
eαI,i ⊗ eαJ,j, (142)

where ξα∗ is an element in Kα such that ξα∗ = −ξα∗ . The complexified Kähler forms (B+ iω(β))

generated in this way satisfy the condition (14) by construction. Our analysis in section

4 proved that all of the Kähler forms on (T 2n; I) compatible with the condition (14) are

generated by ω(β), but the proof is only for n = 2. So, the set of (B + iω) on a CM-type

(T 2n; I) described above will be a good guess for all that satisfy the condition (14) and

B(2,0) = 0 on a given (T 2n; I), but we do not have a proof yet for n > 2.

It is beyond the scope of these notes to explore a possible connection between the complex

multiplication (such as the ring End(M, I)) and various data of those torus target rational

(S)CFTs (such as the coefficients of the braiding and modular transformations (cf [DBG91],

[CG94], [FGRSS94]). It has been observed in a very special class of rational SCFTs37 that

the multiplicative group of an appropriate quotient of the ring of the complex multiplications

is regarded as a part of the automorphism of the fusion algebra of the diagonal rational

36Remember that the proof of Prop. 3.4 is valid only for the case n = 2.
37Ref. [KW22] only dealt with T 2-target 2d rational N = (1, 1) SCFTs that are diagonal.
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SCFTs. It is not known yet whether such a statement holds true in a broader class of

geometries/SCFTs, or what the precise statement is.

The case M = K3: Condition 1 is already a non-trivial characterization of K3-target

SCFTs that are rational, if Conj. 1.2 is true; In a general K3-target N = (1, 1) SCFT, one

may choose a complex structure I (an additional N = (2, 2) superconformal structure) so

that either it is polarizable, or B(2,0) = 0, but condition 1 says that a data (M ;G,B)|M=K3

of a rational SCFT will allow I that has both of the properties. Condition 3 of Conj. 1.2

implies that the SCFT is rational only when (B + iω) is not just in H1,1(MI ;C), but is

within H2(MI) ⊗ C. Moreover, the Picard number ρ has to be no less than 10, and the

Kähler form must be within the image of T v
M ⊗R ⊂ A(MI)⊗R projected on to the algebraic

part H2(MI)⊗R for any K3 target rational SCFT. This also means that the CM field Kr on

the transcendental lattice TM of (M ; I) and its mirror (W ; I◦) has degree 2n := [Kr : Q] ≤ 12,

if Conj. 1.2 is true.

For any CM-field Kr with [Kr : Q] ≤ 20 (it is enough to discuss only those with [Kr :

Q] ≤ 12 because of the reasoning above, though), there are points in the complex structure

moduli space of K3 surface (M ; I) = MI where Kr is the endomorphism field of the level-

2 component [H2(MI ;Q)]ℓ=2 [Tae16, §3]. We can read out more from [Tae16, §3] in fact;

one can construct a rational Hodge structure on the 2n-dimensional vector space Kr/Q, by

choosing an element λ ∈ (Kr
0)

× that is mapped to R>0 by one embedding τ 00 of Kr
0 and to

R<0 by all the other (n− 1) embeddings of Kr
0 ; here, K

r
0 is the totally real subfield of Kr of

degree n; a bilinear form bλ : Kr ×Kr → Q is determined by using b(x, y) = TrKr/Q[λxȳ] for

(x, y) ∈ Kr ×Kr; the pair of embeddings of Kr whose restriction to Kr
0 is τ 00 are associated

with the Hodge (2,0) and (0,2) components on K ⊗ C [PSS73]; as explained in [Tae16,

§3], there exists a quadratic space—a vector space and a bilinear form—over Q of 22 − 2n

dimensions, (V, ϕ) so that

(Kr, bλ)⊕ (V, ϕ) ∼= H2(K3;Q) (143)

as a quadratic space; furthermore, the data of (Kr, bλ) determines (V, ϕ) uniquely (modulo

vector-space isomorphisms). The Torelli theorem of K3 surface indicates that a projective

K3 surface of CM-type is specified when one specifies where in the vector space H2(K3;Q)

the integral part H2(K3 : Z) lies.38 The transcendental lattice TM is K ∩ H2(K3;Z), the

38It will be more natural for experts of complex K3 surfaces to list up transcendental lattices TM with
rank ≤ 12 first, and then to try to list up candidates of CM fields that can be endomorphism fields of CM-
points in the period domain of TM . All that is known to the authors, however, is that there is a constraint
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algebraic part H2(MI) is V , and K
r = End(TM ⊗ Q, I), by construction. All the CM-type

projective K3 surfaces are obtained in this way (cf [Che07, Prop. 1.3.10], [KW23, footnote

70]).

For a transcendental lattice TM ⊂ H2(K3;Z) of a CM-type K3 surface M , there are

infinitely many other CM points in the period domain D(TM); just like in the case of elliptic

curves, the group Isom(TM ⊗ Q) acts on D(TM), and the images of a CM point under this

group are also CM points. Those CM points populate densely within D(TM). Moreover,

different choices of Kr and λ result in different transcendental lattices TM , in general. The

two paragraphs so far are just a review.

We are left with the task of identifying the list39 of (B+ iω) for a given K3 surface (M ; I)

of CM-type, so that the SCFT for (M ; I;B+ iω) is rational. One can make a partial progress

by allowing ourselves to assume that Conj. 1.2 is true; generate (B+ iω) in H2(MI) = (V, ϕ)

with coefficients in the endomorphism field τ(20)(K
r) (condition 3 of Conj. 1.2), generate

a subspace T v
M ⊗ Q ⊂ A(MI) ⊗ Q by the Galois group action on the coefficients as we

have done in section 5.3.1, and impose the conditions that {(e(B+iω)/2)σ | σ ∈ Gal(Knc/Q)}
yields a rational Hodge structure under the pairing (70) as we have done in Lemmas B.1

and B.4. Once this analysis is done, then the polarizable rational Hodge structure on the

level-2 component of the mirror is isomorphic to the one on T v
M ⊗Q (Lemma 5.6 works also

when M = K3); it is further Hodge isomorphic to the one on TM ⊗ Q by construction, so

a Hodge isomorphism φ∗ in condition 5 of Conj. 1.2 then exists. It will be a subject of a

separate research paper to elaborate more on these processes and to identify the freedom left

in (B + iω). On top of this analysis, one has to impose the compatibility (1) of the Hodge

isomorphism φ∗ with the SYZ torus fibration.

Research on K3-target SCFTs is being carried out by some of the present authors. One is

to use known K3-target SCFTs that are rational and check whether the conditions in Conj.

1.2 are satisfied. The other is to develop techniques so that we can handle both topology and

Hodge structure in an SYZ torus fibration πM :M → B.

The case M is a Calabi–Yau n-fold with n > 2: here, we think of those with

discr(TM ) ∈ (−1)[K
r:Q]/2DKr/Q × (Q×)2 —(**) on such a CM field Kr [BF14, Lemma 1.3.2]. The authors

have not tried to think whether this constraint is enough to guarantee that a CM point with CM by Kr

exists in the period domain of TM . We do not know for a given pair of Kr and TM satisfying (**) whether a
basis {ηI} of Kr/Q always exists for a basis {eI} of TM so that Ω := eIτ

r
(20)(ηI) satisfies (Ω,Ω

σ)TM
= 0 for

all σ ∈ Gal((Kr)nc/Q) except for σ = cc.
39Reference [Che07] discusses how to find an appropriate (B + iω) for a complex CM-type K3 surface X

with ρ(X) ≥ 10 such that X has a mirror that is also of CM-type, motivated by Conj. 1.1.
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h0,q(M) = 0 for q = 1, 2, · · · , n − 1. This case is completely different in nature from the

cases where M is either a complex torus or a K3 surface. Here are two major differences.

One is in the fact that the moduli space of complex structure of M is much smaller than

the space of integral Hodge structures on Hn(M ;Z), as has been explained in the literatures.

The other is that the strong CM condition on M may not be the same as the weak CM

condition (Question 2.5); importance of this Question is the primary lesson in this article

for applications to the cases of Calabi–Yau n-folds (n > 2), for now, because that is the

difference between conditions 3(b) and 3(b’) in Conj. 6.1. Practical progress in the study

of Calabi–Yau target rational SCFTs will be made possible after such progress in math, and

also in practical progress in the case M is K3.

There has been a question of how densely rational SCFTs populate the moduli space of

Ricci-flat Kähler target SCFTs. Reference [GV04] conjectured that rational SCFTs might

have something to do with CM-type rational Hodge structures (Conj. 1.1), and further

combined the observation with André–Oort conjecture in math [And89, Oor97, And97],40

which says that CM points are not dense in the moduli space of such manifolds in general

(except for the moduli space of abelian varieties and K3 surfaces). So, it has been hinted

that rational SCFTs do not populate densely within the whole moduli space of N = (1, 1)

SCFTs with a Calabi–Yau threefold target space. What is implicit in this line of argument

is to set V
(k)
M = Hk(M ;Q) (in the language of Conj. 6.1) and demand that the rational

Hodge structure is of CM-type on the entire Hk(M ;Q), not just on the level-n component

[Hn(M ;Q)]ℓ=n. So, although the inference on scarcity of rational SCFTs from the scarcity

of CM-type Calabi–Yau manifolds does not have to be questioned at this moment, finer

understanding on the choice of statements in Conj. 6.1, as we discussed in section 6, and on

Question 2.5 / footnote 12, however, might change this perspective in the future.

The question above may have a consequence beyond mathematical physics. Suppose one

day that mankind discovers that Type IIB flux compactification is theoretically consistent

only when the SCFT is rational; it is not bad to enjoy such a speculation sometimes [GV04].

That may further indicate that the vacuum complex structure of the internal Calabi–Yau

threefold is something captured by a special subvariety of Calabi–Yau moduli space inter-

preted as a Shimura variety, if we speculate along the lines of Gukov–Vafa and Andrè–Oort.

When the moduli space has a group action, discrete and/or continuous, its isotropy subgroup

at the vacuum point may remain in the low-energy effective field theory of the moduli fields

as gauged and/or accidental symmetry.

40cf also [Tsi] and [MO11].
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A A Guide to the Theory of Complex Multiplication

This is a guide to the theory of complex multiplication, written for string theorists. It is not

a lecture note or textbook. It is meant to provide concise presentations of key concepts and

objects, known facts, and which implies what, beyond what is covered in [Mooa], [Moob];

while proofs are often omitted, large fraction of math that we need in this article are collected

here for the benefit of readers. If a reader wants to seek for further references written by

mathematicians, we recommend [Mil22], [Huy16, §3], [Shi97] and [BL04].

As a research article in string theory, however, it was not an option to restrict our attention

only to complex projective varieties without a reason and ignore general complex analytic

manifolds that do not have an embedding into a projective space. Most of literature on the

theory of complex multiplication deals only with complex projective varieties. So, the present

authors made an effort to extend the widely accepted theory of complex multiplications to

be able to cover complex analytic manifolds. Reference [BL99] was useful for this purpose.

Statements in Prop. A.41, Prop. A.55 and Prop. A.64 are not easily found elsewhere for

this reason.

A.1 Complex Multiplication of Complex Tori: Part I

Notation A.1. Mn(A) for an algebra A is the algebra of A-valued n× n matrices.
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Notation A.2. Let X be a complex torus of complex n-dimensions. It has a complex

analytic presentation X ∼= Cn/Λ; here, Cn may be regarded as a group with respect to the

sum of n-component vectors, and Λ is a subgroup of Cn isomorphic to Z2n such that Λ⊗Z R

covers the entire Cn ∼= R2n. The complex analytic manifold X is also regarded as an abelian

group under the sum of vectors. The set of all the holomorphic maps from X to itself that

is also a group homomorphism,

End(X) ∼= {ϕ ∈Mn(C) : C
n −→ Cn | ϕ(Λ) ⊂ Λ} , (144)

forms a ring. The ring End(X) may change as complex structure of X changes (see Thm.

A.4 and Ex. A.5).

One may also assign another algebraic object

EndQ(X) ∼= {ϕ ∈ Mn(C) : C
n −→ Cn | ϕ(Λ⊗Q) ⊂ Λ⊗Q} (145)

to a complex torus X . This EndQ(X) is a finite-dimensional algebra over Q.

In the case of 1-dimensional complex tori (n = 1), i.e., the case of elliptic cures, the maps

ϕ in End(X) or EndQ(X) are to multiply complex numbers ϕ ∈M1(C) = C on the complex

analytic coordinates of Cn = C.

