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Abstract: In this paper we study compactifications of the N = 2 heterotic E8×E8

string on (K3×T 2)/Z3 with various gauge backgrounds and calculate the topological

couplings in the effective supergravity action that arise from one-loop amplitudes. We

then identify candidates for dual type IIA compactifications on Calabi-Yau threefolds

and compare the heterotic results with the corresponding topological string ampli-

tudes. We find that the dual Calabi-Yau geometries are K3 fibrations that are also

genus one fibered with three-sections. Moreover, we show that the intersection form

on the polarization lattice of the K3 fibration has to be three times the intersection

form on the Narain lattice Γ1,1.
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1 Introduction

The four-dimensional N = 2 effective supergravity actions that arise from heterotic

compactifications on (K3 × T 2)/ZN and type II compactifications on Calabi-Yau

threefolds contain the well-known supersymmetry protected couplings

S =

∫
Fg(y, ȳ) · F 2g−2

+ R2
+ , (1.1)

where F+ and R+ respectively denote the self-dual parts of the graviphoton field

strength and the Riemann tensor. In particular, the coefficients Fg(y, ȳ) depend only

on the vector moduli. On the heterotic side, one of the vector moduli corresponds

to the axio-dilaton and all terms (1.1) that do not involve the dilaton arise already

at one-loop level. The one-loop amplitudes have been evaluated for compactifica-

tions with various embeddings of the gauge connection on K3 × T 2 by [1–3] and

receive contributions only from BPS states that are encoded in the so-called new
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supersymmetric index [4]. Subsequently this analysis has been extended to compact-

ifications on (K3×T 2)/ZN [5] and again the result is essentially encoded in the new

supersymmetric index. The indices in turn had been calculated for various compact-

ifications with standard embedding of the spin connection into the gauge connection

on (K3× T 2)/ZN and some non-standard embeddings when N = 2 [6]. Calabi-Yau

duals for some of the N = 2 cases have been proposed in [7–9].

In this paper we extend the calculation of the new supersymmetric index to

compactifications on (K3 × T 2)/Z3 with non-standard embeddings and predict the

geometric data of the dual Calabi-Yau manifold. To this end we take an explicit

realization of the orbifold limit of a K3 as T 4/Z3. For two embeddings the effective

theories are such that the gauge group on a generic point of the hypermultiplet

moduli space is maximally broken to U(1)3. For those models one can hope to find a

dual Calabi-Yau compactification with only three Kähler moduli and without a larger

non-higgsable gauge group. Indeed we will be able to identify many candidates. At

certain points in the moduli space there might be singularities as additional vector

bosons become massless. The strength of these singularities and the extraction of

the Gopakumar-Vafa invariants are discussed in section 3.

On the type IIA side one can identify limy→∞ Fg(y, ȳ) with the complex conjugate

of the topological string free energy at genus g in the holomorphic limit [2, 10–12].

Following arguments from [9] that we review in section 4.1, one expects that for

heterotic compactifications on (K3×T 2)/Z3 the dual Calabi-Yau manifolds are genus

one fibered with three sections. Moreover, based on the prepotential of the effective

supergravity action, one can argue that the Calabi-Yau should also exhibit a K3

fibration [13]. We thus systematically construct all K3 fibered Calabi-Yau threefolds

with h1,1 = 3 that exhibit a genus one fibration with three-sections and are realized

as hypersurfaces in toric ambient spaces. We then apply the modular bootstrap that

has been extended to genus one fibrations with multi-sections in [9] and obtain all-

genus results for the topological string amplitudes. This provides all order checks of

the duality.

Let us note that on the heterotic side, the quotient acts as an order three sym-

plectic automorphism on K3 together with a one-third shift along T 2. Symplectic

automorphisms ofK3 manifolds have been classified and form subgroups of the Math-

ieu group M23 [14]. In particular, there is up to conjugacy only one automorphism

of order three and this corresponds to the so-called 3A class. It turns out that the

automorphism group of a non-linear sigma model into K3 is actually larger [15] and

contains another element of order three. However, we will restrict to the geometric

case.

The paper is structured as follows. In section 2 we study heterotic compactifi-

cations on (K3 × T 2)/Z3 where the K3 is realized in the orbifold limit as T 4/Z3.

We first calculate the twisted elliptic genus of K3 with order three twists by directly

evaluating the corresponding trace. This confirms earlier results from the literature
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that were based on indirect arguments and determines the new supersymmetric in-

dex for the standard embedding. We then evaluate the new supersymmetric index

for various non-standard embeddings.

In section 3 we describe how the new supersymmetric index encodes the topo-

logical couplings and extract predictions for the Gopakumar-Vafa invariants of the

dual Calabi-Yau compactification spaces. We also discuss the singular behaviour of

the generating functions at points where additional vector states become massless.

In section 4 we review the relevant aspects of heterotic/type II duality and then

systematically construct candidate Calabi-Yau duals with h1,1 = 3 that in particular

exhibit a K3 fibration and a compatible genus one fibration with three-sections. We

find generic expressions for the Gopakumar-Vafa invariants at genus zero that only

depend on the Euler characterstic of the Calabi-Yau and the intersection form on

the polarization lattice of the K3 fibration. From the structure of the invariants we

can see that for Calabi-Yau duals to heterotic compactifications on (K3 × T 2)/Z3,

the intersection form on the polarization lattice of the K3 fibration has to be three

times the intersection form on the Narain lattice Γ1,1. Physically this condition can

be related to the presence of T-duality on the heterotic side. We will then apply the

modular bootstrap to obtain all genus results for the Gopakumar-Vafa invariants of

low degree with respect to the base of the K3 fiber. We find matching invariants

for both of the compactifications with non-standard embedding on the heterotic side

that lead to a maximally higgsable gauge group and for fifteen other geometries we

expect that a heterotic dual exists.

The paper is supplemented by two Appendices. In Appendix A we summarize

the definitions of the various modular and Jacobi forms that appear throughout

the discussion. Finally, in Appendix B, we discuss in some detail the higgsing of

the gauge group for one of the models with non-standard embedding and give the

necessary branching rules.

Acknowledgements: We thank Justin David, Rajesh Gopakumar, Timm Wrase,

Harald Skarke, Cesar Fierro Cota and Albrecht Klemm for helpful discussions. The

work of T.S. is supported by the Austrian Science Fund (FWF): P30904-N27. A.C.

thanks the Centre for High Energy Physics at the Indian Institute of Science where a

large portion of her work was done. A.C. is supported by the IRC Laurette fellowship.

The work of A.B., A.C., A.K. and M.S. is supported by the OeAD ‘Scientific &

Technological Cooperation with India’ grant Project IN 27/2018 titled ‘Mathieu

moonshine and N = 2 Heterotic - Type II string duality’. The work of A.K. was

further supported by DKPI (Vienna) and the Austrian Marshall Fellowship.

– 3 –



2 The new supersymmetric index for CHL orbifolds

In this section we compute the massless spectrum as well as the new supersymmetric

index for compactifications of the heterotic E8 × E8 string on (K3 × T 2)/Z3. The

generator g′ of Z3 acts via an order three shift along one of the circles of T 2 together

with a symplectic automorphism of K3. The latter corresponds to the unique order

three subgroup of M23 < M24 that is in the conjugacy class 3A of M24.

We first compute the twisted elliptic genus of order N = 3 orbifolds of K3. The

twisted elliptic genus is defined as the trace

F (r,s)(τ, z) =
1

N
Trg′r((−1)FL+F̄Rg′se2πizFLqL0 q̄L̄0) , (2.1)

over the Ramond-Ramond sector of a non-linear sigma model into K3. For N = 3

the result can be expressed in terms of modular forms for Γ1(3) and reads

F (0,0)(τ, z) =
8

3
A(τ, z), F (0,1)(τ, z) =

2

3
A(τ, z)− 1

2
B(τ, z)E3(τ) , (2.2)

F (r,rk)(τ, z) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(
τ + k

3

)
,

where

A(τ, z) =
θ2

2(τ, z)

θ2
2(τ, 0)

+
θ2

3(τ, z)

θ2
3(τ, 0)

+
θ2

4(τ, z)

θ2
4(τ, 0)

, B(τ, z) =
θ2

1(τ, z)

η6(τ)
, (2.3)

while r = 1, 2 and rk := rk mod 3. This result was essentially bootstrapped in [16]

and we reproduce it by directly evaluating the trace after taking a T 4/Z3 orbifold

limit of the K3. In particular, it encodes the new supersymmetric index for com-

pactifications on (K3× T 2)/Z3 with standard embedding, as predicted in [17]. The

explicit calculation serves as a check that our construction of the orbifold is correct.

Next we move on to calculate the massless spectrum of the heterotic theory com-

pactified on (K3×T 2)/Z3 for various gauge backgrounds. The realization of the K3

as T 4/Z3 allows for five inequivalent embeddings of Z3 into the gauge group which

lead to an anomaly free theory [3, 18, 19]. They can be represented by shift vectors

V = (γ, γ̃) where 3γ and 3γ̃ take values in the two E8 lattices. For the standard em-

bedding, the difference between the number of hypermultiplets and vectormultiplets

was computed in [5]. Among the four non-standard embeddings we find two models

where the spectrum enables us to maximally higgs the gauge group.

Then we compute the new supersymmetric index of the heterotic theory com-

pactified with standard embedding, where one of the E8 groups remains unbroken.

The new supersymmetric index is given by

Znew(τ, τ̄) =
1

η2(τ)
TrR

(
(−1)FF qL0−c/24q̄L̄0−c̄/24

)
, (2.4)

where q = e2πiτ and the trace is again performed over the Ramond sector of the

internal CFT which has central charge (c, c̄) = (22, 9). The right moving worldsheet
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fermion number F is given by the sum of the fermion number on T 2 and that of K3.

Our result matches that obtained by general arguments in [6] which acts as a further

check to our orbifold construction.