Definition A.3. A complex n-dimensional torus X (dimRX = 2n) is said to have sufficiently

many complex multiplications (CM), when the algebra EndQ(X) contains a subalgebra K with

dimQ K = 2n that is isomorphic to the direct sum of number fields ⊕iFi.

Theorem A.4. In the case of elliptic curves, i.e., n = 1, the algebra EndQ(X) is known to be

either isomorphic to Q, or to a quadratic extension field K over Q that cannot be embedded

to R. An elliptic curve has sufficiently many complex multiplications if and only if EndQ(X)

is such a quadratic extension field K, which contains ϕ ∈ C that cannot be found within

R ⊂ C.

Example A.5. Let X ∼= C/Λ be an elliptic curve with sufficiently many complex multipli-

cation, and let Λ = Z⊕ τZ. Then there must be a set of mutually prime integers a, b, c such

that aτ 2 + bτ + c = 0 —(**). A ring

Z⊕ Z(aτ) ∼= {ϕ ∈ M1(C), ϕ : C −→ C | ϕ = m+ naτ, m, n ∈ Z} (146)

is in the ring End(X), and K = Q(τ) is the algebra EndQ(X); the algebra EndQ(X) is

always a field in the case X is an elliptic curve. The converse is also true: where there exists

(a, b, c) satisfying (**), then the elliptic curve C/(Z ⊕ τZ) has sufficiently many complex

multiplications. See [Mooa][Moob] for more explanation on this.
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Remark A.6. Elliptic curves with sufficiently many complex multiplications are therefore

classified by their fields K. A quadratic extension field of Q that cannot be embedded into

R ⊂ C is called an imaginary quadratic field. An imaginary quadratic field K is always of

the form Q(
√
p) for some negative integer p that is free of the square of an integer. So, such

elliptic curves are classified by the imaginary quadratic fields EndQ(X) (i.e., by the negative

and square-free integers p). The subring End(X) within the field Q(
√
p) can be used to

provide a finer classification; the ring (modulo isomorphism) is known to be determined by

the value b2−4ac of τ . There can still be a finite number of mutually non-isomorphic elliptic

curves sharing the same value of (b2 − 4ac) (discriminant, conductor/order and class number

are the relevant jargons; more information is found in [Mooa], [Moob], [Cox22, §7, §10.C],

and various lecture notes available online). We call this hierarchical classification of elliptic

curves with complex multiplications.

The complex structure parameters τ of elliptic curves with sufficiently many complex

multiplications populate the complex upper half plane H densely (or one fundamental region

of H under the action of SL2Z). Those τ ’s sharing the same EndQ(X) ∼= Q(
√
p) forms an

orbit of GL2Q.

Definition A.7. Let f : X −→ Y be a holomorphic map from one complex torus X to

another Y that is a homomorphism and is both surjective and of finite kernel. Such a map

is called an isogeny.

For an isogeny f , it is known that there always exists an isogeny g : Y −→ X such that

f ◦ g = m idY and g ◦ f = m idX for some positive integer m. Such an isogeny g is called a

dual isogeny of f .

A.8. A dual isogeny g above is not an inverse of the map f , while one may think of m−1g

as something close to an inverse of f . The object m−1g is not necessarily a geometric map

Y → X , but still it is in HomQ(Y,X) := {Mn(C) ∋ ϕ : Cn −→ Cn | ϕ(ΛY ⊗Q) ⊂ ΛX ⊗Q}.
One may also call an element of HomQ(Y,X) as an isogeny. Existence of an isogeny between

a pair of complex tori can be used to introduce an equivalence relation among complex tori.

A pair of complex tori for which an isogeny exists are said to be isogenous.

Remark A.9. When a pair of complex tori X and X ′ are isogenous, X ′ has sufficiently

many complex multiplications if and only if X does (because Def. A.3 depends only on

EndQ(X)). The classification of complex tori with sufficiently many complex multiplications

by the algebra EndQ(X) agrees with the classification of them by isogenies.
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Example A.10. Think of X = E × E where E = C/(Z ⊕ τZ) is an elliptic curve with

sufficiently many complex multiplications. Now, EndQ(E) ∼= Q(
√
p) for some square-free

negative integer p. It is known that

EndQ(X) ∼=M2(Q(
√
p)). (147)

This algebra EndQ(X) is not commutative. But it contains such 4-dimensional subalge-

bras over Q as

K1 := diag (Q(
√
p), Q(

√
p)) , (148)

and

K2 := SpanQ

{
12×2,

√
p12×2,

(
d

1

)
,
√
p

(
d

1

)}
(149)

for any non-zero integer d. For this reason, the complex 2-dimensional torus X = E × E is

with sufficiently many complex multiplications (Def. A.3).

A.2 Rational Hodge Structure, Polarization and Algebra

Although the ring End(X) of a complex torusX is introduced in (144) as a set of holomorphic

maps of the geometryX , we may think of it also as a set of linear maps on the homology group

H1(X ;Z). The condition ϕ(Λ) ⊂ Λ [resp. ϕ(Λ ⊗ Q) ⊂ Λ ⊗ Q] is read as ϕ(H1(X ;Z)) ⊂
H1(X ;Z) [resp. ϕ(H1(X ;Q)) ⊂ H1(X ;Q)]. The condition that a map ϕ : X −→ X is

holomorphic means that holomorphic tangent vectors of X are mapped by ϕ to holomorphic

tangent vectors. The pull-back action of the geometric maps ϕ map H1(X ;Z) to H1(X ;Z)

[resp. H1(X ;Q) to H1(X ;Q)], and map (1,0) forms on X to (1,0) forms. So, here is a

Theorem A.11. A complex torus X of complex n-dimensions has sufficiently many complex

multiplications if and only if the algebra

End(H1(X ;Q))Hdg :=
{
ϕ∗ ∈ End(H1(X ;Q)) | ϕ∗(H1,0(X ;C)) ⊂ H1,0(X ;C)

}
(150)

contains a subalgebra K∗ over Q of the form ⊕iFi, with dimQ K∗ = 2n.

Remark A.12. One can use either one of the algebras, End(H1(X ;Q))Hdg in (150) acting

on the cohomology group and EndQ(X) in (145) on the geometry, to characterize complex

tori X with sufficiently many complex multiplications. For other compact Kähler manifolds
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X , however, the algebra End(Hk(X ;Q))Hdg makes sense, while EndQ(X) does not. One

may therefore think of promoting existence of a large enough commutative subalgebra in the

Hodge-decomposition preserving algebra on the cohomology groups (like End(H1(X ;Q))Hdg)

as a definition of complex multiplication. We will do so in Def. A.52 and Rmk. A.62, after

doing necessary preparations.

The crucial ingredients in defining the algebra End(H1(X ;Q))Hdg, where X is a complex

torus, is to keep track of the vector subspace of H1(X ;C) corresponding to the (1,0) forms

relatively to the rational (or integral) subspace H1(X ;Q) (or H1(X ;Z)) within H1(X ;C);

without using H1(X ;Q) as a reference we would have had just the information on the di-

mension of the subspace, h1,0 = n. So, the following notion is introduced as a generalization.

Rational Hodge Structure:

Definition A.13. A pair (VQ, φ) is called a rational Hodge structure of weight-m (m is an

integer), when VQ is a finite dimensional vector space over Q, φ is an isomorphism between

vector spaces over C,

φ : VQ ⊗ C −→ ⊕(p+q=m)
p,q V p,q, (151)

and the complex conjugation operation on the C tensor factor of VQ ⊗ C maps V p,q to V q,p.

The integer

max(|p− q| | V p,q 6= ∅)

is called the level of (VQ, φ).

A Hodge morphism f : (VQ, φV ) −→ (WQ, φW ) is a homomorphism f : VQ → WQ of

vector spaces over Q whose linear extension by ⊗C maps V p,q to W p,q. When a pair f :

(VQ, φV ) → (WQ, φW ) and g : (WQ, φW ) → (VQ, φV ) of Hodge morphisms satisfy g ◦ f =

id(VQ,φV ) and f ◦ g = id(WQ,φW ), then they are called Hodge isomorphisms; we say that the

rational Hodge structures (VQ, φV ) and (WQ, φW ) are (Hodge-)isomorphic. The pullback of

an isogeny between a pair of complex tori is a Hodge isomorphism of their weight-1 rational

Hodge structures.

The algebra of Hodge morphisms from a rational Hodge structure (VQ, φ) to itself is

denoted by End(VQ, φ), or End(VQ)
Hdg when the choice of φ is obvious from a context, and

is called the endomorphism algebra of (VQ, φ).

Remark A.14. Let (M,J, ω) be a complex Kähler manifold of dimCM = n, where (M,J) is

a compact complex manifold (with J the almost complex structure) and ω a closed symplectic
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form. Or alternatively, let M be a complex projective non-singular variety of dimCM = n.

Then all the vector spaces Hk(M ;Q) with k = 0, 1, · · · , 2n are given the unique Hodge de-

composition φk, so we have rational Hodge structures (Hk(M ;Q), φk) for all k = 0, 1, · · · , 2n.
For a pair of mutually isomorphic complex Kähler manifolds, or of mutually isomorphic com-

plex projective non-singular varieties, there exists isomorphisms between their rational Hodge

structures. So, rational Hodge structures on the cohomology groups are machinery to capture

some information on the complex structure of those manifolds/varieties where linear algebra

can be applied, even when X is not a complex torus. We also use the notation (Hk(M ;Q), J)

as well as (Hk(M ;Q), φk) for the rational Hodge structure.

Additional information on a rational Hodge structure called polarization (defined below)

is not a natural object in the eyes of most of string theorists. It plays an important role in

algebraic geometry, in the theory of complex multiplication, and also in this study.

Definition A.15. Let (VQ, φ) be a rational Hodge structure of weight-m. A symmetric [resp.

anti-symmetric] bilinear form Q : VQ × VQ → Q when m is even [resp. odd] is said to be a

polarization of (VQ, φ) when it satisfies the following two conditions:

χ ∈ V p,q, ψ ∈ V p′,q′ then Q(χ, ψ) 6= 0 only when p+ p′ = q + q′ = m, (152)

χ ∈ V p,q\{0} then (−1)
m(m+1)

2 Q(χ, J∗χ̄) > 0. (153)

Here, J∗ on VQ ⊗ C is the operator multiplying ip−q on the V p,q component. The last

condition is equivalent to the positive definiteness of the symmetric bilinear formHQ(−,−) :=

(−1)
m(m+1)

2 Q(−, J∗−) on VQ ⊗ R.

When there exists a polarization Q for a rational Hodge structure (VQ, φ), we say that

(VQ, φ) is polarizable. A triple (VQ, φ,Q) is called a polarized rational Hodge structure.

A symmetric [resp. anti-symmetric] bilinear formQ satisfying the condition (152) is called

a polarization of index k of (VQ, φ) when the symmetric bilinear form HQ is non-degenerate,

but has k negative eigenvalues (a polarization is a polarization of index 0).

What is relevant in this article is whether a rational Hodge structure is polarizable or not,

rather than specific choices of a polarization. Independently of our context, the polarizability

is a relevant question in algebraic geometry for the following reason.

Remark A.16. Let X be a complex projective non-singular variety, with an embedding to

a projective space specified. Then there always exists a unique element DP ∈ H2(X ;Z) ∩
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H1,1(X ;R) such that its expression as a differential form DP = iHab̄(z, z̄)dz
a ∧ dz̄b̄ has a

positive definite Hermitian matrix Hab̄ everywhere on X . Conversely, when such DP exists

for a compact complex Kähler manifold X , then there exists an embedding of X into a

projective space so that we can see X as an algebraic variety.

For such an X , with DP , the rational Hodge structure (Hk(X ;Q), φk) (cf Rmk. A.14) is

polarizable41 for all of k = 0, 1, · · · , 2 dimCX .

Having introduced the definition of rational Hodge structure and polarization, let us know

introduce a few more concepts that we need in order to analyze substructures and possible

decomposition of a rational Hodge structure.

Definition A.17. For a rational Hodge structure (VQ, φ), a pair (WQ, φ|W ) of a vector

subspace WQ of VQ and the restriction of φ, φ|W : WQ⊗C → ⊕p,qV
p,q is said to be a rational

Hodge substructure of (VQ, φ) when the non-trivial second equality in

φ(WQ ⊗ C) = φ(WQ ⊗ C) ∩ (⊕p,qV
p,q) = ⊕p,q (φ(WQ ⊗ C) ∩ V p,q) (154)

holds true.

Remark A.18. When a rational Hodge structure (VQ, φ) has a rational Hodge substructure

(WQ, φ|W ), it is always possible to define the quotient, (VQ/WQ, φ), on the quotient vector

space VQ/WQ. Although it is always possible to find a vector subspace W ′
Q of VQ so that

VQ ∼= WQ ⊕W ′
Q, this does not guarantee that there exists a Hodge decomposition φ′ of W ′

Q

so that (W ′
Q, φ

′) is a rational Hodge substructure of (VQ, φ). cf Ex. A.48.

Remark A.19. Let (WQ, φ|W ) be a rational Hodge substructure of a rational Hodge structure

(VQ, φ). Suppose further that (VQ, φ) has a polarizationQ of some index, and its restriction on

WQ is still non-degenerate. Then the pair (W⊥
Q , φ|W⊥

Q
) is also a rational Hodge substructure

of (VQ, φ) then, where W⊥
Q is the orthogonal complement of WQ in VQ with respect to the

non-degenerate bilinear form Q. In this situation,

(VQ, φ) ∼= (WQ, φ|W )⊕ (W⊥
Q , φ|W⊥

Q
) (155)

is a Hodge isomorphism.

41 The vector space Hk(X ;Q) is decomposed into ⊕s∈Z≥0
[Hk(X ;Q)](s) with max(0, k − n) ≤ s ≤ k/2,

where the s-th component is in the image of Ds
P∧ : Hk−2s(X ;Q) → Hk(X ;Q) and is annihilated by

Dn−k+s+1
P ∧ : Hk(X ;Q) → H2n+2s−k+2(X ;Q). A bilinear form Q on the s-th component is given by

Q(ξ, η) := (−1)s
∫
X Dn−k

P ∧ ξ ∧ η.
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Due to the subtlety discussed in the last two remarks, it makes sense to distinguish the

two concepts below.

Definition A.20. A rational Hodge structure (VQ, φ) is said to be simple when it does not

have a rational Hodge substructure (WQ, φ|W ) where WQ 6= VQ and WQ 6= {0}.
A rational Hodge structure (VQ, φ) is said to be indecomposable when there is no pair of

rational Hodge substructures (W ′, φ′) and (W ′′, φ′′) such that (VQ, φ) ∼= (W ′, φ′)⊕ (W ′′, φ′′).

See Ex. A.48 for an indecomposable rational Hodge structure that is not simple.

Example A.21. The weight-1 rational Hodge structure on H1(E1 × E2;Q), where E1 and

E2 are elliptic curves, has non-trivial rational Hodge substructures. The vector subspaces

H1(E1;Q)⊗H0(E2;Q) and H0(E1;Q)⊗H1(E2;Q) of H1(E1×E2;Q) support rational Hodge

substructures.

When X is a complex torus of 2-dimensions that has an isogeny f : X −→ E1 × E2,

then the weight-1 rational Hodge structure H1(X ;Q) also has non-trivial rational Hodge

structures; the pullback f ∗ : H1(E1 × E2;Q) −→ H1(X ;Q) is an isomorphism of rational

Hodge structures.

When X is a complex projective non-singular K3 surface, the algebraic part is defined by

H2(X) :=
{
x ∈ H2(X ;Q) | (Ω2,0

X , x) = 0
}
, where Ω

(2,0)
X is a nowhere vanishing holomorphic

(2,0) form on X . The transcendental part TX ⊗Q is the orthogonal complement TX ⊗Q :={
x ∈ H2(X ;Q) | (x, y) = 0 for ∀y ∈ H2(X)

}
. The vector subspace TX ⊗Q supports a level-

2 rational Hodge substructure of (H2(X ;Q), φ2). The substructure on TX ⊗ Q is simple.

TX ⊗Q ∼= [H2(X ;Q)]ℓ=2.

Proposition A.22. [BL99, Thm. 7.5] When a rational Hodge structure (VQ, φ) is given, it

is always possible to express

(VQ, φ) ∼= ⊕a∈A(W
a
Q, φ

a) (156)

with rational Hodge substructures (W a
Q, φ

a) (labeled by a ∈ A) that are all indecomposable,

by repeating the process of finding a substructure and testing whether a complement as

in (155) exists (Rmk. A.19 is an example of such process). By grouping the indecompos-

able substructures that are mutually Hodge-isomorphic together, the decomposition can be

organized into the form

(VQ, φ) ∼= ⊕α∈A

(
⊕nα

λα=1(W
α,λα

Q , φα)
)
=: ⊕α∈A(VQ, φ)

α, (157)
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where the set A labels distinct Hodge-isomorphism classes of indecomposable components.

Such an expression as (156) [resp. as (157)] is called an indecomposable decomposition [resp.

the isotypic decomposition]. When (VQ, φ) is polarizable, an indecomposable decomposition is

a simple-component decomposition, because we can apply Rmk. A.19 for any simple rational

Hodge substructure.

There may be multiple indecomposable decompositions for one (VQ, φ), but those decom-

positions are unique modulo Hodge isomorphisms.

Definition A.23. When an indecomposable decomposition of a rational Hodge structure

(VQ, φ) is also a simple component decomposition, we say that (VQ, φ) is completely reducible.

Structure of the Endomorphism Algebra and its Representations:
The endomorphism algebra End(VQ, φ) of a rational Hodge structure (VQ,Q) (a reminder:

dimQ VQ <∞) is an algebra over Q with dimQ End(VQ, φ) <∞. It is an example of Artinian

algebras. The vector space VQ is also regarded as a representation space of the algebra

End(VQ, φ), which is an example of an Artinian module of the algebra End(VQ, φ). The

theory of structure of Artinian algebras and their representations is therefore very useful in

the present context. We do not write down the definition of Artinian algebras and modules

here; we only need to use some results quoted below that are known to be reliable for those

objects.

Definition A.24. An algebra D over a field F is a division algebra if any non-zero element

x ∈ D has an element y ∈ D such that xy = yx = 1 with respect to the multiplication law

of the algebra D. A division algebra D is regarded as a field if the multiplication law of the

algebra D is commutative (abelian).

Lemma A.25. (e.g., [NT89, Thm. 4.11]) Let D be a division algebra over a field F with

[D : K] < ∞, where K is the center Z(D); K is an extension of F . It is then known42 that

there exists an integer g such that D ⊗K K ∼=Mg(K). In particular, dimK D = g2.

Lemma A.26. When a rational Hodge structure (VQ, φ) is simple, the algebra End(VQ, φ)

is a division algebra (see Def. A.24). Furthermore, if there is a Hodge (p, q) component with

hp,q = 1, then the division algebra is a field [Huy16, Lemma 3.3 + Cor. 3.6].

Let X be a complex projective non-singular variety with dimCX = n that has trivial

canonical bundle (e.g., an abelian variety, a complex algebraic K3 surface and a Calabi–Yau

42Here is an example: the quarternions D = SpanR{1, i, j, k} forms a division algebra, and its center is
K = R. We know that D ⊗R C ∼= M2(C), and that dimR D = 4 = 22.
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threefold). Then hn.0(X) = 1. So, when we choose (VQ, φ) to be the smallest rational Hodge

substructure of Hn(X ;Q) that contains Hn,0(X ;C) ⊂ Hn(X ;C), the algebra End(VQ, φ) is

a field [Huy16, Cor. 3.6].

This Lemma says that the algebra End(VQ, φ) has a specific property (being a division

algebra) when the rational Hodge structure (VQ, φ) is simple; to write down corresponding

statement for the case (VQ, φ) is indecomposable, we need a

Definition A.27. A ring R is called a local ring when the set of all the non-invertible

elements43 of R forms an ideal of R. When a local ring R is an algebra over some ring or

field, then it is called a local algebra.

Remark A.28. It is known that the ideal of all the nilpotent elements of a finite dimensional

local algebra is also the unique maximal left-ideal, and also the unique maximal right-ideal.

The quotient by this ideal is known to be a division algebra. See [AF92, Prop. 15.15] and

[NT89, Thm. 5.7] for more information.

Remark A.29. ([NT89, Thm. 5.10], [BL99, Prop. 7.3]) A rational Hodge structure (VQ, φ)

is indecomposable if and only if End(VQ, φ) is a local algebra.

We have seen properties of the algebras End(VQ, φ) that correspond to whether rational

Hodge structures (VQ, φ) have substructures. Let us next review the properties of End(VQ, φ)

that are related to the complete reducibility of (VQ, φ).

Definition A.30. Let R be an algebra over a field F with dimF R <∞. For such an algebra

R, the Jacobson radical J(R)—whose definition we do not write down here (if interested,

see [AF92, Thm. 15.3], [NT89, Thm. 3.3]; this article is readable without knowing its

definition)—agrees with the union of all the nilpotent ideals of R, and J(R) itself is also a

nilpotent ideal (e.g., [NT89, Thm. 3.5]).

An algebra R over a field F with dimF R <∞ is said to be semi-simple when J(R) = 0.

Therefore, R being semi-simple is equivalent to the absence of non-trivial nilpotent ideals

(e.g., [Mil22, I.§1]).

Example A.31. The algebra R = {a = (aij) ∈Mn(F ) | aij = 0 for i > j} of F -valued upper

triangular matrices (where F is a field) is an example of an algebra that is not semi-simple.

The ideal I of strictly upper triangular matrices I = {a = (aij) | aij = 0 for i ≥ j} is

43An element x ∈ R is said to be invertible when there exists y ∈ R such that xy = 1 and yx = 1.
Non-invertible elements are those that are not invertible. For example, for any nilpotent element a ∈ R,
(1− a) ∈ R is always invertible.
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nilpotent. On the other hand, the algebra R = Mn(F ) of F -valued matrices is an example

of a semi-simple algebra.

To see that the algebra End(VQ, φ) of a polarizable rational Hodge structure is semi-

simple, the notion Rosati involution is introduced (cf [Shi97, §3], [Mil22, I. §2], [BL99, §2.3],

[Huy16, eq. (3.3)]):

Definition A.32. Let (VQ, φ) be a rational Hodge structure, and Q its polarization of some

index k. The Rosati involution ′ : End(VQ, φ) ∋ f 7−→ f ′ ∈ End(VQ, φ) is given by

Q(f · v, u) = Q(v, f ′ · u), ∀v, u ∈ VQ. (158)

For f, g ∈ End(VQ, φ), (fg)
′ = g′f ′. When we choose a basis of VQ and express f and Q

as matrices, then the matrix for f ′ is given by f ′ = Q−1 · fT · Q. Note that Q has to be

non-degenerate for this definition to be possible.

Lemma A.33. Let (VQ, φ) be a rational Hodge structure that is polarizable (index 0). Then

the algebra R = End(VQ, φ) over the field Q is semi-simple.

A sketch of Proof: choose a polarization Q for (VQ, φ); the Rosati involution with respect

to Q on the algebra R has the following property: for any non-zero f ∈ R and e ∈ VQ ⊗ R,

HQ(e, f
′fe) > 0 unless fe = 0 ∈ V ⊗ R; this is because HQ(fe, fe) = HQ(e, f

′fe) must be

positive. This then means that

tr VQ
[f ′f ] > 0 ∀f6=0 ∈ R; (159)

to see this, let {eI} be an orthonormal basis on VQ ⊗ R with respect to the positive definite

symmetric form HQ : VQ ⊗ R× VQ ⊗ R → R. Then trVQ
[f ′f ] is equal to

∑
I HQ(feI , feI).

If J(R) were non-zero (cf, [Mil22, Prop. 1.36]), there must be a non-zero element a 6= 0 in

J(R). Then b := a′a is also in the ideal J(R). All the elements in J(R), which is a nilpotent

ideal, are supposed to be nilpotent, on one hand. On the other, b 6= 0 because trVQ
[b] > 0;

b2 = b′b 6= 0 because trVQ
[b′b] > 0; b4 = (b2)′b2 6= 0 because trVQ

[(b2)′b2] > 0. In particular,

b2
n 6= 0 for any n ∈ N. So, b ∈ J(R) is not nilpotent. That is a contradiction. An assumption

that J(R) 6= {0} must be wrong.

Although the Rosati involution can be defined on the algebra R = End(VQ, φ) whenever

there exists a polarization of index k, the proof above works only for a polarization of index

k = 0, because the positive-definiteness is essential.

The following fact—Wedderburn’s theorem—is very important and useful, because we

can use it in the case of R = End(VQ, φ) of a polarizable rational Hodge structure (VQ, φ).
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Lemma A.34. A semi-simple algebra R over Q with dimQ R <∞ has a structure

R ∼= ⊕α∈AMnα
(Dα) (160)

for some finite set A, nα ∈ N, and a division algebra Dα.