We will then proceed to calculate the new supersymmetric index Znew for the

four non-standard embeddings. In each case of standard or non-standard embedding

we can show that the difference between the number of hypermultiplets and vector-

multiplets Nh−Nv computed from the new supersymmetric index matches with the

result obtained from explicitly counting the degrees of freedom.

2.1 The twisted elliptic genus of K3

We will now proceed to compute the twisted elliptic genus of the 3A orbifold of K3

where K3 is realized as T 4/Z3. Let us denote the coordinates on T 4 by (z1, z2) ∈
C2/Z2 with periodicity

zi ∼ zi + n1e1 + n2e2 , e1 = e
2πi
3 , e2 = 1 , (n1, n2) ∈ Z2 , (2.5)

i.e. the A- and B-cycles of the torus e1, e2 generate the root lattice of SU(3). Then

the Z3 orbifold of T 4 which results in the orbifold limit of K3 can be implemented

as

gs : (z1, z2) 7→
(
e2πis/3z1, e

−2πis/3z2

)
. (2.6)

We also need to specify the action of the generator g′ of the Z3 that is used in

the CHL quotient (K3×T 2)/Z3. We consider the g′ action as a one-third shift along

the A-cycle and a two-third shift along the B-cycle,

g′ : (z1, z2) 7→
(
z1 +

1

3
e1 +

2

3
e2, z2

)
, (2.7)

with

g′2 : (z1, z2) 7→
(
z1 +

2

3
e1 +

1

3
e2, z2

)
. (2.8)

We first compute the twisted elliptic genus of the corresponding orbifold of K3 and

show that it matches with the results obtained in [16, 20–25]. This serves as a check

of our construction.

The twisted elliptic genus in the (r, s)-sector is given by the index

F (r,s)(τ, z) =
1

9

2∑
a,b=0

Trga,g′r
(

(−1)FL+F̄Rgbg′se2πizFLqL0 q̄L̄0

)
. (2.9)

The overall factor of 1/9 comes from the projection of g, g′, both of which are Z3

orbifolds. The trace is taken over the Ramond-Ramond sector and FL, FR are the

left- and right-moving fermion numbers. In defining the index we have suppressed

the shifts L0 − c/24 and L̄0 − c̄/24, where (c, c̄) = (6, 6).
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Let us now define the trace

F(a, r; b, s) =
1

9
Trga,g′r

(
(−1)FL+F̄Rgbg′se2πizFLqL0 q̄L̄0

)
. (2.10)

To evaluate each of the above sectors in the twisted elliptic genus we will need the

fixed points under the elements gag′r, a, r being the twists in g and g′ respectively.

We also require to know which elements preserve these fixed points. We summarize

the result in table 1.

Fixed points g′ g′2 g g2 g′g g′g2 g′2g g′2g2

g (0, 0), (2/3, 1/3), (1/3, 2/3) × × X X × × × ×

g2 (0, 0), (2/3, 1/3), (1/3, 2/3) × × X X × × × ×
gg′ (2/3, 0), (0, 2/3), (1/3, 1/3) × × × × X × × X

g2g′ (1/3, 0), (0, 1/3), (2/3, 2/3) × × × × × X X ×

gg′2 (1/3, 0), (0, 1/3), (2/3, 2/3) × × × × × X X ×

g2g′2 (2/3, 0), (0, 2/3), (1/3, 1/3) × × × × X × × X

Table 1: Rows list the properties of points that are fixed under the action of the

element gag′b in the first column. A × denotes that the point moves under the action

of the corresponding element g′agb in the top row, while X indicates that the point

remains fixed. Positions are given as multiples of the A- and B-cycle e1 and e2.

Now we evaluate the different sectors of the twisted elliptic genus. The sector

(0, 0) comes with no twists in g′ or insertions of g′ and so the trace reduces to

F (0,0)(τ, z) =
1

3
ZK3(τ, z) =

8

3
A(τ, z) . (2.11)

where ZK3 is the elliptic genus of K3.

Let us now look into the untwisted sectors of the twisted elliptic genus. In the

(0, 1) and (0, 2) sectors we obtain from table 1, that a single insertion of g′ does not

preserve any of the fixed points. Hence we get,

F(a, 0; b, 1) = F(a, 0; b, 2) = 0, for a = 1, 2 . (2.12)

Evaluating the trace in the untwisted sector we see the contributions are

F(0, 0; 0, s) = 0 , (2.13)

F(0, 0; 1, 1) = F(0, 0; 1, 2) =
θ1(z + 1

3
, τ)θ1(−z + 1

3
)

θ2
1(1

3
, τ)

,

F(0, 0; 2, 1) = F(0, 0; 2, 2) =
θ1(z + 2

3
, τ)θ1(−z + 2

3
)

θ2
1(2

3
, τ)

.
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The coefficients (numerical) in the traces come from the contribution of fermionic

zero modes. There are 9 right moving fermionic zero modes when g or g2 are inserted

in the trace. It can be easily shown by considering the q expansions that

F(0, 0; 1, 1) + F(0, 0; 2, 1) = F(0, 0; 1, 2) + F(0, 0; 2, 2) (2.14)

=
2

3
A(τ, z)− 1

2
B(τ, z)E3(τ) = F

(0,1)
3A (τ, z) = F

(0,2)
3A (τ, z) ,

as predicted in [16, 20–24].

The other sectors can be obtained from F (0,1) through the modular transforma-

tion property of the twisted elliptic genus given by,

F (r,s)

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cz2

cτ + d

)
F (cs+ar,ds+br)(τ, z) , (2.15)

where a, b, c, d ∈ Z, ad− bc = 1. However, with the knowledge of the fixed points we

can directly compute the twisted sectors and re-evaluate the results of the twisted

elliptic genus in each sector.

In the sectors twisted by g′ without any insertion of g′ we have the components

of the twisted elliptic genus given by

F (1,0) =
2∑

a,b=0

F(a, 1, b, 0) .

Now F(0, 1, 1, 0) = 0 = F(0, 1, 2, 0) and also F(1, 1, 1, 0) = 0 = F(2, 1, 1, 0) due to

the absence of any fixed point in the twisted sector (table 1). The aame argument

holds for F(1, 1, 2, 0) = 0 = F(2, 1, 2, 0). Also F(0, 1, 0, 0) = 0 due to the presence

of zero modes of the right moving fermions. Therefore the only contributions are

F (1,0) = F(1, 1, 0, 0) + F(2, 1, 0, 0) .

Computing the trace we get

F(1, 1, 1, 1) =
θ1(z + τ

3
, τ)θ1(−z + τ

3
)

θ2
1( τ

3
, τ)

, (2.16)

F(2, 1, 0, 0) =
θ1(z + 2τ

3
, τ)θ1(−z + 2τ

3
)

θ2
1(2τ

3
, τ)

,

F (1,0) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(τ
3

)
.

If we insert a g′ in the trace we have the non-vanishing components in the twisted

elliptic genus given by

F(1, 1, 1, 1) =
θ1(z + τ+1

3
, τ)θ1(−z + τ+1

3
)

θ2
1( τ+1

3
, τ)

, (2.17)

F(2, 1, 2, 1) =
θ1(z + 2τ+2

3
, τ)θ1(−z + 2τ+2

3
)

θ2
1(2τ+2

3
, τ)

,

F (1,1) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(
τ + 1

3

)
.
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The rest of the sectors vanish as all the fixed points change position. Similarly for

the insertion of g′2 we have

F(1, 1, 1, 1) =
θ1(z + τ+2

3
, τ)θ1(−z + τ+2

3
)

θ2
1( τ+2

3
, τ)

, (2.18)

F(2, 1, 2, 1) =
θ1(z + 2τ+1

3
, τ)θ1(−z + 2τ+1

3
)

θ2
1(2τ+1

3
, τ)

,

F (1,2) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(
τ + 2

3

)
.

A very similar argument holds for the g′2 twisted sector and the results can be

summarized as:

F (2,0) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(τ
3

)
, (2.19)

F (2,1) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(
τ + 2

3

)
,

F (2,2) =
2

3
A(τ, z) +

1

6
B(τ, z)E3

(
τ + 1

3

)
.

We note that these results were obtained previously in [16, 20–24], however, the

authors are not aware of any paper that explicitly evaluates the traces.

2.2 Calculating the massless spectrum

In this section we derive the massless spectrum of the heterotic string theory com-

pactified on (K3 × T 2)/ZN . To this end we consider again an orbifold limit of the

K3 such that the compactification space is [(T 4/Z3)× T 2] /Z3. The orbifold action

on the six toroidal coordinates can be given by

g : (z1, z2, z3) 7→ (e2πi/3z1, e
−2πi/3z2, z3) , (2.20)

where z3 is a coordinate on T 2 and z1, z2 parametrize the T 4. Again, the cycles of

the T 4 form an SU(3) lattice in C2 and we denote the A- and B-cycle by

e1 = e
2πi
3 , e2 = 1 . (2.21)

We can assume that the corresponding lattice for the T 2 is generated by 1 and i.

The action of the CHL quotient is then

g′ : (z1, z2, z3) 7→
(
z1 +

1

3
e1 +

2

3
e2, z2, z3 +

1

3

)
. (2.22)

The spectrum of K3 realized as T 4/Z3 with the standard shift was first studied in [26]

and we will follow the discussion of [26, 27]. Note that the orbifold action g′ does

not produce any fixed points and so it preserves N = 2 supersymmetry.
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The massless spectrum organizes into four-dimensional N = 2 supergravity mul-

tiplets with Nv vectormultiplets and Nh hypermultiplets in the theory. The massless

states in the g twisted sector are determined by setting left and right masses to zero

m2
L = NL +

1

2
(P + nV )2 + En − 1 = 0 ,

m2
R = NR +

1

2
(r + nv)2 + En −

1

2
= 0 .