Corollary A.35. Suppose that a semi-simple algebra R over Q with dimQR < ∞ is com-

mutative. Then R is of the form of ⊕iFi where Fi are number fields (with [Fi : Q] <∞).

Remark A.36. The algebra R = Mn(D) with a division algebra D is known to be simple,

in that the algebra R does not have a non-trivial (non 0, non-R) ideals.

Remark A.37. An irreducible representation of a simple algebra Mn(D) on a vector space

V over Q is of the form of V ∼= D⊕n, where we see D as a vector space over Q.

A faithful representation VQ over Q of a semi-simple algebra R in (160) has to contain at

least

⊕α∈A(Dα)
⊕nαsα (161)

with sα ≥ 1 for each α ∈ A. So,

dimQ VQ ≥
∑

α∈A

nα[Dα : Q]. (162)

When this lower-bound is combined with Lemma A.25, then

dimQ VQ ≥
∑

α∈A

nαg
2
α[Kα : Q], (163)

where Kα is the center of Dα.

Remark A.38. The vector space VQ of a polarizable rational Hodge structure (VQ, φ) is also

a representation space of the semi-simple algebra R = End(VQ, φ); the representation on VQ

is faithful, obviously from how the algebra was defined.

In fact, Refs. [Shi97, §5] and [BL04, Cor. 5.3.8] derive the structure (160) of the algebra

End(VQ, φ) in a different route without using the semi-simple nature of R (Lemma A.33) and

Wedderburn’s theorem (Lemma A.34). The alternative route starts from the fact that (VQ, φ)

has a simple component decomposition (157) in Prop. A.22. The zero map is the only possible

Hodge morphism between the simple Hodge substructures (W α,λα

Q , φα) and (W
β,µβ

Q , φβ) when

α 6= β (i.e., they are not Hodge-isomorphic), while the set of Hodge morphisms are one-to-one
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with a division algebra End(W α,λα

Q , φα) denoted by Dα; this is Schur’s Lemma. That is also

how one may derive the structure (160) of the algebra R.

The division algebra Dα acts on the vector space W α,λα

Q faithfully. So, dimQW
α,λα

Q must

be divisible by dimQDα. The ratio determines sα in (161).

Remark A.39. ([BL99, Thm. 7.5]) The structure of R = End(VQ, φ) of a rational Hodge

structure that is not necessarily polarizable can also be inferred from the indecomposable

decomposition (157). Given Rmk. A.29, we know that there exists a subalgebra of the form

⊕α∈AMnα
(Qα) ⊂ R, (164)

where Qα = End(W α,λα

Q , φα) for any λα = 1, · · · , nα is a local algebra. When the rational

Hodge structure (VQ, φ) is not polarizable, Hom((W α,λα

Q , φα), (W
β,µβ

Q , φβ)) can be non-zero.

All of those off-diagonal Hodge morphisms belong to J(R). Mnα
(J(Qα)) also belong to J(R).

In the end,

R/J(R) ∼= ⊕α∈AMnα
(Qα/J(Qα)). (165)

See [BL99, Thm. 7.5] for more details.

Remark A.40. When a rational Hodge structure (VQ, φ) is not necessarily polarized, one

may exploit an indecomposable decomposition of (VQ, φ)—Prop. A.22—and its consequence

in the algebra R = End(VQ, φ) on one hand (as we have seen in the previous Remark). On

the other, however, one might also exploit rational Hodge substructures that may still be

contained in individual indecomposable components (W a
Q, φ

a). Here is a way we find useful,

applying the idea known as Loewy series in algebra.

Within the rational Hodge structure (VQ, φ) (with dimQ VQ < ∞ and dimQ R < ∞), a

chain of rational Hodge substructures is introduced by

{0} = (J(R))ℓVQ ⊂ (J(R))ℓ−1VQ ⊂ · · · ⊂ (J(R))2VQ ⊂ J(R)VQ ⊂ VQ, (166)

where J(R) is the Jacobson radical of R; this chain of substructures ends at a finite length

ℓ. At each step in the chain, the quotient (J(R))i−1VQ/(J(R))iVQ is a completely reducible

representation of R, and is of non-zero dimensions ([AF92, p.346], Azumaya–Nakayama’s

lemma in [NT89, Thm. 3.6]). The algebra R acts on (J(R))i−1VQ/(J(R))iVQ (the quotient

Hodge structure at each step of the chain) through the quotient R/J(R). We will use this

structure in the appendix A.5.
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Proposition A.41. The endomorphism algebra R = End(VQ, φ) of a rational Hodge struc-

ture (VQ, φ) is semi-simple, if and only if (VQ, φ) is completely reducible.

The claim itself will be obvious from Rmk. A.39. The statement here sounds similar

to the tie between the semi-simple nature of an algebra and the complete reducibility of its

arbitrary modules. The statement here is a little different (a variation of the same theme) in

a few respects, however. First, we have a Hodge structure (VQ, φ) first, and then the algebra

End(VQ, φ) is determined from (VQ, φ), not in the other way around. Second, we only talk of

the complete reducibility of the defining representation (VQ, φ), not all of the representations

of the algebra End(VQ, φ). Third, a rational Hodge structure may be simple, even when it is

not an irreducible representation of the algebra End(VQ, φ).

A.3 Complex Torus vs Abelian Variety (general ones, not CM)

Definition A.42. A complex torus X of n-dimensions is said to be an abelian variety, when

there exists DP ∈ H2(X ;Q) ∩H1,1(X ;R) whose Hermitian form HDP
(−,−) := DP (−, J−)

on H1(X ;R) is positive definite; here, J is the almost complex structure operator of (the

tangent space of) X .

Remark A.43. When a complex torus X has an embedding into a projective space, then

Rmk. A.16 implies that it is an abelian variety. The converse is true in fact for a complex

torus; DP in the definition of an abelian variety can be used to construct an embedding into a

projective space, and one can regard the image of such an embedding as an algebraic variety.

So, DP is often called a polarization of the abelian variety X .

Remark A.44. Abelian varieties therefore form a special class of complex tori. A complex

torus chosen randomly from the moduli space of complex tori is not an abelian variety in

general. See [GH94, II.6] for more.

The fact that abelian varieties can be regarded as algebraic varieties and that such pow-

erful results as Prop. A.22 and Lemmas A.33+A.34 can be used will be good enough reasons

for mathematicians to pay particular attention to this special class of objects among com-

plex tori in general. In a study in string theory, as in this article however, that is not a good

enough reason to ignore complex tori that cannot be regarded as algebraic varieties.

In the study of this article, distinction between this special class of objects as opposed to

the other general complex tori is still important because of the observation in Ex. A.65, and

also in section 3.1.
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Definition A.45. Let X ∼= Cn/Λ be a complex torus of n-dimensions. Its complex subtorus

Y consists of a vector subspace Cm ⊂ Cn where Cm ∩ Λ is of rank-2m. A complex subtorus

Y of X is a complex submanifold X as well as a subgroup of the addition group X . The

quotient group X/Y is also regarded as a complex torus.

A complex torus X is said to be simple, when its complex subtorus is either X itself, or

the zero-dimensional one {0}.
When a complex abelian variety has a complex subtorus, the subtorus is an abelian variety,

which is called an abelian subvariety. A complex abelian variety X is said to be simple, when

its abelian subvariety is either X itself, or {0}.
A complex torus X is said to be indecomposable when there is no isogeny X ≃ X1 ×X2

with the product of two complex tori (where X1, X2 6= {0}). Even when X has a complex

subtorus X1, so that there is an exact sequence

0 −→ X1 −→ X −→ X2 −→ 0, (167)

where X2 is a complex torus, it is not always true that there is an isogeny X ∼= X1×X2 (not

always true that the exact sequence splits). For more about what goes wrong in a complex

torus that is not an abelian variety, see Ref. [BL99, §1].

Remark A.46. When X is a complex abelian variety and X1 its abelian subvariety, however,

there exists an abelian variety X2 such that X and X1 ×X2 are isogenous. This means that

an indecomposable abelian variety is a simple abelian variety, and that any complex abelian

variety X is isogenous to some product of simple abelian varieties. That is not always true

when X is a complex torus.

Remark A.47. What is stated in the previous remark follows from what has already been

explained in this appendix, in fact. An isogeny between a pair of complex tori X and Y

induces a Hodge isomorphism between the weight-1 rational Hodge structure on H1(X ;Q)

and H1(Y ;Q); a Hodge isomorphism between them also indicates that there is an isogeny

between X and Y , first of all. A complex torus X has a complex subtorus X1, with X2

the quotient complex torus, if and only if the rational Hodge structure on H1(X ;Q) has a

rational Hodge substructure (on the subspace H1(X1;Q)), and the weight-1 rational Hodge

structure on H1(X ;Q) has a substructure on the pull-backed subspace H1(X2;Q). Therefore,

a simple complex torus corresponds to a simple weight-1 rational Hodge structure, and an

indecomposable complex torus corresponds to an indecomposable weight-1 rational Hodge

structure. Complete reducibility of abelian varieties (Rmk. A.46) corresponds to the complete

reducibility of their polarizable weight-1 rational Hodge structures (Prop. A.22).
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Example A.48. Given a pair of complex tori X1 and X2, one might be interested in the

set of complex tori X that has X1 as a subtorus and X2 as the quotient, modulo isomor-

phism of complex tori (identification by maps that are both holomorphic and group homo-

morphisms). The classification is given by the group Ext1(X2, X1), which is the Coker of

Hom(CdimC X2 , X1) −→ HomZ(Λ2, X1). It is known that the short exact sequence (167) splits

(equivalently, the complex torus X is decomposable, isogenous to X1 ×X2, and the rational

Hodge structure on H1(X ;Q) is decomposable) if and only if the corresponding element in

Ext1(X2, X1) is a torsion element. See [BL99, §1.5, 1.6].

Remark A.49. Whereas an indecomposable abelian variety X does not have a subtorus, an

indecomposable complex torus X may have a non-trivial subtorus. What Rmk. A.40 does in

this present context, where (VQ, φ) is an indecomposable weight-1 rational Hodge structure

(H1(X ;Q), φ1), is to introduce a chain of rational Hodge substructures of (H1(X ;Q), φ1).

There then exists a corresponding chain of complex subtori

X ⊃ Sℓ−1X ⊃ · · · ⊃ S2X ⊃ S1X ⊃ S0X = {0}, (168)

such that the vector subspace (J(R))iVQ ⊂ VQ = H1(X ;Q) is equal to H1(X/SiX ;Q) (pulled

back to H1(X ;Q)). Each of the complex tori SiX/Si−1X with i = 1, 2, · · · , ℓ is of positive

dimensions, and is isogenous to the direct sum of simple complex tori.

A.4 Useful Lemmas

In this appendix (which for the most part only collects known facts from textbooks), we still

do not provide an elementary review on number fields (finite dimensional algebraic extension

fields over Q) and Galois theory. Readers with little experience dealing with number fields

might have a look at textbooks, or a quick glance at the appendix A of [KW17].

The following facts (Lemmas A.50, A.51) are regarded so trivial by mathematicians that

we have to read that out between the lines in such textbooks. The authors are unable to

refer to a specific text for this reason. For the reader with a background in string theory, it

will still be better that they are written down explicitly.44

Lemma A.50. Let F be a number field (with [F : Q] <∞), and {τa=1,··· ,[F :Q]} its embeddings

to Q ⊂ C. Let VQ be a vector space over Q with dimQ VQ = [F : Q] that has a faithful action

of F (where Q ⊂ F acts as the scalar multiplication on the vector space VQ).

44The appendix B.2 of the preprint version of [KW17] (main text II.B.3 of the journal version) has a little
more pedagogical explanation on the first half of Lemma A.50. The statement here is slightly polished up
from the version there, however.
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The action of F on VQ can be diagonalized simultaneously because the multiplication in

F is commutative. The dimQ VQ eigenspaces are in one-to-one with the [F : Q] embeddings

F →֒ C; when v ∈ VQ ⊗C is an eigenvector of all x ∈ F (i.e., x · v = vλx for some eigenvalue

λx ∈ C), the assignment F ∋ x 7−→ λx ∈ C preserves the addition and multiplication laws in

F , so it is an embedding F →֒ C (this reasoning is used already in Lemma A.26).