(2.23)

Here P is an E8 × E8 lattice vector and of the form

P = (PE8 ;PE′8) , (2.24)

while En is the shift in zero point energy on the ground state due to the twisting by

gn. It is given by

En =
1

9
n(ν − n), (2.25)

where ν = 3 for the T 4/Z3 orbifold and n = 0, 1, 2. Moreover, r is an SO(8) weight

vector with
4∑
i=1

ri = odd , (2.26)

and the 4 dimensional vector v with

v =
1

3
(0, 0, 1,−1) , (2.27)

encodes the action that we used to define the T 4/Z3 orbifold. The value of V encodes

the embedding of the Z3 into the gauge group. It takes values in the two E8 lattices

scaled by one third. For standard embedding we have the shift given by

V =
1

3
(1,−1, 06; 08) . (2.28)

The degeneracy of the massless states for T 4/Z3 model can be obtained from [27]

D(n) =
1

3

2∑
m=0

χ(n,m)∆(n,m), (2.29)

∆(n,m) = exp

{
2πi[(r + nv)mv − (P + nV )mV +

1

2
mn(V 2 − v2) +mρ]

}
.

Here χ(n,m) are the number of fixed points in the gn twisted sector invariant under

the action of gm and ρ is the phase by which oscillators are rotated under the Z3

action on the T 4.

In the case of order three CHL orbifolds this formula is modified to

D(n; g′) =
1

3

2∑
m=0

1

3

[
χ(n,m) + χ(g′)(n,m) + χ(g′2)(n,m)

]
∆(n,m) , (2.30)
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where χ(g′s)(n,m) is the number of fixed points in the gn twisted sector invariant

under the action of gmg′s. Essentially we implement the projection under the g′

action. In the untwisted sector

χ(g′s)(0,m) = χ(0,m) = 1, for s = 1, 2 , (2.31)

and the phases in (2.30) implement how the spectrum is projected under gm. In the

twisted sectors we can use again table 1 to obtain

χ(g′)(1,m) = χ(g′2)(1,m) = 0 . (2.32)

The sector n = 2 gives the anti-particles of the n = 1 sector. The untwisted sector,

which counts the gravity multiplet and the number of vectors, remains the same as

obtained in [27]. The result for the twisted sectors are just one third of that in [27].

In the following table 2 we summarize the untwisted and twisted hypermultiplet

contents in the various embeddings of K3×T 2 where K3 is considered at the T 4/Z3

orbifold limit.

Group, shift Untwisted sector Twisted sector

E7 × U(1)× E8 (56; 1) + 2(1; 1) 9(56; 1)
1
3
(1,−1, 06; 08) +(1; 1) + 45(1, 1)

18(1, 1)

SU(9)× E8 (84, 1) + 2(1, 1) 9(36, 1) + 18(9, 1)
1
3
(2, 14, 03; 08)

SO(14)2 × U(1)2 (14, 1) + (1, 14) 9(14, 1)
1
3
(2, 07; 2, 07) +(64, 1) + (1, 64) +9(1, 14)

+2(1, 1) +18(1, 1)

E6 × SU(3)× E7 × U(1) (27, 3, 1) 9(27, 1, 1)
1
3
(2, 12, 05; 1,−1, 06) +(1, 1, 56) 9(1, 3, 1)

+2(1) + (1) +18(1, 3, 1)

SU(9)× E6 × SU(3) (84, 1, 1) + (1, 27, 3) 9(9, 1, 3)
1
3
(2, 12, 05; 2, 14, 03) 2(1)

Table 2: Hypermultiplet spectrum for different embeddings with K3 as T 4/Z3. We

have not kept track of various U(1) charges.

In the table 3 we show how the twisted sectors get modified under the order

three orbifold action.
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Group, shift Untwisted sector Twisted sector Nh −Nv

E7 × U(1)× E8 (56; 1) + 2(1; 1) 3(56; 1) -134
1
3
(1,−1, 06; 08) +(1; 1) +15(1, 1)

+6(1, 1)

SU(9)× E8 (84, 1) + 2(1, 1) 3(36, 1) + 6(9, 1) -80
1
3
(2, 14, 03; 08)

SO(14)2 × U(1)2 (14, 1) + (1, 14) 3(14, 1) 64
1
3
(2, 07; 2, 07) +(64, 1) + (1, 64) +3(1, 14)

+2(1, 1) +6(1, 1)

E6 × SU(3)× E7 × U(1) (27, 3, 1) 3(27, 1, 1) 28
1
3
(2, 12, 05; 1,−1, 06) +(1, 1, 56) +3(1, 3, 1)

+2(1) + (1) +6(1, 3, 1)

SU(9)× E6 × SU(3) (84,1,1)+(1,27,3) 3(9,1,3) 82
1
3
(2, 12, 05; 2, 14, 0) 2(1)

Table 3: Hypermultiplet spectrum for different embeddings with 3A orbifold of K3

where K3 is realized as T 4/Z3. We have not kept track of various U(1) charges.

The sectors twisted by g′ do not have massless modes as the winding numbers

become one-third of integers. The untwisted sector contains the N = 2 gravity

multiplet and N = 2 vector multiplets along with the hypers as obtained in [19]. The

twisted sectors only contain the hypers. The hypermultiplet contents are summarized

in table 2, 3. Evaluating the difference between Nh and Nv we have for the standard

embedding

Nh −Nv = −134. (2.33)

This was predicted in [6]. Note that when counting the number of vector multiplets

Nv we only consider those that originate from the E8 × E8 group and not the four

generic vectors that arise from the T 2. When no orbifold acts on K3 the theory can

be lifted to six dimensions. The value of Nh−Nv then remains 244 for any realization

of K3 and for any embeddings because of anomaly cancellation in six dimension [28].

This is different for N = 2 or N = 3 orbifold models.

By explicitly analysing the possible higgs chains for the gauge groups and spectra

in table 3 we found that for two of the models the gauge group can be completely

broken. These are the non-standard embeddings with Nh−Nv = 64 and Nh−Nv =

82. For the model with Nh − Nv = 64 we provide the details of the higgs chain in

Appendix 3. In section (4) we will construct Calabi-Yau geometries for which the

enumerative invariants exactly match the predictions from the heterotic calculation

of the gauge gravitational couplings for both of the models. We also find many more

Calabi-Yau manifolds for which we expect that a heterotic dual compactification

– 11 –



on (K3 × T 2)/Z3 exists but where the embedding can not be realized with our

construction.

2.3 The new supersymmetric index

In this section we shall evaluate the new supersymmetric index of the heterotic

string compactified on K3 × T 2 with an order 3 CHL action on K3 × T 2 with

various embeddings of E8 × E8. We shall explicitly compute the results of standard

embeddings and summarize the result of non-standard ones. We consider K3 at the

orbifold limit of T 4/Z3 where the Z3 action on T 4 is given in (2.20). The CHL action

is given by (2.22). The new supersymmetric index is defined as

Znew(τ, τ̄) =
1

η2(τ)
TrR((−1)FFqL0−c/24q̄L̄0−c̄/24). (2.34)

Under the standard embedding we have the shift action given by equation (2.28).

The above trace for standard embedding splits into the following sectors:

Znew(τ, τ̄) = − 1

2η20(τ)

2∑
a,b=0

2∑
r,s=0

e−
2πiab

9 Za,b
E8

(τ)× E4(τ)× 1

9
F (a, r, b, s, τ)Γ

(r,s)
2,2 (q, q̄) ,

(2.35)

where only Γ
(r,s)
2,2 (q, q̄) , defined in (2.44), has a non-holomorphic dependence which

encodes the winding and momenta modes contribution of the T 2 bosons. The factor

of E4 is obtained from the untouched E8 lattice. We can write the trace over the

directions of T 4 as

F (a, r, b, s; τ) = Trga g′r
(
gbg′seiπF

T4

qL0 q̄L̄0

)
, (2.36)

and one can work out the explicit expression

F (a, r, b, s; τ) = ka,r,b,sη2(τ)q
−a2
9

1

θ2
1(aτ+b

3
, τ)

. (2.37)

For standard embeddings the coefficients ka,r,b,s for different values of (r, s) are given

by the following matrices:

ka,0,b,1 =ka,0,b,2 = 9

0 1 1

0 0 0

0 0 0

 , ka,1,b,0 = ka,2,b,0 = 9

0 0 0

1 0 0

1 0 0

 ,

ka,1,b,1 =ka,2,b,2 = 9

0 0 0

0 1 0

0 0 1

 , ka,2,b,1 = ka,1,b,2 = 9

0 0 0

0 0 1

0 1 0

 ,

ka,0,b,0 =9

0 1 1

1 1 1

1 1 1

 .

(2.38)
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Here the rows and columns are denoted by a and b respectively. The result for the

coefficients ka,r,b,s comes from counting the fixed points as for the case of twisted

elliptic genus in table 1.

However, if the embedding is non-standard the new supersymmetric index is

given by

Znew(τ, τ̄) = − 1

2η20(τ)

2∑
a,b,r,s=0

e−2πi ab
ν2

Γ2

Za,b
E8

(τ)Za,b
E′8

(τ)
1

ν2
F (a, r, b, s, τ)Γ

(r,s)
2,2 (τ, τ̄) ,

(2.39)

where the partition functions over the shifted E8 lattices are

Za,b
E8

(τ) =
1∑

α,β=0

e−iπβa
∑8
I=1 γ

I
8∏
I=1

θ
[
α+2aγI

β+2bγI

]
,

Za,b
E′8

(τ) =
1∑

α,β=0

e−iπβa
∑8
I=1 γ̃

I
8∏
I=1

θ
[
α+2aγ̃I

β+2bγ̃I

]
,

(2.40)

with γ, γ̃ being the shifts in the E8, E
′
8 lattices, while ν = 3 is the order of the orbifold

on T 4. Moreover, Γ2 = ν2(γ2 + γ̃2) is the sum of the squares of all the shifts in the

two E8 lattices. Under non-standard embeddings we have

ka,0,b,1 =ka,0,b,2 = 9

0 1 1

0 0 0

0 0 0

 , ka,1,b,0 = ka,2,b,0 = 9

0 0 0

1 0 0

1 0 0

 ,

ka,1,b,1 =ka,2,b,1 = 9

0 0 0

0 e−πi(2−Γ2)/9 0

0 0 e−4πi(2−Γ2)/9


ka,1,b,2 =ka,2,b,1 = 9

0 0 0

0 0 e−2πi(2−Γ2)/9

0 e−5πi(2−Γ2)/9 0

 ,

ka,0,b,0 =9

0 1 1

1 e−πi(2−Γ2)/9 e−2πi(2−Γ2)/9

1 e−5πi(2−Γ2)/9 e−4πi(2−Γ2)/9

 ,

(2.41)

These matrices can be obtained as follows: When r · s = 0, then ka,r,b,s is identi-

cal to the result that we obtained for standard embedding. Furthermore, modular

invariance requires that the values in ka,0,b,0 satisfy

ka,0,b,0 = eπi
a2

9
(2−Γ2)ka,0,a+b,0 , ka,0,b,0 = e−2πiab

9
(2−Γ2)kb,0,−a,0 , (2.42)

where a, b are considered modulo three [29]. The relation

ka,0,b,0 =
∑
r,s
rs>0

ka,r,b,s , (2.43)
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together with the fact that the matrices differ from those for the standard embedding

only by a phase, then fixes all of the other coefficients. The lattice sum involving the

winding and momenta modes are given in each case by,

Γ
(r,s)
2,2 (τ, τ̄) =

∑
m1,m2,n2∈Z
n1=Z+ r

3

q
p2L
2 q̄

p2R
2 e2πim1s/3 , (2.44)

where the left- and right-moving momenta are given by

1

2
p2
R =

1

2T2U2

| −m1U +m2 + n1T + n2TU |2 ,

1

2
p2
L =

1

2
p2
R +m1n1 +m2n2 ,

(2.45)

with T, U being Kähler and complex structure of T 2.

One can then define the different components of the new supersymmetric index

Zr,snew via

Znew(τ, τ̄) = − 1

η24(τ)

2∑
r,s=0

Zr,snew(τ)Γ
(r,s)
2,2 (τ, τ̄). (2.46)

We note that Zr,snew are good modular functions and for N = 3 orbifolds satisfy

Z0,1
new = Z0,2

new , Z1,1
new = Z2,2

new , Z1,2
new = Z2,1

new . (2.47)

The value of Nh −Nv can be extracted from the new supersymmetric index as

Nh −Nv = −1

4

1

η20(τ)

2∑
0,s=0

Z0,s
new

∣∣
q1/6

, (2.48)

where Z0,0
new = 4

3
E4E6. The results for the Zr,snew sectors can be given in terms of

modular forms for Γ1(3) and read

Z0,1
new =

4

3

(
âE4E6 + b̂E2

3 (τ)E6 + ĉE4(E6 + 3E3(τ)E4) + d̂E2
3 (τ)(E6 + 3E3(τ)E4)

)
,

Zr,rknew =
4

3

(
âE4E6 +

b̂

9
E ′3

2
(τ)E6 + ĉE4(E6 − E ′3E4) +

d̂

9
E ′3

2
(E6 − E ′3E4)

)
, (2.49)

where we have introduced E ′3(τ) = E3( τ+k
3

) and the different values of â, b̂, ĉ, d̂ are

given in table 4. We note that the difference between the number of hypers and

vectors in the standard embedding is as expected from earlier results in [6].
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Shift Nh −Nv â b̂ ĉ d̂

1
3
(1,−1, 06; 08) −134 0 0 1

4
0

1
3
(2, 14, 03; 08) −80 1

16
− 9

16
− 3

16
9
16

1
3
(2, 07; 2, 07) 64 −1

48
3
16

1
48

3
16

1
3
(1,−1, 06; 2, 12, 05) 28 0 0 −1

32
9
32

1
3
(2, 12, 05; 2, 14, 03) 82 −1

32
9
32

3
64

9
64

Table 4: Zr,snew for different embeddings with K3 as T 4/Z3 and N = 3 CHL orbifold.

As we review in section 4.1, the difference Nh − Nv directly encodes the Euler

characteristic χ of a dual Calabi-Yau compactification space via

χ = 2(Nv −Nh) + 8 . (2.50)

Let us note again that when counting the vector multiplets Nv we only consider those

that originate from the E8 ×E8 and not the generic four vectors that arise from the

T 2. It turns out that the coefficients of the new supersymmetric indices for all of the

four non-standard embeddings can be expressed as

â =
1

2733
(48 + χ) , b̂ = − 1

273
48 + χ ,

ĉ =− 1

2833
(456 + 5χ) , d̂ =

1

283
(264 + χ) .

(2.51)

This would imply the values

(â, b̂, ĉ, d̂) =

(
3

32
, −27

32
, −17

64
,

45

64

)
, (2.52)

for the standard embedding with Nh − Nv = −134, which is clearly different from

what we found via an explicit calculation. Note that for compactifications on K3×T 2

and (K3×T 2)/Z2 it was found that the new supersymmetric index can be expressed

in terms of the Euler characteristic for all of the standard and non-standard em-

beddings that had been considered [3, 6]. It would be interesting to understand

what makes the standard embedding on (K3× T 2)/Z3 different and whether a non-

standard embedding exists that realizes (2.52).

3 Heterotic computation of Gopakumar-Vafa invariants

In this section we compute the Gopakumar-Vafa invariants from the heterotic side

for the non-standard embeddings discussed above. The Gopakumar-Vafa invariants
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ngβ correspond to weighted sums of multiplicities of BPS states that arise from M2-

branes wrapping curves of class β ∈ H2(M) in a Calabi-Yau threefold M [30, 31].

We will loosely refer to ngβ as Gopakumar-Vafa invariants of genus g because they

only receive contributions from M2-branes that wrap curves with genus less than or

equal to g. To obtain the invariants one needs to calculate the gravitational coupling

in the low energy N = 2 effective theory. The main ingredients of the calculation

are different sectors of the new supersymmetric index.

At certain points in the moduli space one encounters singularities in the gravi-

tational coupling. Towards the end of this section we shall discuss these singularities

known as conifold singularities. The observations here are very similar to the ones

obtained in [5]. The strength at these singular points are given by the Gopakumar-

Vafa invariants at these points. It is also similar to the results for the standard

embedding in [5] that the untwisted sector is devoid of these singular points.

3.1 Extraction of Gopakumar-Vafa invariants from Fg

The gravitational couplings Fg of the low energy effective N = 2 theories appear as

S =

∫
Fg(y, ȳ) · F 2g−2

+ R2
+ , (3.1)

where F+, R+ are the self-dual parts of the graviphoton and Riemann tensor and

y, ȳ denote the dependence on vector moduli.

For K3 × T 2 without any orbifolding, the couplings have been computed from

the corresponding heterotic one-loop amplitude in [2] using the so-called Borcherd

lift [32]. The calculation without any graviphoton insertion, which leads to the

prepotential of the supergravity theory, was done earlier in [33]. For compactifications

on (K3×T 2)/Z3 with standard embeddings the calculation has been performed in [5].

Through the computation of this Fg we can obtain predictions for Gopakumar-

Vafa invariants at genus g of a dual Calabi-Yau threefold. The essential ingredient

in computing the Fg is given by the new supersymmetric index. Under standard

embedding for any g′ orbifold of K3 the results of this index were given in [6]

Znew(q, q̄) = −4
N−1∑
r,s=0

Γ
(r,s)
2,2 f (r,s)(τ) , (3.2)

where one introduces

f (r,s)(τ) =
1

2η24(τ)
E4

[
1

4
α

(r,s)
g′ E6 − β(r,s)

g′ (τ)E4

]
=
∑
l∈ Z
N

c(r,s)(l)ql . (3.3)

The α
(r,s)
g′ are numerical constants while β

(r,s)
g′ are weight 2 modular forms for Γ1(N),

where N corresponds to the order of the orbifold group.
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It has previously been shown [12, 34–36] that the one-loop integral Fg is

Fg =
1

2π2(g!)2

∫
d2τ

τ2

{
1

τ 2
2 η

2(τ)
TrR

[
(i∂̄X)(2g−2)(−1)FFqL0− c

24 q̄L̃0− c̃
24

]
(3.4)

〈
g∏
i=1

∫
d2xiZ

1∂Z2(xi)

g∏
j=1

∫
d2yjZ̄

2∂Z̄1(yj)〉

}
.

Here X is the complex coordinate on the T 2 and Z1, Z2 are the complex coordinates

of the transverse non-compact space time. The above result is obtained from the

Wick contractions of the graviton and graviphoton vertex operators. Factorizing the

non-compact directions, the internal CFT trace is given by

1

η2(τ)
TrR

[
(i∂X)(2g−2)(−1)FFqL0− c

24 q̄L̃0− c̃
24

]
= (3.5)

2
1

η24(τ)

∑
r,s

Γ
(r,s)
2,2

(
(p

(r,s)
R )√

2T2U2

)(2g−2)

q|pL|
2/2q̄|pR|

2/2f r,s(τ) .

The only essential difference between this trace and the new supersymmetric index

computation are the extra powers of p
(r,s)
R . It is evident that under non-standard

embedding f (r,s) would have to be replaced by 1
4η24(τ)

Zr,snew. The momenta p
(r,s)
L , p

(r,s)
R

are given in equation (2.45), assuming no other moduli dependence on the heterotic

side.

In order to make contact with the enumerative geometry of a type II Calabi-

Yau compactification that produces the same effective action we need to extract the

holomorphic part of the integral Fg. The purely holomorphic contribution to the

gravitational couplings are given by

F̄ hol
g =

(−1)g−1

π2

N−1∑
s=0

(∑
m>0

e−2πin2s/Nc
(r,s)
g−1 (n1n2/N)Li3−2g(e

2πim·y)

+
1

2
c

(0,s)
g−1 (0)ζ(3− 2g)

)
.