There is also a concrete procedure to determine the eigenvectors. First, choose any non-

zero element v∗ ∈ VQ, and arbitrary basis {ωI=1,··· ,[F :Q]} of the vector space F/Q. Then

{ωI · v∗}I=1,··· ,[F :Q] can be used as a basis of the vector space VQ over Q. Now, we can choose

the eigenvectors to be45,46

va := (ωI · v∗)τa(ηI), a = 1, · · · , [F : Q], (169)

where {ηJ=1,··· ,[F :Q]} is the basis of F/Q dual to {ωI} with respect to the bilinear form

F × F ∋ (x, y) 7→ TrF/Q[xy] ∈ Q. That is, TrF/Q[ωIηJ ] = δIJ . The matrix (τa(ηI))aI is used

as the inverse matrix of (τa(ωJ))Ja. For any element x ∈ F , va ∈ VQ⊗Q is an eigenvector, with

the eigenvalue τa(x). All those eigenvectors va (a = 1, · · · , [F : Q]) are obtained from one of

them, say, va∗, by applying Galois transformations on the coefficients τa∗(ηI) of the expansion

of va∗ with respect to the rational basis {(ωI · v∗)I=1,··· ,[F :Q]} of VQ, because τa = σa · τa∗ for

some σa ∈ Gal(Q/Q). We may express this in the form of va = vσa
a∗ .

For any basis {η′I=1,··· ,[F :Q]} of F/Q, there exists a basis {v′I} of VQ where the simultaneous

eigenvectors are in the form of va = v′Iτa(η
′
I). To see this, just find the rational coefficient

matrix ηI = CIJη
′
J and set v′J := (ωI · v∗)CIJ .

Lemma A.51. Conversely, for any basis {ηJ} of F/Q and {vI} of VQ, one may construct a

non-trivial action of F on the vector space VQ over Q so that va := vIτa(ηI) for a = 1, · · · , [F :

Q] are all eigenvectors of the action of F . The action of x ∈ F on VQ claimed here is given

as follows. First, write down the multiplication law in F as follows:

(x·) : ωI 7−→ x · ωI = ωK [A(x)]KI , (170)

where {ωI} is the basis of [F : Q] dual to {ηJ}, and [A(x)] is a Q-valued [F : Q] × [F : Q]

matrix. Using this matrix, the action of x on VQ is

x· : vI 7−→ vK [A(x)]KI . (171)

45So, the action of F on VQ splits into 1-dimensions on VQ ⊗Q k whenever k ⊂ Q contains the normal
closure of F in Q.

46A sum over an index repeated twice (e.g., I in (169)) is implicit, as in physics literatures.
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The facts above in both ways (Lemmas A.50 and A.51) hold for a general number field

F not necessarily a CM field, or even a totally imaginary field.

A.5 CM-type Rational Hodge Structure

Definition A.52. A rational Hodge structure (VQ, φ) is said to have sufficiently many com-

plex multiplications when the endomorphism algebra End(VQ, φ) contains a commutative

semi-simple subalgebra K such that dimQK = dimQ VQ. When (VQ, φ) is also polarizable and

has sufficiently many complex multiplications, we say that it is of CM-type.

As announced in Rmk. A.12 (cf also Cor. A.35), this is a way to generalize the notion

of complex multiplications from complex tori to a broader class of compact Kähler mani-

folds / projective non-singular varieties. For a given manifold/variety X , there are multiple

components of rational Hodge structures; each of the cohomology groups Hk(X ;Q), with

k = 0, 1, · · · , 2 dimCX , has a rational Hodge structure, and each of them may also have sub-

structures. Not all of those rational Hodge substructures are independent (when we choose X

from a deformation family of manifolds in the same topological class); complex multiplication

in one rational Hodge substructure may (or may not) imply complex multiplication in other

substructures. This appendix does not dig into the question; interested readers might have

a look at Ref. [OW24] and references therein for more information.

Lemma A.53. Let K ∼= ⊕iFi be a commutative semi-simple subalgebra of the algebra

End(VQ, φ), required in the definition of a weight-m rational Hodge structure (VQ, φ) with

sufficiently many complex multiplications; each of Fi is a number field. Then each Fi acts on

a rational Hodge substructure (W i
Q, φ|W i) of (VQ, φ) faithfully, with dimQW

i
Q = [Fi : Q], and

the number of real embeddings of Fi into C is not more than hm/2,m/2(W i); when the weight

m is odd, in particular, all the Fi’s are totally imaginary.

Proof. The subalgebra K must be represented faithfully on the vector space VQ (by def

of the algebra End(VQ, φ)), on one hand, and dimQK = dimQ VQ on the other. This is

possible if and only if there is a decomposition VQ ∼= ⊕iW
i
Q of vector spaces over Q such

that each Fi acts faithfully on the corresponding W i
Q and trivially on other W j

Q’s (j 6= i),

and dimQ Fi = dimQW
i
Q. It is not hard to see that the rational Hodge structure (VQ, φ) also

decomposes into ⊕i(W
i
Q, φ|W i). So, we can deal with each Fi acting on (W i

Q, φ|W i) separately.

Now, one may apply Lemma A.50 to Fi and W i
Q. The field Fi acts linearly on each of

the Hodge components [W i
Q ⊗C]p,q, so simultaneous eigenspaces of the commutative algebra
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Fi are found within the individual Hodge components with distinct (p, q)’s. Each of the

eigenvectors va in one-to-one with the embeddings τa : Fi →֒ Q ⊂ C is assigned to one of the

Hodge components [W i
Q ⊗ C]p,q.

When one embedding τa of Fi has its eigenstate va in the Hodge (p, q) component, the

embedding cc ◦ τa of Fi corresponds to the eigenstate v̄a ∈ W i
Q ⊗C obtained by the complex

conjugation on the ⊗C factor. Thus, v̄a is in the Hodge (q, p) component. The embedding

τa is real (i.e., cc ◦ τa = τa) only when (p, q) = (q, p).

Remark A.54. Let F be a number field, (WQ, φ) a weight-m rational Hodge structure such

that F ⊂ End(WQ, φ) and [F : Q] = dimQWQ. Then each of the simultaneous eigenvectors

va of the action of F , in one to one correspondence with the embeddings τa of the field F ,

belongs to one of the Hodge (p, q) component of (WQ, φ), as we have already argued within

the proof of the previous Lemma. This observation introduces a decomposition

Homfield(F,Q) = ∐m
p=0Φ

(p,m−p), (172)

where Φ(p,q) consists of embeddings whose corresponding eigenvectors are in the Hodge (p, q)

component. The complex conjugate embeddings of those in Φ(p,q) are those in Φ(q,p).

Proposition A.55. Think of a rational Hodge structure (VQ, φ) with sufficiently many com-

plex multiplications. Let K = ⊕iFi be a semi-simple commutative algebra in R = End(VQ, φ)

with
∑

i[Fi : Q] = dimQ VQ. Then the algebra R is semi-simple, and each indecomposable

component (W a
Q, φ

a) of (VQ, φ) is in fact a simple rational Hodge substructure. That is,

(VQ, φ) is completely reducible.

Proof. Note first that the subalgebra K ∼= ⊕iFi in R is mapped injectively into the semi-

simple algebra R/J(R); that is verified by only noting that none of the non-zero elements

of K are nilpotent. Secondly, each of (J(R))i−1VQ/(J(R))iVQ with i = 1, 2, · · · , ℓ supports a
faithful representation of the division algebra R/J(R), which contains K. So,

dimQ

[
(J(R))i−1VQ/(J(R))iVQ

]
≥
∑

j

[Fj : Q], i = 1, 2, · · · , ℓ, (173)

dimQ VQ ≥ ℓ dimQK. (174)

Therefore, the condition that dimQ VQ = dimQ K implies that ℓ = 1, and also J(R)VQ = 0.

Noting that VQ is the defining representation of the algebraR, not a general representation

of R, this J(R)VQ = 0 implies that J(R) = 0. That is, the algebra R is semi-simple. The

local algebra Qα = End(W αQ,λα, φα) common to any λα ∈ {1, · · · , nα} of an indecomposable
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decomposition is a division algebra for any Hodge-isomorphism class α ∈ A, in fact. See also

Prop. A.41.

For this reason, we restrict our attention to the cases the algebra R is semi-simple in the

rest of this appendix A. As is well-known in the case of a polarizable rational Hodge structure

(VQ, φ), we may use the following

Remark A.56. It is known that a maximal subfield F in a division algebra D is of degree

[F : Z(D)] = g, where Z(D) is the center of D, when dimZ(D)D = g2 (cf Lemma A.25),

to extract more information about the endomorphism algebra of a (not necessarily polarized)

rational Hodge structure with sufficiently many complex multiplications.

Proposition A.57. The semi-simple algebra R = End(VQ, φ) of a (not necessarily polariz-

able) rational Hodge structure with sufficiently many complex multiplications is of the form

of

R ∼= ⊕α∈AMnα
(Kα),

where Kα is a number field with [Kα : Q] = dimQW
α,λα

Q . The set A labels the Hodge-

isomorphism classes of the simple rational Hodge substructures in (VQ, φ).

Given Prop. A.55, the proof well-known47 in the case of a polarizable (VQ, φ) works as it

is also for (VQ, φ) without a polarization. A commutative subalgebra K available within the

semi-simple algebra R has a dimension bounded from above by

dimQK ≤
∑

α∈A

nαgα[Z(Dα) : Q] ≤
∑

α∈A

nαg
2
α[Z(Dα) : Q] =

∑

α∈A

nα[Dα : Q]

≤
∑

α∈A

nαsα[Dα : Q] = dimQ VQ; (175)

the first inequality and the equality in the middle are from Lemma A.25 and Rmk. A.56, and

sα’s in the last line are the ones in (161) for VQ. The condition dimQK = dimQ VQ for K of a

rational Hodge structure (VQ, φ) is therefore equivalent to gα = 1 and sα = 1 for all α ∈ A.

In other words, the endomorphism algebra Dα = End(W α,λα

Q , φα) of each simple component

is a field, Dα = Z(Dα), of dimension [Z(Dα) : Q] = dimQW
α,λα

Q .

Lemma A.53 is all that we can say about the field Kα for a general rational Hodge

structure (VQ, φ) with sufficiently many complex multiplications. When (VQ, φ) is polarizable,

the following is well-known.

47e.g., [Shi97, Props. II.4 and II.6 (§5)], [Mil22, Prop. 1.2 (§I.1) and Prop. 3.1+3.3(§I.3)]
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Remark A.58. Suppose that there is a number field F →֒ R = End(VQ, φ) of a polarizable

rational Hodge structure (VQ, φ). When the Rosati involution of a polarization maps F ⊂ R

to F (not necessarily individual elements in F , but F as a whole), then one can prove that

F is either totally real, or a CM-field. See [Shi97, Lemma II.2 + Prop. II.5 (§5)], [Mil22,

Prop. 1.39] and [Huy16, Thm. 3.7] for a proof. The positivity of a polarization (involution)

is vital in the proof, so a polarization of a positive index is not enough here.

This applies to F = Z(Dα)1nα×nα
, in particular; this is because the center Z(R) ∼=

⊕αZ(Dα)1nα×nα
of the algebra R is mapped by an involution to the center itself.

Remark A.59. When a polarizable simple rational Hodge structure (VQ, φ) of level ℓ > 0

is of CM-type, the number field K = Z(D) = D = End(VQ, φ) is a CM-field rather than a

totally real field. See [Mil22, Prop. 3.6 (§I.3)] and [Huy16, Rmk. 3.14] for the proof.

Compared with the endomorphism field Kα = Z(Dα) of the individual simple Hodge sub-

structures, there is less importance in commutative subalgebrasK ⊂ R in the definition of suf-

ficiently many complex multiplications. Even when a Hodge structure (VQ, φ) with sufficiently

many complex multiplications is given, there can be considerable freedom/arbitrariness in

the choice of K with dimQK = dimQ VQ. See Ex. A.10. When (VQ, φ) is polarizable, and

a choice of polarization Q is fixed, then there is a smaller class of a choice of K ∼= ⊕iFi

that is better motivated: a subalgebra K that is mapped to itself (not necessarily identically,

though) by the Rosati involution with respect to Q.

Lemma A.60. In a commutative semi-simple subalgebra K ∼= ⊕i∈IFi required in the Def-

inition of a rational Hodge structure with sufficiently many complex multiplications, each

number field Fi is within one of the simple factors Mnα
(Kα); there is a map I ∋ i 7→ α ∈ A.