(3.6)

where y = (T, U) with T, U being the complex and the complexified Kähler structure

of T 2. The coefficients c
(r,s)
g−1 (n1n2/N) are obtained from

1

4η24
Zr,snewP2k+2(G2, G4, . . . , G2g) =

∑
l∈ Z
N

c
(r,s)
g−1 (l)ql , (3.7)

whereG2k = 2ζ(2k)E2k, ζ is the Riemann zeta function and E2k denote the Eisenstein

series of weight 2k. P2g is defined through the Schur polynomial of order g in the

following manner

P2g(x1, x2, · · · xg) = −S
(
x1,

1

2
x2, · · ·

1

g
xg

)
. (3.8)
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For an orbifold of order N the lattice sum m > 0 involves the points

m = (n1, n2) ≥ 0 , but (n1, n2) 6= (0, 0) , (3.9)

(r/N,−n2) , with n2 > 0 and rn2 ≤ N .

The Gopakumar-Vafa invariants of the potential Calabi-Yau duals can now be ex-

tracted from the heterotic results by first writing down the Gopakumar-Vafa form of

the genus g topological amplitude. In terms of Gopakumar-Vafa invariants ngm and

for g > 1 it can be written as [30, 31]

FGV
g =

(−1)g|B2gB2g−2|χ(X)

4g(2g − 2)(2g − 2)!
(3.10)

+
∑
β

[
|B2g|n0

m

2g(2g − 2)!
+

2(−1)gn2
m

(2g − 2)!
± ...− g − 2

12
ng−1
m + ngm

]
Li3−2g(e

2πim·y) ,

where B2g are the Bernoulli numbers and χ(X) is the Euler characteristic of the

Calabi-Yau. For g = 0 we get

FGV
0 = ζ(3)

χ(X)

2
+
∑
m>0

n0
mLi3(e2πim·y) . (3.11)

For g = 1 we have

FGV
1 =

∑
m>0

(
1

12
n0
m + n1

m

)
Li1(e2πim·y) . (3.12)

Comparing the constant term of (3.6) and (3.10) gives the following relation between

the toplogical amplitudes

FGV
g =

(−1)g+1

2(2π)2g−2
F̄ hol
g . (3.13)

By proceeding recursively, one obtains expressions for the Gopakumar-Vafa invari-

ants of lowest genus

n0
(n1,n2) =2

N−1∑
s=0

e−
2πn2s
N c

(r,s)
−1 ,

n1
(n1,n2) =

1

2π2

N∑
s=0

e−
2πin2s
N c

(r,s)
0 (m2/2)− 1

12
n0

(n1,n2) ,

n2
(n1,n2) =

1

8π4

N−1∑
s=0

e−
2πin2s
N c

(r,s)
1 (m2/2)− |B4|

8
n0
n1,n2

,

(3.14)

where r = n1N mod N and m2 = 2n1n2.
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3.2 Conifold singularities

Conifold singularities are reflected in the gravitational thresholds as poles where

vectors become massless. The polylogarithm Lia(z) is singular at z = 1 and the

leading behaviour around the pole is for a < 0 given by

Lia(z) = (z
d

dz
)|a|

1

1− z

∣∣∣∣
z→1

∼ a!
1

(1− z)|a|+1
. (3.15)

Hence the leading divergence for g > 1 in F̄ hol
g can be written as

F̄ hol
g |m·y→0 ∼

(−1)g−1

π2

N−1∑
s=0

e−2πin2s/Nc
(r,s)
g−1 (n1n2)(2g − 3)!

1

{1− e2πim·y}2g−2
, (3.16)

where

m · y = n1T1 + n2U1 = 0 , n1T2 + n2U2 = 0 . (3.17)

Coefficients of those functions are related to the Euler characteristics however and

can be computed from the spectrum or Znew. Since T2, U2 > 0, being the imaginary

parts of the Kähler and complex structure of the torus T 2, and m is constrained

by (3.10) we see that n2 is negative at these singularities. Therefore in the untwisted

sector a possible singularity lies at

(n1, n2) = (1,−1) , n1n2 = −1 , (3.18)

However, a close inspection of the new supersymmetric index shows that for any

standard or non-standard embedding for N = 3 CHL orbifolds there lies no conifold

singularity in the untwisted sector, This was previously observed for the standard

embedding results in [5].

4 Dual type IIA compactifications on Calabi-Yau threefolds

In the previous sections we have discussed in detail the calculation of the gravitational

coupling

S =

∫
Fg(y, ȳ)F 2g−2

+ R2
+ , (4.1)

for heterotic E8 × E8 compactifications on (K3× T 2)/Z3. Following the arguments

that we review below, one expects that there exists a dual type IIA compactification

on a genus one fibered Calabi-Yau threefold with three-sections that also exhibits a

K3 fibration.

The calculations of the heterotic one-loop calculation in this paper extends ear-

lier work [5, 6] in that we consider several non-standard embeddings of the spin
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connection into the gauge connection. In particular, two of the corresponding ef-

fective theories exhibit a spectrum such that the gauge group can be maximally

higgsed to U(1)3. We can therefore hope that dual type IIA compactifications on

Calabi-Yau threefolds to these models exist such that the geometries are genus one

and K3-fibered but have the lowest possible number of Kähler moduli h1,1 = 3.

In this section we will systematically engineer such Calabi-Yau manifolds using

tools from toric geometry and show that they are indeed dual to heterotic compacti-

fication on (K3×T 2)/Z3. To this end we employ the modular bootstrap and obtain

all-genus topological string amplitudes on the corresponding geometries. We then

match these with the results from the heterotic one-loop calculation.

4.1 A brief review of heterotic/type II duality

Let us briefly review the basics of heterotic/type II duality and why the Calabi-

Yau manifolds require a particular fibration structure. A standard reference on this

duality is still [37] and a more recent discussion can be found in [38].

In six dimensions, heterotic strings on T 4 are dual to type IIA strings on a

K3 [39, 40]. The four dimensional duality between heterotic strings on K3 × T 2

and type IIA strings on a Calabi-Yau threefold [41] can then be motivated by an

adiabatic argument [42]. More precisely, one can fiber the geometries on both sides of

the duality over a P1 such that the fibration of K3 over P1 is a Calabi-Yau threefold.

Matching the amount of unbroken supersymmetries requires the fibration on the

heterotic side to only involve a 2-torus inside T 4 such that the resulting geometry is

K3× T 2. From the perspective of the type II compactification, the heterotic string

arises from a 5-brane that wraps the generic K3 fiber. The adiabatic argument can

fail at points where the K3 fiber degenerates and this can be related to the presence

of 5-branes on the heterotic side of the duality [38].

The heterotic compactification on K3 × T 2 exhibits a self-duality group which

contains the SL(2,Z) action on the complex structure of the torus. After taking a

ZN quotient which acts by an order N shift on the torus, this duality group is broken

down to the congruence subgroup Γ1(N) ⊂ SL(2,Z) that preserves the generator of

a ZN subgroup of T 2 [9, 42]. The duality group of the heterotic string is realized on

the type IIA side as monodromies in the stringy Kähler moduli space of the Calabi-

Yau threefold [13, 43]. This implies that for heterotic strings on (K3 × T 2)/ZN
the dual Calabi-Yau compactification space should be a genus one fibration with

N -sections [9, 44].

The moduli space of the four-dimensional N = 2 effective theories factorizes into

M =Mvec. ×Mhyp. , (4.2)

where Mvec. is parametrized by the expectation values of scalar fields from vector

multiplets and Mhyp. is correspondingly parametrized by scalars from hyper multi-

plets. The coefficients Fg(y, ȳ) in (4.1) only depend on the vector moduli.
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On the heterotic side there are four massless vector fields from reducing the

metric and the B-field along the T 2 of which one contributes to the single graviton

multiplet. The remaining three vector fields combine with 6 real scalars that arise

from the dual of the B-field in four dimensions, the dilaton and the Kaluza-Klein

modes of the metric and the B-field along T 2, as well as an appropriate number

of fermions, into three vector multiplets. The dilaton and the dual of the B-field

combine into a complex axio-dilaton while the Kaluza-Klein modes of metric and

B-field can be interpreted as the complex structure and the complexified Kähler

structure of T 2. Additional massless vector multiplets might descend from the 10-

dimensional E8 × E8 gauge group but those can acquire a mass from the choice of

gauge background.

On the type IIA side, the scalars in the vector multiplets arise as Kaluza-Klein

modes of the Kähler form and the B-field, both of which can be expanded in harmonic

2-forms that in turn correspond to H1,1(M) classes of the Calabi-Yau M . The

graviphoton on the other hand corresponds to the Ramond-Ramond one-form. This

implies that for a heterotic compactification that leads to the minimum of four vector

fields a dual Calabi-Yau compactification space needs to exhibit h1,1 = 3. The three

minimal Kähler moduli of the Calabi-Yau can be related to the volume of the generic

fiber, the volume of the base of the K3 fiber and the volume of the P1 base of the

K3 fibration. Moreover, the coefficients Fg(y, ȳ) are topological [12, 35] and can be

interpreted as genus g amplitudes of the A-twisted topological string theory on M .

Under the duality, the complex structure and the complexified Kähler structure

of the T 2 on the heterotic side can be identified with the complexified volumes of fiber

and base of the generic K3 fiber. The heterotic axio-dilaton is identified with the

complexified volume of the P1 base of the K3 fibration. On the heterotic side one can

T-dualize along the cycle that is not involved in the ZN quotient and this exchanges

complex and complexified Kähler structure on T 2. This duality is also realized as a

monodromy in the complexified Kähler moduli space of the dual Calabi-Yau.

4.2 Constructing Calabi-Yau duals

We now want to construct Calabi-Yau threefolds that exhibit both a K3 fibration

and a genus one fibration while h1,1 = 3. To this end let us first introduce some

mathematical background about K3 surfaces [45, 46].