Proof. Suppose that Fi is embedded inMmα
(Kα)⊕Mmβ

(Kβ), where α, β ∈ A, with mα ≤ nα

andmβ ≤ nβ, and [Fi : Q] = [Kα : Q]mα+[Kβ : Q]mβ . The only possible such a commutative

algebra is of the form of F α ⊕ F β where F α/Kα and F β/Kβ are extensions of degree mα

and mβ, respectively. Such an algebra is not a field, when both mα and mβ are positive

(non-zero).

In the case of a polarizable (VQ, φ) that is of CM-type, the fields Fi in K required in the

definition of complex multiplications are subject only to Lemma A.53, although we know that

Kα’s are all CM fields. It is possible, however, to choose Fi’s in K ∼= ⊕i∈IFi so that they are

all CM-fields when (VQ, φ) is of CM-type (see [Mil22, Prop. 3.6(b) (§I.3)] for a construction).

Moreover,
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Remark A.61. Let (W i
Q, φ

i) be a rational Hodge structure with sufficiently many complex

multiplications, with just one Hodge isomorphism class of simple substructures. Let Fi

be a CM-field within the simple algebra End(W i
Q, φ

i) (already Lemmas A.53 and A.60 are

implicit), with [Fi : Q] = dimQW
i
Q. Then a polarization Qi : W

i
Q×W i

Q −→ Q is constructed,

by fixing one isomorphism Fi
∼= W i

Q as 1-dimensional vector space over Fi and setting it by

Q :W i
Q ×W i

Q
∼= Fi × Fi ∋ (x, y) 7−→ tr Fi/Q[λxȳ] ∈ Q; (176)

λ ∈ F×
i has to be invariant [resp. odd] under the complex conjugation in the CM-field for Q

to be symmetric (even weight) [resp. anti-symmetric (odd weight)]; inequalities have to be

imposed48 further on the embedding images of λ for the positive definiteness of the Hermitian

form HQ. Otherwise, any λ is fine. Furthermore, the subfield Fi in End(W i
Q, φ

i) is mapped

to itself (non-trivially) under the Rosati involution with respect to those Q’s.

When F is not a CM-field, there is no algorithm to find a polarization Q on (VQ, φ) whose

Rosati involution is the identity on F0, even when (VQ, φ) is polarizable.

A.6 Complex Multiplication of Complex Tori: Part II

The notion of CM-type has been generalized from the original one with geometric intuition

to the property of rational Hodge structures, as reviewed in the appendices A.2 A.4 and

A.5. While Def. A.52 is applicable to any rational Hodge (sub)structures on the cohomology

groups of any compact Kähler manifolds / non-singular projective varieties M , that is not

(yet) a definition of a property of M . There are at least a few different versions in trying to

define a “CM” property of such varieties, as reviewed around Defs. 2.3 and 2.4.

Remark A.62. When X is a complex torus (or even an abelian variety), their complex

multiplication property in Def. A.3 is equivalent to that in Def. A.52 applied to the weight-1

rational Hodge structure on H1(X ;Q). When the rational Hodge structure on H1(X ;Q) is

with sufficiently many complex multiplications / of CM-type, then so are the rational Hodge

structures on Hk(X ;Q) for k = 2, 3, · · · , 2n; this follows49 from Prop. 1.21 of [Bor98]. So, an

abelian variety X of CM-type in Def. A.3 is of strong CM-type in Def. 2.3 and vice versa.

48The inequalities to be imposed depend on the type {hp,q(W i)} of the Hodge structure (W i
Q, φ

i), but in
an obvious way.

49The proof in [Bor98] is written only for polarizable rational Hodge structures, but one can confirm that
the polarizability is not essential in the proof. See also [OW24, A.3] for the Hodge group for rational Hodge
structures that are not necessarily polarized.
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Here, in the appendix A.6, we focus on complex tori and abelian varieties denoted by

X that are with sufficiently many CMs / (strong) CM-type. Consequences of the materials

in the appendices A.2–A.5 on the Hodge structure of H1(X ;Q) are now summarized and

written down here. Consequences on the Hodge structure on Hk(X ;Q) with k ≥ 2 can be

worked out from that on the H1(X ;Q), as we do in section 2.3.

We begin with the case of a complex abelian variety X , instead of a complex torus that

does not necessarily have a polarization. Definition A.3 for X to be of CM-type is equivalent

to Def. A.52 for its rational Hodge structure (H1(X ;Q), φ1) to be of CM-type; the latter is

equivalent to the following:

Remark A.63. The weight-1 rational Hodge structure (H1(X ;Q), φ1) of a complex abelian

variety is of CM-type (by Def. A.52), if and only if its all the simple components (W a
Q, φ

a)

(Prop. A.22) are of CM-type. The condition that the simple component (W a
Q, φ

a) is of

CM-type is equivalent to the condition that End(W a
Q, φ

a) is a CM-field Kα with [Kα : Q] =

dimQW
a
Q. Lemma A.50 provides more detailed information on the rational Hodge structure

on (W a
Q, φ

a).

In the language of geometry, in a modulo-isogeny decomposition X ∼ ∏α∈A(Xα)
nα into

simple abelian varieties (Rmk. A.46), X is of CM-type (by Def. A.3) if and only if EndQ(Xα)

is a CM field Kα with [Kα : Q] = 2 dimCXα.

Proposition A.64. Let X be a complex torus. It has sufficiently many complex multi-

plications, or equivalently, its weight-1 rational Hodge structure (H1(X ;Q), φ1) has suffi-

ciently many complex multiplications, if and only if X [resp. (H1(X ;Q), φ1)] is completely

reducible, and each simple factor Xα [resp. (W a, φa)] has sufficiently many complex multi-

plications; this condition on each simple factor is also equivalent to the condition that the

division algebra End(W a, φa) is a totally imaginary field Kα with [Kα : Q] = 2 dimCXα [resp.

[Kα : Q] = dimQW
a]. The algebraR = End(VQ, φ) as a whole is semi-simple, ⊕α∈AMnα

(Kα).

All of those also follow from Prop. A.55, Prop. A.57 and Lemma A.53.

A.7 Hodge Group of a Non-polarizable Rational Hodge Structure

Whether a rational Hodge structure [resp. a polarizable one] has sufficiently many complex

multiplications [resp. CM-type] or not can be characterized either by the endomorphism

algebra (Def. A.52), or alternatively, by the Hodge group (or Mumford–Tate group); cf p.

31. In this article, we use the endomorphism algebras for analysis and derivations most of
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the time; the review in this appendix A has not referred to the Hodge group so far for this

reason.

There is a definition for the Hodge group and Mumford–Tate group of a rational Hodge

structure widely accepted in the literatures. In this article, we used Hodge group just once

in section 3.1; the Hodge group is used there not to build an argument in this article but to

read out the (limitation of the) consequences of the argument made elsewhere; little intuition

on a Hodge group is required in following the arguments there. So, the authors decided not

to repeat a formal definition of the Hodge group in this article; string theorists in need of

an introduction on this subject written by string theorists might still have a look at [OW24,

A.3].

There is not an essential difference between abelian varieties of CM-type and generic

complex tori with sufficiently many complex multiplications, so far as the characterization

conditions (i) and (ii) in p. 31 are concerned. When it comes to the characterization condition

(iii) in p. 31, however, there is a crucial difference between rational Hodge structures that

are polarizable, and those that are not. This difference was primarily why the authors are

led to focus on polarizable complex structures in this article.

Given the importance of this difference in the property (iii), it will be a popular attitude

among string theorists to try to appreciate what is happening not just in abstract definition

and logic, but also with concrete examples. So, in this appendix A.7, an example is presented

for illustration purpose. We assume that readers of this appendix A.7 are familiar with

the definition of the Hodge group of a rational Hodge structure (that is not necessarily

polarizable). We will use the same notations as in [OW24, A.3] here.

Example A.65. Examples of totally imaginary fields that are not CM fields are found50

in the database LMFDB (www.lmfdb.org). For example, F = Q[x]/(x4 − 2x2 + 2). For

any totally imaginary field F and a decomposition of the [F : Q] embeddings Φ(1,0) ∐ Φ(0,1)

such that the complex conjugation of Φ(1,0) is Φ(0,1), a rational Hodge structure (VQ, hΦ(1,0))

is given on the [F : Q]-dimensional vector space VQ = F so that the field F is contained in

the endomorphism algebra End(F, hΦ(1,0)) (as we have reviewed in Lemma A.51). So, we can

mass-produce examples of a complex torus with sufficiently many complex multiplications.

Let us take the totally imaginary field F ∼= Q[x]/(x4 − 2x2 + 2) as an example here. The

50Math StackExchange entry “totally imaginary number field of degree 4”
https://math.stackexchange.com/questions/4372232/
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four embeddings F →֒ C are given by

τǫǫ′ : x 7−→ ǫ′2
1
4 eǫπi/8, ǫ ∈ {±1}, ǫ′ ∈ {±1}. (177)

There are two rational Hodge structures that can be introduced on the [F : Q]-dimensional

vector space VQ = F ; one is for Φ(1,0) = {τ++, τ−−} and the other for Φ(1,0) = {τ++, τ+−}.
To describe the Hodge group of the two rational Hodge structures, we use {ηI=1,2,3,4} =

{1, x, x2, x3} as a basis of the extension field F/Q; its dual basis {ωI=1,2,3,4} of F/Q is used

as a basis for the vector space VQ = F (as in Lemmas A.50 and A.51). Endomorphisms

x, x2, x3 ∈ F× ⊂ [End(VQ, hΦ(1,0))]× ⊂ GL(VQ) act on VQ as

x =




1
1

1
−2 2


 , x2 =




1
1

−2 2
−2 2


 , x3 =




1
−2 2

−2 2
−4 2


 (178)

in the matrix representation when the basis {ωI} is used for VQ. Using this convention,

we can compute the Hodge group of each of the rational Hodge structures by following the

definition honestly:

Hdg(VQ, h{τ++,τ−−}) =
{
A+Bx+Dx3 | B2 + 4BD + 2D2 = 0, NmF/Q = 1

}
, (179)

Hdg(VQ, h{τ++,τ+−}) =
{
A+ Cx2 | A2 + 2AC + 2C2 = 1

}
, (180)

where NmF/Q = A4 − 2A2(B2 − 2D2) + 8(BD)2. Note that all the coefficients of the defining

equations in (179, 180) are in the field Q, so both are algebraic subgroups of GL(VQ) defined

over Q. Both are subgroups of the group ResF/Q(Gm) ⊂ GL(VQ) (roughly speaking, it is

F×; see [OW24, A.3] for more pedagogical explanations), so both are commutative, as in the

property/condition (ii) in p. 31.

For the rational Hodge structure (VQ, h{τ++,τ+−}), the set of real points of the Hodge group

(180) is compact; it is an ellipse {(A,C) ∈ R2 | A2+2AC+2C2 = 1}. This Hodge group has

the property (iii) in p. 31. For the rational Hodge structure (VQ, h{τ++,τ−−}), on the other

hand, the set of real points of the Hodge group (179) is non-compact in the limit

B

D
= (−2−

√
2),

A2

D2
≃ 4(

√
2 + 1), A, B,D ∈ R, |A|, |B|, |D| → +∞. (181)

The property (iii) is not satisfied. As we argued in section 3.1, the properties (i) and (ii) are

guaranteed for rational Hodge structures with sufficiently many complex multiplications, but

the property (iii) is not, in general.

96



It is not an accident that the set of real points Hdg(R) for (VQ, h{τ++,τ+−}) is compact,

in fact. The degree-4 field F = Q[x]/(x4 − 2x2 + 2) contains a degree-2 subfield K :=

Q[θ]/(θ2 − 2θ + 2) ∼= Q(i), embedded through K ∋ θ 7→ x2 ∈ F . The pair (F, {τ++, τ+−})
is not primitive in the sense of [Shi97, §8], because both of the embeddings τ++ and τ+− of

F become identical when restricted to the subfield K ⊂ F . This reveals that the weight-1

rational Hodge structure (VQ, {τ++, τ+−}) is Hodge isomorphic to that of H1(E × E;Q) of

an elliptic curve E with CM by Q(i). The degree-4 number field F = Q[x]/(x4 − 2x2 + 2)

is yet another way to choose a subalgebra K ⊂ M2(Q(i)) in Ex. A.10; cf also the comments

just before Rmk. A.61. So, the rational Hodge structure (VQ, {τ++, τ+−}) is polarizable in

fact; the property (iii) is therefore guaranteed in this case as discussed in section 3.1.

B Details of the Analysis

This appendix collects technical computations whose results are used in the main text. Lem-

mas B.1 and B.4 are quoted in section 5.3.2, while Lemmas B.2, B.5 and B.6 are used in

section 5.4. Section 5.5 uses the result of Lemma B.3.

B.1 Case (B, C)

Lemma B.1. Let (T 4; I) be a CM-type abelian surface in the case (B, C), and (B+ iω) be in

H2(T 4
I )⊗ τ r(20)(K

r); the reflex field Kr and its embeddings are described in Discussion 2.12.

Suppose that (B+iω) introduces a polarized rational Hodge structure on T v
M⊗Q ⊂ A(T 4

I )⊗Q

and the pairing (70), in the way described in Lemma 5.6/section 5.3. Then (B + iω) must

be of the form

(B + iω)/2 = Z1e1 + Z±
2 e2, (72)

where

Z1 := τ r++

(
A+

C ′

2
ξr +

D′

2d

2qd

ξr

)
, Z±

2 := τ r++

(
Ã± D′

2
ξr ± C ′

2

2qd

ξr

)
, (182)

(
A, Ã, C ′, D′ ∈ Q, (C ′, D′) 6= (0, 0)

)
.

Proof. The fact that ℧ := e(B+iω)/2 is the only generator of the Hodge (2, 0) component of

the CM-type Hodge structure on T v
M ⊗Q, with the CM field Kr and embedding τ r(20) = τ r++,

implies that there must be a basis {1, η1, η2, η4} of Kr/Q, so that

℧ = τ r++

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (183)

97



where a rational basis {e1, e2} of H2(MI) is the one introduced in (37); we must set η4 =

(dη21−η22) ∈ Kr so that (℧,℧) = 0 in the pairing (70). So, there are eight rational parameters

for η1, η2 ∈ Kr, for the moment. The Hodge (0,2) component should be given by

℧ = τ r+−

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (184)

and the (1,1) components by the two vectors

Σ = τ r−+

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (185)

Σ = τ r−−

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
. (186)

This Hodge decomposition must be polarized with respect to (70). The condition (℧,℧) =

0 is built in by construction, ℧ = e2
−1(B+iω). The remaining non-trivial information from the

polarization is that (℧,Σ) = 0 and (℧,Σ) = 0. The two conditions are equivalent to

−2−1
(
τ r++(X)− τ r−±(X), τ r++(X)− τ r−±(X)

)
H2 = 0 (187)

for X = e1η1 + e2η2, using just the pairing in H2(MI); those conditions are further rewritten

as

d
(
τ r++(η1)− τ r−±(η1)

)2 −
(
τ r++(η2)− τ r−±(η2)

)2
= 0 (188)

in the normal closure of the number field Kr.

The eight rational parameters for η1,2 ∈ Kr, that is, A,B,C,D, Ã, B̃, C̃, D̃ ∈ Q in

η1 =: A+By′ + Cξr +Dξry′, η2 =: Ã+ B̃y′ + C̃ξr + D̃ξry′, (189)

should satisfy the conditions (188). Straightforward computation translates the conditions

to

dBC = B̃C̃, dBD = B̃D̃, d(D2d′ − C2) = (D̃2d′ − C̃2), (190)

along with

d
[
d′(B2 − 2CD) + p(C2 + d′D2)

]
=
[
d′(B̃2 − 2C̃D̃) + p(C̃2 + d′D̃2)

]
. (191)

There are four conditions on the eight parameters.

First, one can immediately see that the rational parameters A and Ã dropped out. So any

A, Ã ∈ Q has no conflict with the condition (188) for the consistency of the Hodge structure

(of B + iω) with the polarization (70).
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Second, we prove that B̃ = 0 by contradiction. If B̃ 6= 0, then C̃ and D̃ can be solved in

terms of C, D and B/B̃. Then

(D2d′ − C2)

(
B2

B̃2
d− 1

)
= 0. (192)

This is a contradiction51 because neither d nor d′ is a square of a rational number.

Thirdly, B̃ = 0 implies that either B = 0 or C = D = 0 holds true. The latter is not

possible, however, because D̃2d′ − C̃2 = 0 would follow, although d′ is not a square of a

rational number. So, B = 0. We have now proved that the B-field is

τ r++

[
e1(A +By′) + e2(Ã+ B̃y′)

]
= Ae1 + Ãe2 (193)

for free A, Ã ∈ Q. This is the same as saying that the B-field is in H2(MI). The rationality

condition of the B-field (14) follows from conditions 1–4 and a part of 5 in Thm. 1.3.

Next, change the parametrization as follows.

C =
1

2

(
C ′ +

pD′

qd

)
, D =

D′

2qd
, C̃ =

1

2

(
C̃ ′ +

p

q
D̃′

)
, D̃ =

D̃′

2q
, (194)

or equivalently,

ξr(C +Dy′) = D′ q

ξr
+
C ′

2
ξr, ξr(C̃ + D̃y′) =

C̃ ′

2
ξr + D̃′ qd

ξr
. (195)

Then the remaining two conditions on C,D, C̃, D̃ are rewritten as

d(C ′)2 +
2p

q
(C ′D′) + (D′)2 = d(D̃′)2 +

2p

q
C̃ ′D̃′ + (C̃ ′)2, (196)

(C ′)2pd+ (D′C ′)2qd+ (D′)2p = (D̃′)2dp+ (D̃′C̃ ′)2qd+ (C̃ ′)2p. (197)

So, this is equivalent to

D′C ′ = C̃ ′D̃′, d(C ′)2 + (D′)2 = d(D̃′)2 + (C̃ ′)2. (198)

This coupled quadratic equations seem to allow two possibilities,

C̃ ′

D̃′
= d

C ′

D′
,

C̃ ′

D̃′
=
D′

C ′
, (199)

51If D = C = D̃ = C̃ = 0, then [T v
M ⊗ C](2,0) = [T v

M ⊗ C](0,2) = C ⊂ T v
M ⊗ C. This is not appropriate as a

Hodge decomposition. In physics terminology, this corresponds to ω = 0, and volume(T 4) = 0.
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including D′ = D̃′ = 0 and D̃′ = C ′ = 0, respectively. The first case is impossible, because

(C̃ ′)2 = d(C ′)2 is a contradiction for the parameters C ′, C̃ ′ ∈ Q for d that is not a square.

The only option is

(C ′, D′) = (D̃′, C̃ ′), (200)

and

(C ′, D′) = −(D̃′, C̃ ′). (201)

There are two kinds of solutions, (200) and (201), for the Hodge structure on [T v
M ⊗Q] to be

compatible with the polarization (70); for solutions of both kinds, there are two free rational

parameters C ′, D′ ∈ Q for ω (besides the two free parameters A, Ã ∈ Q for the B-field).

Lemma B.2. Let (T 4; I) be a CM abelian surface in the case (B, C), and the complexified

Kähler parameter (B+ iω) is in either (72;+) or (72;−). A vector subspace ΓfQ ⊂ H1(T
4;Q)

satisfies the condition (63) if and only if it is of the form52

ΓfQ = SpanQ{c, d}, c := c1α1 + c2β
1 + c3α2 + c4β

2,

d := dc3α1 + dc4β
1 + c1α2 + c2β

2, (80)

c1, . . . , c4 ∈ Q, c21 + c22 + c23 + c24 6= 0. (81)

Proof. Let Γf = SpanQ{c′, d′} be such an n-dimensional subspace of H1(T
2n;Q). The condi-

tion (63) is then equivalent to

e1(c
′, d′) = e2(c

′, d′) = 0, (202)

in the case of both (72;+) and (72;−); we have used the fact that the volume of T 4 must be

positive (ω 6= 0, i.e. (C ′, D′) 6= (0, 0)), and that the integer d is square-free.

Let us rewrite the condition (202) in a way useful for later analysis, by parametrizing the

generators c′, d′ of ΓfQ as

c′ := c1α1 + c2β
1 + c3α2 + c4β

2, (203)

d′ := d1α1 + d2β
1 + d3α2 + d4β

2, (204)

c1, . . . , c4, d1, . . . , d4 ∈ Q . (205)

52apologies for our poor choice of notations: d ∈ ΓfQ here and a positive integer d that generates Q(
√
d)
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To proceed, note that there are linear combinations of e1 and e2 that are decomposable:

e1 +
√
de2 = (α̂1 +

√
dα̂2)(β̂1 +

√
dβ̂2) = γ̂1δ̂1, (206)

e1 −
√
de2 = (α̂1 −

√
dα̂2)(β̂1 −

√
dβ̂2) = γ̂2δ̂2, (207)

where

γ̂1 := α̂1 +
√
dα̂2, δ̂1 := β̂1 +

√
dβ̂2, (208)

γ̂2 := α̂1 −
√
dα̂2, δ̂2 := β̂1 −

√
dβ̂2. (209)

The condition (202) is therefore equivalent to γ̂1δ̂1(c
′, d′) = γ̂2δ̂2(c

′, d′) = 0. This translates

to
{

(c1 +
√
dc3) : (c2 +

√
dc4) = (d1 +

√
dd3) : (d2 +

√
dd4)

(c1 −
√
dc3) : (c2 −

√
dc4) = (d1 −

√
dd3) : (d2 −

√
dd4)

. (210)

The generator d′ for a given c′ is therefore constrained by the relation (210); let us see

how, by translating the relation (210) further. An immediate consequence of the relation

(210) is that there exist k1, k2 ∈ C such that d′ can be rewritten as

d′ =
1

2

(
(c1 +

√
dc3)k1 + (c1 −

√
dc3)k2

)
α1 +

1

2
√
d

(
(c1 +

√
dc3)k1 − (c1 −

√
dc3)k2

)
α2

+
1

2

(
(c2 +

√
dc4)k1 + (c2 −

√
dc4)k2

)
β1 +

1

2
√
d

(
(c2 +

√
dc4)k1 − (c2 −

√
dc4)k2

)
β2.

(211)

Since the generator d′ is an element of H1(T
4;Q), the coefficients in (211) must be rational

numbers. It follows from this fact and some easy calculation that k1, k2 ∈ Q(
√
d), and

moreover

k1 = a+ b
√
d, k2 = a− b

√
d (212)

(a, b ∈ Q, (a, b) 6= (0, 0)). (213)

So, the generator d′ has to be of the form

d′ = (ac1 + bdc3)α1 + (bc1 + ac3)α2 + (ac2 + bdc4)β
1 + (bc2 + ac4)β

2 (214)

for the conditions (202, 210) to be satisfied. This (214) is also sufficient. In the statement of

this Lemma, c = c′ and d = d′ − ac′.
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Lemma B.3. Let (T 4; I) be a CM-type abelian surface in the case (B, C), (B + iω) a

complexified Kähler form on (T 4; I) in one of the two classes (72;+) and (72;−). Choose

one ΓfQ ⊂ H1(T
4;Q) from (80), fix one Γb ⊂ H1(T

4;Q), and think of the T-duality along

Γf while the directions Γb are fixed; let (T 4
◦ ;G

◦, B◦; I◦) be the geometric data of the corre-

sponding SYZ-mirror SCFT. In the rational Hodge structure (H1(T 4
◦ ;Q), I◦), its Hodge (1,0)

component is generated by the two vectors in (115).