In constrast to the wealth of topologically distinct Calabi-Yau threefolds there

is only one topological type of K3 surfaces. The non-vanishing Hodge numbers are

always h0,0 = h2,0 = h0,2 = h2,2 = 1 and h1,1 = 20. However, for a given K3 surface

S, the H2(S,Z) cohomology decomposes into the Nron-Severi lattice

NSK3 = H2(S,Z) ∩H1,1(S) , (4.3)

and the orthogonal complement T which is called the transcendental lattice. The

rank of NSK3 is called the Picard number ρ(S). A K3 fibration is called ΛS polarized
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if there is a set of divisors on the total space M of the fibration such that the

restrictions of the divisors to a generic fiber generate a sublattice ΛS ⊂ NSK3. For

K3 surfaces of Picard number two one can write the intersection form on NSK3 as

I =

(
2a b

b 2c

)
, a, b, c ∈ Z , 4ac− b2 < 0 . (4.4)

Moreover, the surface is genus one fibered with an N -section if and only if b2−4ac =

N2.

Our goal in this section is to construct genus one fibered Calabi-Yau threefolds

that also exhibit a K3 fibration and have h1,1 = 3. Let us first note that every

genus one fibration that exhibits 1-, 2- or 3-sections is birational to a hypersurface

in a fibration of weighted projective spaces [45]. The respective fibers are P(1, 2, 3),

P(1, 1, 2) and P2. Moreover, the base of a genus one fibration can only be P2, a

Hirzebruch surface Fm, the Enriques surface or blowups of these geometries [47]. A

fibration over P2 will never exhibit a K3 fibration and, since we are interested in

Calabi-Yau manifolds with h1,1 = 3, the only bases that we have to consider are

Hirzebruch surfaces Fm, m = 0, 1, 2. If we are only interested in genus one fibrations

withN -sections forN ≤ 3 we can therefore restrict ourselves to Calabi-Yau threefolds

that are hypersurfaces in toric ambient spaces. Moreover, since the base of the K3

fibration has to be P1, the fibration has to arise from a compatible toric fibration of

the ambient space. The generic K3 fiber will therefore also be a hypersurface in a

three-dimensional toric variety.

Six K3 surfaces with Picard number two that exhibit a genus one fibration with

N -sections are realized as generic hypersurfaces in three-dimensional toric ambient

spaces. Two more cases have non-toric sections that are combined into a non-toric

“pseudo” N -section. Those fibers can still lead to fibrations with h1,1 = 3 when the

components of the pseudo N -section experience monodromy along the P1 base of the

threefold.

Given a three dimensional reflexive polytope that corresponds to a K3 we can

construct a four-dimensional polytope by lifting ∆K3 into Z3 × Z and adding the

points

ν ′1 = (ν, 1) , ν ′2 = (0,−1) . (4.5)

The convex hull is reflexive whenever ν ∈ 2∆K3 [45]. If the four dimensional polytope

admits a fine regular star triangulation that is compatible with the fibration then

the generic Calabi-Yau hypersurface in the corresponding toric ambient space will

be a K3 fibration.

Elliptic fibrations There is only one case with a 1-section which is the degree

twelve hypersurface in P(1, 1, 4, 6). The intersection form on the Nron-Severi lattice
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is

U =

(
0 1

1 0

)
. (4.6)

Let us write the points of the polytope ∆(1) as


ν1 1 0 0

ν2 0 1 0

ν3 −2 −3 0

ν4 −2 −3 1

ν5 −2 −3 −1

, (4.7)

There are three more points in the interior of facets and they correspond to divisors

that do not intersect the generic hypersurface. In general those points will not lift to

points in the interior of facets of the four-dimensional polytope. The only inequivalent

choices of points ν ∈ 2∆(1) that lead to a Calabi-Yau threefold with h1,1 = 3 are

ν = (−4,−6,−n, 1) , (4.8)

for n ∈ {0, 1, 2}. They lead to the well-known elliptic fibrations over Fn. The

Gopakumar-Vafa invariants of degree zero with respect to the P1 base of the K3

fibration are the same for all three geometries. Nevertheless, they differ already

in the triple intersection numbers and correspond to heterotic compactifications on

K3× T 2 with instantons distributed as (12 + n, 12− n) among the two E8’s.

Genus one fibrations with three-sections Three K3 surfaces that exhibit a

genus one fibration with three sections are realized as generic hypersurfaces in three-

dimensional toric ambient spaces. They correspond to the reflexive polytopes that

are the convex hull ∆
(3)
n of the points


ν1 1 0 0

ν2 0 1 0

ν3 −1 −1 0

ν4 n 0 1

ν5 0 0 −1

, (4.9)

with n ∈ {−1, 0, 1}. The intersection forms on the Nron-Severi lattice are

I(3)
n =

(
2(1 + n) 3

3 0

)
. (4.10)

For n = 2 the corresponding K3 surface has Picard rank four but only two gener-

ators of NSK3 descend from toric divisors on the ambient space. One of the toric
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divisors corresponds to a “pseudo” three-section with trivial monodromy acting on

the intersections with the generic fiber. However, if this geometry is fibered over a

P1, the pseudo three-section can turn into a real three-section. The fibration is then

only polarized with respect to a sublattice of the generic fiber. The intersection form

I
(3)
2 with respect to the toric divisors on the K3 is equivalent to I

(3)
−1 .

Again we can lift ∆
(3)
n into Z3 × Z and add the points (4.5),

ν ′1 = (ν, 1) , ν ′2 = (0,−1) . (4.11)

The convex hull is reflexive whenever ν ∈ 2∆
(3)
n . Furthermore, we can use lattice

automorphisms to impose ν3 ≤ 0. This allows us to identify the divisor that corre-

sponds to the point ν ′2 as the vertical divisor π−1(B) and the divisor corresponding

to ν5 as π−1(F ), where B and F are the base and the fiber of the Hirzebruch surface

that is the base of the genus one fibration. All of the corresponding Calabi-Yau

threefolds will have h1,1 = 3 except if n = 2 and ν takes one of the three values

ν = (0, 0,−2) , ν = (1, 0,−1) , = (2, 0, 0) . (4.12)

For all choices of n and ν we can express the Euler characteristic χ
(3)
n (ν) of the

Calabi-Yau threefold in terms of the vector ν in (4.5),

χ(3)
n (ν) = n(−12ν1 + 6ν2) + 6n2ν3 − 144 . (4.13)

It turns out that it is exactly the fibrations constructed from the fibers with

n = −1 and n = 2, i.e. those where the intersection form on the polarization lattice

is

I =

(
0 3

3 0

)
, (4.14)

that can be matched with weakly coupled heterotic compactifications on (K3 ×
T 2)/Z3. When n ∈ {0, 1}, the fiber-base duality of the K3 fiber and therefore the

T-duality of any heterotic dual is broken. For hypersurfaces in toric ambient spaces,

the Gopakumar-Vafa invariants at genus zero can be calculated using standard tech-

niques [48]. We find that for n ∈ {−1, 2} the invariants at genus zero and of degree

zero with respect to the base of the K3 fibration only depend on the Euler char-

acteristic and for low degrees we list the result in table 5. Here the degrees dB, dF
respectively correspond to the P1 base and the genus one fiber of the generic K3

fiber. More precisely, for a given class β ∈ H2(M) one has

dF = E0 · β , dB = π−1(B) · β , (4.15)

where E0 is the divisor associated to the three-section. This implies that (dB, dF ) =

(3, 0) is the class of the generic genus one fiber while degrees dF ≡ 1, 2 mod 3 corre-

spond to contributions from isolated I2 singular fibers in special K3 fibers. We find
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dB\dF 0 1 2 3 4

0 0 χ
2

+ 240 χ
2

+ 240 −χ χ
2

+ 240

1 χ
2

+ 240 1962− 3χ 10χ
3

+ 18016 15χ
2

+ 95454 413280− 30χ

2 0 χ
2

+ 240 10χ
3

+ 18016 413280− 30χ 54χ + 5694624

3 0 0 −χ 15χ
2

+ 95454 54χ + 5694624

4 0 0 0 χ
2

+ 240 413280− 30χ

5 0 0 0 0

Table 5: Genus zero Gopakumar-Vafa invariants of degree zero with respect to the

base of theK3 fibration for geometries where the intersection form on the polarization

lattice is (4.14). This matches the heterotic prediction from (2.49) with (2.51).

a total of 17 inequivalent toric ambient spaces that lead to families of K3 fibered

Calabi-Yau hypersurfaces with eight different Euler characterstics

χ ∈ {−192, −168, −156, −150, −144, −138, −132, −120} . (4.16)

Three models lead to χ = −192 and are special in that the three-section is actually

a union of three sections. The number of Kähler moduli is then h1,1 = 5.

It turns out that the invariants exactly match those predicted from (3.6) with (2.49)

and (2.51) when we identify dF = n1, dB = n1 +n2. In other words, the complexified

volume of the generic genus one fiber τ and the volume of the base of the K3 fiber t

can be related to the complex structure and the complexified Kähler structure T, U

on the heterotic side via

τ = U , t = T − U . (4.17)

This identification is the same as for the original STU -model. In summary, we find

that a K3 fibered Calabi-Yau threefold exhibits Gopakumar-Vafa invariants with

respect to the K3 fiber that match the predictions from the corresponding one-loop

amplitudes of heterotic strings on (K3× T 2)/Z3 if and only if the intersection form

on the polarization lattice is (4.14).

Two of the heterotic compactifications with non-standard embedding on (K3×
T 2)/Z3 led to a maximally higgsable gauge group and the corresponding predictions

for the Euler characteristics were χ = −120 and χ = −156. The geometries with

(n; ν) given by (−1; 2, 0, 0) and (2;−2,−2, 0) have Euler characteristic χ = −120.

However, both are genus one fibrations over Hirzebruch F0 and they turn out to be

Wall equivalent. All of their genus zero invariants appear to match and we therefore

have a unique candidate Calabi-Yau dual.