Proof. Note, first, that

W 3 := g∗(H3(T 4
◦ ;Q)) = SpanQ

{
ê, f̂ , ĉêf̂ , d̂êf̂

}
= SpanQ{ê, f̂ , e1f̂ , e2f̂}; (215)

The vector space g∗(H1(T 4
◦ ;Q)) ⊂ Hodd(T 4;Q) has a basis {ĉ, d̂, ĉd̂ê, ĉd̂f̂}; there is also an

advantage in dealing with the vector space W 1/W 3 instead, where

W 1 := g∗(H1(T 4
◦ ;Q)⊕H3(T 4

◦ ;Q)) ⊂ Hodd(T 4;Q),

becauseW 1/W 3 depends only on the choice of the directions ΓfQ in which T-duality is taken,

not on the directions ΓbQ that are fixed. The vector space W 1/W 3 has a basis

{
[ĉ′], [d̂′], [ĉ′d̂′ê], [ĉ′d̂′f̂ ]

}
=
{
ĉ′ +W 3, d̂′ +W 3, ĉ′d̂′ê+W 3, ĉ′d̂′f̂ +W 3

}
. (216)

The isomorphism H1(T 4
◦ ;Q) →֒ W 1 →W 1/W 3, where the first one is g∗ and the second one

the projection, is proportional to

(
c, d, ê, f̂

)
7−→

(
[d̂′]

c21 − dc23
,

−[ĉ′]

c21 − dc23
,

[ĉ′d̂′ê]

(c21 − dc23)
2
,

[ĉ′d̂′f̂ ]

(c21 − dc23)
2

)
. (217)

The Hodge (1,0) component of (H1(T 4
◦ ;Q), I◦) is such that is identified under the isomor-

phism above with the subspace of (W 1/W 3)⊗ C generated by the two vectors

℧ĉ′ +W 3 = ĉ′ + Z1e1ĉ
′ + Z±

2 e2ĉ
′ +W 3, ℧d̂′ +W 3 = d̂′ + Z1e1d̂

′ + Z±
2 e2d̂

′ +W 3. (218)
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One may reorganize these basis elements of the Hodge component over C to

(
[℧ĉ′] [℧d̂′]

)( 1 1

∓
√
d ±

√
d

)
(219)

=
(
[ĉ′] [d̂′] −[e1d̂

′] −[e2d̂
′]
)



1 1
τ++(∓y) τ−+(∓y)
τ++(Ξ±) τ−+(Ξ±)

τ++(±Ξ±y) τ−+(±Ξ±y)


 (220)

=
(
[ĉ′] [d̂′] [ĉ′d̂′ê]

(c21−dc23)
2

[ĉ′d̂′f̂ ]
(c21−dc23)

2

)



1
1

c1 c3
dc3 c1







1 1
τ++(∓y) τ−+(∓y)
τ++(Ξ±) τ−+(Ξ±)

τ++(±Ξ±y) τ−+(±Ξ±y)


 , (221)

where

Ξ± := Ã± Ay ±D′x± C ′xy ∈ K; (222)

The sign choice below (− in ± and + in ∓) is for the case (72;−) and the sign choice above

for the case (72; +).

Therefore, the Hodge (1,0) component of (H1(T 4
◦ ;Q), I◦) has a basis obtained by mapping

a basis above by the isomorphism H1(T 4
◦ ;Q) ↔ W 1/W3 above. Namely, we may use

(
dz1

′

◦ dz2
′

◦

)
=
(
−s0d s0c ê f̂

)



1
1

c1 c3
dc3 c1







1 1
τ++(∓y) τ−+(∓y)
τ++(Ξ±) τ−+(Ξ±)

τ++(±Ξ±y) τ−+(±Ξ±y)




=
(
c d ê f̂

)



τ++(∓s0y) τ−+(∓s0y)
−s0 −s0

τ++((c1 ± c3y)Ξ±) τ−+((c1 ± c3y)Ξ±)
τ++((dc3 ± c1y)Ξ±) τ−+((dc3 ± c1y)Ξ±)


 , (115)

where s0 := (c21 − dc23).

It is obvious from this expression (cf. Lemma A.51) that the endomorphism algebra of

the rational Hodge structure (H1(T 4
◦ ;Q), I◦) is the degree-4 CM field K, and both dz1

′

◦ and

dz2
′

◦ are eigenvectors of the action of K. That this rational Hodge structure is of CM-type

had been guaranteed already in the argument “Immediate Consequences” in section 5.4, but

we also have an alternative proof by a brute force (down to earth) computations here.
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B.2 Case (A’)

Lemma B.4. Let (T 4; I) be a CM-type abelian surface in the case (A’), and (B + iω) be in

H2(T 4
I )⊗ τ r(20)(K

r); the reflex field Kr and its embeddings are described in Discussion 2.12.

Suppose that the polarized rational Hodge structure introduced on T v
M ⊗Q ⊂ A(T 4

I )⊗Q by

℧ = e(B+iω)/2, as discussed in section 5.3, is of CM-type in the way described in Lemma 5.6.

Then (B + iω) must be of the form

(B + iω)/2 = (A+ C
√
p1) α̂

1β̂1 +
(
Ã + C̃

√
p2

)
α̂2β̂2, A, Ã ∈ Q, C, C̃ ∈ Q6=0, (76)

or

(B + iω)/2 = (A+ C
√
p2) α̂

1β̂1 +
(
Ã+ C̃

√
p1

)
α̂2β̂2, A, Ã ∈ Q, C, C̃ ∈ Q6=0. (77)

Proof. Because the Hodge structure on T v
M ⊗ Q is of CM-type, and ℧ := e2

−1(B+iω) is the

generator of the 1-dimensional Hodge (2, 0) component, ℧ must be in the form of

℧ = τ r++

[
1 + (α̂1β̂1)η1 + (α̂2β̂2)η2 + (α̂1β̂1α̂

2β̂2)η4

]
(223)

for some basis {1, η1, η2, η4} of Kr/Q. The property (℧,℧) = 0 implies that η4 = η1η2, so

there are eight rational parameters for η1 and η2 at this moment.

Let us parametrize the freedom by A,B,C,D, Ã, B̃, C̃, D̃ ∈ Q, where

η1 = A+By′ + Cξr +Dξry′, η2 = Ã+ B̃y′ + C̃ξr + D̃ξry′. (224)

For the Hodge decomposition to be compatible with its polarization (70), we impose (℧,Σ) =

0 and (℧,Σ) = 0. As a result, we obtain

BB̃ + p1DD̃ = 0, BD̃ + B̃D = 0, (225)

BB̃p2 + CC̃ = 0, BC̃ + B̃C = 0. (226)

Now, we have four conditions on the eight rational parameters.

One can prove that B = B̃ = 0 (or otherwise we should accept an unphysical zero-volume

situation (such as C = D = 0)); the proof is similar to the case (B, C), so we omit the detail.

The four conditions above are reduced to DD̃ = 0 and CC̃ = 0. So, there are two classes of

solutions (apart from the zero-volume situations):

D = 0, C̃ = 0, so 2−1(B + iω) = α̂1β̂1(A+ C
√
p1) + α̂2β̂2(Ã+ D̃

√
p1
√
p1p2), (227)

C = 0, D̃ = 0, so 2−1(B + iω) = α̂1β̂1(A+D
√
p1
√
p1p2) + α̂2β̂2(Ã+ C̃

√
p1). (228)

Set C̃ := D̃|p1| in (227) and C := D|p1| in (228) to obtain (76) and (77), respectively.
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Lemma B.5. Let (T 4; I) be a CM abelian surface in the case (B, C), and the complexified

Kähler parameter (B + iω) is in either (76) or (77). A vector subspace ΓfQ ⊂ H1(T
4;Q)

satisfies the condition (63) if and only if it is of the form

ΓfQ = SpanQ{c, d}, c := c1α1 + c2β
1, d := c3α2 + c4β

2, (85)

c1, . . . , c4 ∈ Q, (c1, c2), (c3, c4) 6= (0, 0). (86)

Proof. To obtain the list of such Γf ’s, we first list up all the rank-n subspaces ΓfQ ⊂
H1(T

2n;Q) satisfying ω|ΓfQ⊗R = 0 and B|ΓfQ⊗R = 0. Then ΓfQ ∩ H1(T
2n;Z) for these ΓfQ

constitute the list of all Γf satisfying (63).

Let Γf = SpanQ{c′, d′} be such a rank-(n = 2) subspace ofH1(T
2n=4;Q). We parameterize

the generators by

c′ := c1α1 + c2β
1 + c3α2 + c4β

2, (229)

d′ := d1α1 + d2β
1 + d3α2 + d4β

2, (230)

c1, . . . , c4, d1, . . . , d4 ∈ Q . (231)

The above condition ω|ΓfQ⊗R = B|ΓfQ⊗R = 0 for B + iω in either (A’)–(76) or (A’)–(77) is

then equivalent to

c1 : c2 = d1 : d2 and c3 : c4 = d3 : d4, (232)

where we used the positive volume condition C, C̃ 6= 0. Therefore, we can always reorganize

the basis {c′, d′} of ΓfQ to {c, d} in (85).

B.3 Case (A)

Lemma B.6. Let (T 4; I) be a CM abelian surface in the case (A), and the complexified

Kähler parameter (B+ iω) is in (78). Then one can always find a rank-2 primitive subgroup

Γf of H1(T
4;Z) that satisfies the condition (63); i.e., there always exists a geometric SYZ-

mirror.

Proof. we have seen in (57) how the Kähler form is parametrized. A rational B = Balg

in H(T 4
I ) ⊗ Q should also have 4 parameters in Q because dimQH2(T 4

I ) = 4. Details in

Discussion 2.16 reveal that

Balg =
√
p(dz1, dz2) ∧

(
hB1 cB1 − cB2

√
p

cB1 + cB2
√
p hB2

)(
dz̄1̄

dz̄2̄

)
, hB1,2, c

B
1,2 ∈ Q. (233)
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With a straightforward computation, one can show that ΓfQ = SpanQ{α′
1, α

′
2} with

α′
1 = α1, α′

2 = α2 −
{
c2
h1

− c1
h1

(hB1 c2 − h1c
B
2 )

(hB1 c1 − h1cB1 )

}
β1 − hB1 c2 − h1c

B
2

hB1 c1 − h1cB1
β2 (234)

satisfies the condition ω|ΓfQ
= 0 and B|ΓfQ

= 0. In the case hB1 c1 − h1c
B
1 = 0, the same

conditions are satisfied when

α′
1 = α1 +

1

pv
β1, α′

2 = α2 −
c1
h1

(
v − 1

pv

)
β1 + vβ2, v ∈ Q, v 6= 0. (235)

The T-duals in the directions (234, 235) are geometric SYZ-mirrors.

The choices of Γf above still come with a variety of choices of Γb, and moreover, there will

be more choices of Γf other than the one above; they are only meant to be examples.
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de variété abéliennes. Jussieu prepublication, 120, 1997.

[Asp96] Paul S. Aspinwall. K3 surfaces and string duality. In Theoretical Advanced Study

Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality,

pages 421–540, 11 1996. eprint hep-th/9611137.

[BF14] Eva Bayer-Fluckiger. Embeddings of maximal tori in orthogonal groups. Ann.

Inst. Fourier (Grenoble), 64(1):113–125, 2014. [arXiv:1305.3411 [math.NT]].

[BL99] Christina Birkenhake and Herbert Lange. Complex tori, volume 177 of Progress

in Mathematics. Springer, 1999.

[BL04] Christina Birkenhake and Herbert Lange. Complex abelian varieties, volume 302

of Grundlehren der mathematischen Wissenschaften. Springer, 2004.

106



[Bor98] Ciprian Borcea. Calabi-Yau threefolds and complex multiplication. In Mirror

symmetry I, volume 9 of AMS/IP Studies in Advanced Mathematics, pages 431–

443. International Press, 1998.

[BW15] Andreas P. Braun and Taizan Watari. The Vertical, the Horizontal and the

Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory

applications. JHEP, 01:047, 2015. [arXiv:1408.6167 [hep-th]].

[CG94] A. Coste and T. Gannon. Remarks on Galois symmetry in rational conformal

field theories. Phys. Lett. B, 323:316–321, 1994.

[Che07] Meng Chen. Complex Multiplication, Rationality and Mirror Symmetry for

Abelian Varieties and K3 Surfaces. PhD thesis, Rheinische Friedrich-Wilhelms-

Universität Bonn, 2007.

[Che08] Meng Chen. Complex multiplication, rationality and mirror symmetry for

Abelian varieties. J. Geom. Phys., 58:633–653, 2008. [math/0512470 [math.AG]].

[Cox22] David A. Cox. Primes of the form x2 + ny2—Fermat, class field theory, and

complex multiplication. AMS Chelsea Publishing, Providence, RI, third edition,

2022.

[DBG91] Jan De Boer and Jacob Goeree. Markov traces and II(1) factors in conformal

field theory. Commun. Math. Phys., 139:267–304, 1991.

[Den08] Frederik Denef. Les Houches Lectures on Constructing String Vacua. Les

Houches, 87:483–610, 2008. hep-th/0803.1194.

[DGKT05] Oliver DeWolfe, Alexander Giryavets, Shamit Kachru, and Washington Taylor.

Enumerating flux vacua with enhanced symmetries. JHEP, 02:037, 2005. [hep-

th/0411061].

[FGRSS94] Jurgen Fuchs, Beatriz Gato-Rivera, Bert Schellekens, and Christoph Schweigert.

Modular invariants and fusion rule automorphisms from Galois theory. Phys.

Lett. B, 334:113–120, 1994. [hep-th/9405153].

[GH94] Phillip Griffiths and Joseph Harris. Principles of Algebraic Geometry. Wiley,

1994.

[GLO01] Vasily Golyshev, Valery Lunts, and Dmitri Orlov. Mirror symmetry for abelian

varieties. J. Alg. Geom., 10(3):433–496, 2001. [math/9812003].

107
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