On the other hand, the geometries with the data (−1; 0, 2, 0), (−1;−1, 0, 0),

(−1; 0, 1,−1) and (2; 0, 1, 2) have Euler characteristic χ = −156. The former two

are again Wall equivalent and fibered over F0 while the latter two are also Wall

equivalent but fibered over F1. Their intersection rings as well as the Gopakumar-

Vafa invariants for non-zero degrees with respect to the base of the K3 fibration
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dB\dF 0 1 2 3 4 5

0 0 χ
2

+ 240 χ
2

+ 240 −χ χ
2

+ 240 χ
2

+ 240

1 χ
2

+ 84 318− χ 4776− χ
2

4χ + 32262 156540− 11χ
2

665484− 2χ

2 0 χ
2

+ 84 4776− χ
2

156540− 11χ
2

37χ
2

+ 2492400 26767452− 17χ
2

3 0 −2 χ
2

+ 240 3χ + 94806 5681624− 27χ 48χ + 159180264

4 0 0 0 4776− χ
2

37χ
2

+ 2492400 223507008− 84χ

5 0 0 0 0 156540− 11χ
2

69χ + 79435170

Table 6: Genus zero Gopakumar-Vafa invariants of degree zero with respect to the

base of theK3 fibration for geometries where the intersection form on the polarization

lattice is (4.10) for n = 1.

are different. We therefore find a situation that is similar to the STU models with

instanton numbers (12− n, 12 + n) for n = 0, 1, 2. They also produce the same new

supersymmetric index but are respectively dual to generic elliptic fibrations over

Fn, n = 0, 1, 2 [50].

Without the CHL orbifold, the instanton number of the non-standard embed-

ding that leads to the predicted value χ = −156 is n = 3 [3]. One might be

tempted to divide this number by three and conjecture that the geometry with data

(−1; 0, 1,−1)/(2; 0, 1, 2) is the correct dual. However, determining the instanton

number of the dual heterotic compactification directly from the Calabi-Yau geome-

try is difficult although a proposal was made in [38]. We leave a further investigation

of this issue for future work. Note that the instanton number without CHL quotient

of the non-standard embedding that predicts χ = −120 is n = 0. This seems com-

patible with the fact that the unique Calabi-Yau hypersurface in our classification

that reproduces this number is fibered over F0.

The Euler characteristic of all threefolds from n = 0 is χ
(3)
0 (ν) = −144 and the

Gopakumar-Vafa invariants at genus 0 with respect to the K3 fiber given in table 7

while for n = 1 the invariants are listed in table 6.

Genus one fibrations with two-sections Let us finally comment on the geome-

tries with two-sections that have been discussed in [9]. Three K3 hypersurfaces can

be obtained from the polytope with points


ν1 1 0 0

ν2 −1 1 0

ν3 −1 −1 0

ν4 −2 n 1

ν5 0 0 −1

, (4.18)

for n ∈ {0, 1, 2}. The intersection forms on the corresponding Nron-Severi lattice are

I(2)
n =

(
2n 2

2 0

)
. (4.19)
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dB\dF 0 1 2 3 4 5

0 0 168 168 144 168 168

1 54 1080 9504 55080 258876 1045440

2 0 1080 55080 1045440 12531888 112746384

3 0 168 94248 5686200 159172380 2868991776

4 0 0 55080 12531888 828397800 29153182176

5 0 0 9504 12531888 2115255492 147357745992

Table 7: Genus zero Gopakumar-Vafa invariants of degree zero with respect to the

base of theK3 fibration for geometries where the intersection form on the polarization

lattice is (4.10) for n = 0.

The case n = 2 corresponds to a K3 with Picard rank three but again a part of

NSK3 is generated by non-toric divisors that combine into a toric two-section. Note

that the intersection forms I
(2)
0 and I

(2)
2 are related by a change of basis. In [8, 9] the

Gopakumar-Vafa invariants of Calabi-Yau threefolds that exhibit a K3 fibration and

a genus one fibration with two-sections haven been compared against the heterotic

one-loop calculation for compactifications on (K3×T 2)/Z2 from [5, 6]. We note that

the matching cases are exactly those where the polarization lattice is I
(2)
0 .

4.3 All genus checks via the modular bootstrap

We now want to use the modular bootstrap [9, 49] in order to obtain all-genus

expressions for the topological string amplitudes. Before we apply it to the geometries

constructed above, let us briefly review the general technique.

We assume that a Calabi-Yau threefold M is genus one fibered with N -sections

over a rational base B such that h1,1(M) = 1 + h1,1(B) and N ≤ 4. More general

cases are covered in [9] but will not be relevant for our discussion. A basis of divisors

is given by the three section E0, as well as a set of vertical divisors Di = π−1D̃i, i =

1, ..., b2(B) for a basis of divisors D̃i on B. There is a second set of vertical divisors

D′i, i = 1, ..., b2(B) that is dual to the curves

Ci =
1

N
E0 ·Di . (4.20)

Finally, one can find a vertical divisor D, such that Ẽ0 = E0 +D is orthogonal to all

of those curves. The complexified Kähler form ω on M can then be parametrized as

ω = τ · Ẽ0 +
∑

i
t̃i ·D′i , (4.21)

such that τ is the complexified volume of the generic fiber and t̃i, i = 1, ..., h1,1(B)

are complexified volumes of the dual curves. To make the modular structure manifest

one needs to introduce shifted Kähler parameters

ti = t̃i +
ãi

2N
τ , (4.22)
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where the coefficients ãi are defined as

ãi =

∫
M

Ẽ2
0 ·Di . (4.23)

One can now expand the topological string partition function Ztop. on M as

Ztop.(τ, t, λ) = Z0(τ, λ)

1 +
∑

β∈H2(B)

Zβ(τ, λ)Qβ

 , (4.24)

where λ is the topological string coupling constant and Qβ = exp(2πit · β). The

coefficients Zβ(τ, λ) are conjectured to be meromorphic Jacobi forms of weight 0 and

index 1
2
β · (β − c1(B)) with respect to λ. More precisely, they take the form

Zβ(τ, λ) =
∆2N(τ)1−

rβ
N

η(Nτ)12β·c1(B)

φβ(τ, λ)∏b2(B)
i=1

∏βi
k=1 φ−2,1(Nτ, kλ)

, (4.25)

where ∆2N(τ) is a particular modular form for Γ1(N), η(τ) is the Dedekind eta

function and φ−2,1(τ, λ) is a weak Jacobi form. The exponent of ∆2N is the smallest

positive solution to the congruence condition

1− rβ
N
≡ 1

2

[
Nc1(B)− ã

N

]
· β mod 1 . (4.26)

The numerator φβ(τ, λ) is some weak Jacobi form for Γ1(N) and for low degree β it

can be fixed, e.g. from the knowledge of some Gopakumar-Vafa invariants.

Let us now apply this procedure to the three-section geometries that we con-

structed from ∆
(3)
n in the previous section. The toric data of the four-dimensional

ambient space is as follows:





u 1 0 0 0 1 ∗ ∗ ← 3-section E0

v 0 1 0 0 1 ∗ ∗ ← 3-section E0 − n ·D1 + (ν2 − ν1) ·D2

w −1 −1 0 0 1 ∗ ∗ ← 3-section E0 − n ·D1 − ν1 ·D2

a1 n 0 1 0 0 1 0 ← vertical divisor D′2 = π−1(B − ν3F )

a2 0 0 −1 0 0 1 ν3 ← vertical divisor D1 = π−1(B)

b1 ν1 ν2 ν3 1 0 0 1 ← vertical divisor D2 = D′1 = π−1(F )

b2 0 0 0 −1 0 0 1 —"—

0 0 0 0 −3 −1 0

Recall that we used lattice automorphisms to fix ν3 ≤ 0 such that B and F are

the base and fiber of the Hirzebruch surface F−ν3 that is the base of the genus

one fibration. While one can give closed expressions for the empty values in the
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Mori-cone, they are somewhat bulky and we do not require them in the following

discussion.

We choose E0 = [u] as the “zero” three-section and find

E2
0 ·D1 = −4 · ν1 + 2 · ν2 + ν3 + 2 , E2

0 ·D2 = 2− 4 · n . (4.27)

as intersections on the generic Calabi-Yau hypersurface. This implies that

Ẽ0 = E0 +
2

3
(2 · n− 1)D1 +

1

3
(4 · n+ 4 · ν1 − 2 · ν2 − ν3 − 4)D2 , (4.28)

is orthogonal to the curves E0 ·D1/2 and we calculate

ã1 = Ẽ2
0 ·D2 = 4 · n− 2 , ã2 = Ẽ2 ·D1 = 4 · ν1 − 2 · ν2 − ν3 − 2 . (4.29)

The correct parametrization of the Kähler form to obtain modular amplitudes is then

ω = τ · Ẽ0 +

(
t1 −

1

6
ã1

)
D′1 +

(
t2 −

1

6
ã2

)
D′2 . (4.30)

We want to apply the modular bootstrap to obtain all genus amplitudes with

respect to the K3 fiber, i.e. we are interested in Zβ for β = k · F . The exponent rβ
in (4.25) is then given by

1− rk·F
3
≡ k

3
(2 · n− 1) mod 1 . (4.31)

For n ∈ {−1, 2} and k = 1 we use genus zero Gromov-Witten invariants to fix the

ansatz

Z1(τ, λ) =
1

48

∆6(τ)

η(3τ)24φ−2,1(3τ, λ)

[
(120 + χ)E4(τ)− 9(152 + χ)E3(τ)2

]
, (4.32)

where we refer to the Appendix A for the definition of the modular and Jacobi forms.

From this we can extract Gopakumar-Vafa invariants for arbitrary fiber degrees and

genera and the results for low orders are listed in table 8. This matches with the

predictions from the heterotic calculation and provides another strong check of the

duality.

5 Conclusions

In this paper we have explicitly calculated the new supersymmetric index for several

heterotic compactifications on (K3 × T 2)/Z3. To this end we considered a T 4/Z3

orbifold limit of the K3 with all of the five possible embeddings of the Z3 action

into the gauge group. The index encodes the gauge and gravitational coupling of the

N = 2 effective theory that arise from heterotic one-loop amplitudes and leads to pre-

dictions for certain Gopakumar-Vafa invariants of dual Calabi-Yau compactification
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dF\g 0 1 2 3 4 5

0 χ
6

+ 26 0 0 0 0 0

1 χ
2

+ 240 0 0 0 0 0

2 1962− 3χ 0 0 0 0 0

3 10χ
3

+ 18016 −χ
3
− 52 0 0 0 0

4 15χ
2

+ 95454 −χ− 480 0 0 0 0

5 413280− 30χ 6χ− 3924 0 0 0 0

6 88χ
3

+ 1627330 −23χ
3
− 36188 χ

2
+ 78 0 0 0

7 54χ+ 5694624 −18χ− 192348 3χ
2

+ 720 0 0 0

8 18353988− 195χ 78χ− 838332 5886− 9χ 0 0 0

9 170χ+ 55646304 −80χ− 3362964 38χ
3

+ 54464 −2χ
3
− 104 0 0

10 291χ+ 159217686 −157χ− 11963892 61χ
2

+ 290202 −2χ− 960 0 0

Table 8: Gopakumar-Vafa invariants of degree zero with respect to the base of the

K3 fibration and degree one with respect to the base of the K3 fiber.

spaces. This generalizes earlier calculations for compactifications on K3 × T 2 [1–3]

as well as the subsequent extensions to (K3 × T 2)/ZN , where for N = 3 only the

standard embedding has been considered [5, 6]. In particular, we obtain two vacua

where the hypermultiplet spectrum enables us to maximally higgs the gauge group

to U(1)3.

Let us note that for all choices of embeddings except for the standard embedding,

the new supersymmetric index depends only on the difference Nh−Nv of the number

of vector- and hypermultiplets. This is the same behaviour that was observed for

all embeddings when the heterotic string is compactified on K3 × T 2 [3] or (K3 ×
T 2)/Z2 [6]. It would be interesting to understand the reason why the standard

embedding for Z3 orbifolds is special. We hope to come back to this question in

future work.

We then systematically constructed candidate Calabi-Yau duals that exhibit

both a K3 and a genus one fibration structure, as well as three sections with respect

to the latter. In this way we could show that the enumerative invariants exhibit

the correct structure if and only if the intersection form on the polarization lattice

is three times the intersection form on the Narain lattice Γ1,1. Physically, this can

be interpreted as the requirement that the dual heterotic compactification exhibits

T-duality. For each of the two heterotic models that can be higgsed to U(1)3 we

find Calabi-Yau manifolds that reproduce the predicted enumerative invariants. We

apply the modular bootstrap [9] to obtain all genus results for a subset of the topo-

logical string amplitudes and in that way provide a strong check of the duality. Our

discussion generalizes and provides a more systematic understanding of earlier con-

– 30 –



structions of Calabi-Yau duals for heterotic compactifications on (K3×T 2)/Z2 [7–9].

Multiple geometries that match the same new supersymmetric index are distin-

guished by their classical intersection numbers and by those enumerative invariants

that lead to predictions for what from the heterotic perspective are non-pertubative

corrections. This situation is analogous to that encountered already for heterotic

compactifications on K3 × T 2. It is well known that the embeddings of the gauge

connection with instanton numbers (12− n, 12 + n) for n = 0, 1, 2 produce the same

new supersymmetric index and are respectively dual to type IIA compactifications

on generic elliptic fibrations over the Hirzebruch surfaces Fn [50]. However, it is

quite difficult to derive the heterotic instanton numbers from the geometry of the

Calabi-Yau or the classical intersection numbers of the Calabi-Yau from a heterotic

calculation, see e.g. [38] for a discussion of this issue. It will be very interesting to

study this problem in the context of heterotic compactifications on (K3 × T 2)/ZN
and their dual Calabi-Yau manifolds. We leave this as another question that we hope

to address in future work.

A Conventions for modular forms

In this Appendix we summarize the definitions of the various modular and Jacobi

forms that appear throughout the paper. The Dedekind eta function is defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn) , (A.1)

where q = exp(2πiτ). It is a modular form of weight 1/2 with a multiplier system

and transforms as

η(τ + 1) = e
πi
12η(τ) , η(−1/τ) =

√
−iτη(τ) . (A.2)

The classical Eisenstein series can be written as

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
, E6(τ) = 1− 504

∞∑
n=1

n5qn

1− qn
, (A.3)

and are modular forms of respective weight four and six.

We will also need to consider modular forms for the congruence subgroup Γ1(3)

of the modular group. The corresponding ring can be generated by three functions

E4, E6 and E3, where E3 is a holomorphic modular form of weight two that can be

expressed in terms of the Dedekind eta function via

E3(τ) = − 24

2πi
∂τ log

(
η(τ)

η(3τ)

)
. (A.4)
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Moreover, the unique weight six modular form for Γ1(3) with a second order zero at

τ → i∞ is given by

∆6(τ) =
η(3τ)18

η(τ)6
. (A.5)

The generalized Jacobi theta function can be written as

θ

[
a

b

]
(τ, z) =

∑
k∈Z

q
1
2(k+a

2 )
2

eπi(k+a
2 )be(2πiz)(k+a

2 ) , (A.6)

and one introduces

θ1(τ, z) =θ

[
1

1

]
(τ, z) , θ2(τ, z) = θ

[
1

0

]
(τ, z) ,

θ3(τ, z) =θ

[
0

0

]
(τ, z) , θ4(τ, z) = θ

[
0

1

]
(τ, z) .

(A.7)

This determines also the weak Jacobi form φ−2,1(τ, z) of weight −2 and index 1 via

φ−2,1(τ, z) = −θ1(τ, z)2

η(τ)6
, (A.8)

that we need for the modular bootstrap.

B Higgsing of the gauge group

In this Appendix we will explain in some detail how the gauge group of the models

of table 3 can be higgsed by giving vacuum expectation values (vev’s) to scalars in

the hypermultiplets. We take the necessary branching rules from [51]. For more on

higgsing see for example [52, 53].

For concreteness sake we will study the third model of table 3. Before higgsing

we have the following gauge group and matter content, coming from the twisted and

untwisted sector

SO(14)× SO(14)× U(1)2 (B.1)

4(14,1) + 4(1,14) + (64,1) + (1,64) + 8(1,1) .

The matter content is labelled by the representations under the two SO(14) groups,

i.e. we have left out the U(1) charges. Counting degrees of freedom we find the

numbers of vector- and hypermultiplets Nv = 184 and Nh = 248. We will start by

explaining how to higgs the first SO(14) factor.

For this we notice the following branching rules

SO(14) ⊃ SO(13) : 14→ 13 + 1 , 64→ 64. (B.2)
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Giving a vev to one 14 will break SO(14) to SO(13). One 13 will get ‘eaten’ by the

broken generators of the gauge fields (turning them massive) and the result is the

following gauge group and matter spectrum

SO(13)× SO(14)× U(1)2 , (B.3)

3(13,1) + 4(1,14) + (64,1) + (1,64) + 12(1,1).

We may check that Nh − Nv = 235 − 171 = 64 is unchanged. In the next step we

give a vev to a 13 and use the branching rules

SO(13) ⊃ SO(12) : 13→ 12 + 1 , 64→ 32 + 32′. (B.4)

Similar to before a 12 gets ‘eaten’ by the broken generators of SO(13) and we find

the following gauge group and matter spectrum after higgsing

SO(12)× SO(14)× U(1)2 , (B.5)

2(12,1) + 4(1,14) + (32,1) + (32′,1) + (1,64) + 15(1,1).

Two more similar steps lead to the following gauge group and matter spectrum

SO(10)× SO(14)× U(1)2 , (B.6)

4(1,14) + 2(16,1) + 2(16,1) + (1,64) + 18(1,1).

The branching rules

SO(10) ⊃ SU(5)× U(1) : 16→ 10(1) + 5̄(−3) + 1(5), (B.7)

16→ 1̄0(−1) + 5(3) + 1(−5)

(the number in brackets give the U(1) charge) indicate that we can give a vev to

16 and 16 thereby breaking SO(10) to SU(5) where 10,10 and one scalar will get

‘eaten’ by the broken generators. The gauge group and spectrum after this step of

higgsing are thus

SU(5)× SO(14)× U(1)2 , (B.8)

4(1,14) + 2(5,1) + 2(5,1) + (10,1) + (10,1) + (1,64) + 21(1,1).

In the next step we give a vev to 5, 5̄ and use the branching rules

SU(5) ⊃ SU(4)× U(1) : 5→ 4(1) + 1(−4), (B.9)

10→ 4(−3) + 6(2)

to obtain the gauge group and spectrum

SU(4)× SO(14)× U(1)2 , (B.10)

4(1,14) + 2(4,1) + 2(4,1) + (6,1) + (6̄,1) + (1,64) + 24(1,1).
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We proceed by breaking SU(4) to SU(3) by giving a vev to 4, 4̄ and using the

branching rules

SU(4) ⊃ SU(3)× U(1) : 4→ 3(1) + 1(−3), (B.11)

6→ 3(−2) + 3̄(2).

We obtain the following gauge group and spectrum

SU(3)× SO(14)× U(1)2 , (B.12)

4(1,14) + 3(3,1) + 3(3,1) + (1,64) + 27(1,1).

We can continue in similar manner using 3(3,1) and 3(3̄,1) to higgs SU(3) com-

pletely and end up with

SO(14)× U(1)2 , (B.13)

4(1,14) + (1,64) + 37(1,1).

In the same way we may higgs the second SO(14). The two U(1) factors in the

gauge group may be higgsed by any of the charged scalars. Thus we end up with a

completely higgsed gauge group and 64 neutral scalars.
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