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ELLIPTIC CURVES IN GAME THEORY

ABHIRAM KIDAMBI, ELKE NEUHAUS, AND IREM PORTAKAL

Abstract. We investigate Spohn curves, the algebro-geometric models of dependency
equilibria for 2 × 2 normal-form games. These curves arise as the intersection of two
quadrics in P3 and are generically elliptic curves. We compute and verify the j-invariant
for elliptic curves arising as the intersection of quadrics in P3 using two different im-
plementations: by computing the Aronhold invariants and the discriminant (in Mathe-
matica) and using algorithms for the arithmetic of elliptic curves (in-built in Pari/GP).
We define an equivalency of generic 2 × 2 games based on the j-invariant of the Spohn
curve. Additionally, we examine the reduction of Spohn curves to plane curves and an-
alyze conditions under which they are reducible. Notably, we prove that the real points
are dense on the Spohn curve in all cases. Our examples and computations are further
supported by Macaulay2.
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1. Introduction

In game theory, one is usually interested in the best possible solution of a game.
More precisely, one wants to reach an equilibrium such that the choice of strategy of
each player is optimal for them. The concept of Nash equilibria fulfills this by giving
strategies in which, if the players interact independently of each other, it makes no rational
sense for any of them to deviate from the joint strategy while the others do not. Due
to the assumption of independence, though, often these do not actually give desirable
or ideal solutions. Wolfgang Spohn proposed a different concept of equilibria, the so-
called dependency equilibria, in which it is assumed that the players have some form of
communication and try to maximize their conditional expected payoff ([15],[16]). This
type of equilibrium was first studied from a mathematical point of view in [13] and [14],
which characterize it, up to a certain point, via the so-called Spohn variety. For the
smallest possible games, i.e. games with two players in which both only have two choices,
this variety generically takes the form of an elliptic curve.

Acknowledgments: We thank Daniel Windisch, Lorenzo Baldi, Bernd Sturmfels and Máté Telek for
useful conversations.
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In Section 2, relevant background on dependency equilibria and the Spohn variety is
summarized. We introduce a computational method to check whether the totally mixed
Nash equilibria of a generic 2×2 game is Pareto dominated by a dependency equilibrium.
In Section 3, we investigate when the planar model of such a curve coming from a 2 × 2
game is reducible (Lemma 3.2). This happens in precisely 12 cases with an interesting
combinatorial structure, which is explained in Remark 3.3. We first use this to prove the
denseness of real points for the planar cubic in Lemma 3.5. Then, in Theorem 3.7, we
deduce the same result for the Spohn variety in P3 in the aforementioned 12 cases.

In Section 4, we provide an algorithm and code to compute the j-invariant of an elliptic
curve. This applies not only to elliptic curves derived from the Spohn variety but also
to any elliptic curve arising from two quadrics intersecting at an arbitrary but known
rational point. A game theoretic equivalence between 2 × 2 games is defined based on
the j-invariants of elliptic curves. In this section, we work with the cases when the
payoff matrices, and thus the Spohn curve, are defined over Q. In the case of real payoff
matrices, Appendix A explains how to obtain rational approximations to real numbers.

All relevant code for this paper is hosted on the MathRepo page:

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/

2. Dependency equilibria and the Spohn variety

We consider a single round game with n players 1, . . . , n, where each player i can choose
from di pure strategies 1, . . . , di. The outcome of the game depends on the choices of the
players and is represented by the payoff tables X(1), . . . , X(n). These are tensors of format

d1 × . . . × dn, such that, for each player i, the entry X
(i)
ji···jn

∈ R of the payoff table X(i)

specifies their payoff in the case that every player l chooses pure strategy jl. Formally,
the game is then denoted by X and is said to be a (d1 × . . . × dn)-game in normal-form.
We may understand the players in such a game as probability variables with state space
[di] that decide the joint outcome. The probabilities of the joint decisions are recorded
in the d1 × . . . × dn-format tensor p. Its entries pji···jn

are the probabilities that every
player l chooses the strategy jl. Coming from an algebraic perspective, we view p as an
element in the projective space Pd1···dn−1 over C. Of course, p must have non-negative
real entries that sum up to 1 and therefore lives in the projectivization ∆ ⊂ Pd1···dn−1

of the (d1 · · · dn − 1)-dimensional probability simplex ∆d1···dn−1. We also define the open
simplex ∆ ⊂ Pd1···dn−1 of probability tensors with nonzero entries.

The conditional expected payoff of the ith player, conditioned on them choosing a certain
pure strategy k with respect to p ∈ ∆, is the sum

E
(i)
k (p) :=

d1∑

j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

X
(i)
j1···k···jn

pj1···k···jn

p+...+k+...+

.

Here,

p+...+k+...+ :=
d1∑

j1=1

· · ·
d̂i∑

ji=1

· · ·
dn∑

jn=1

pj1···k···jn
,

with k in the i-th position, is the probability that player i actually chooses the pure
strategy k.

While for Nash equilibria, players maximize their expected payoff, dependency equi-
libria are defined by players maximizing their conditional expected payoff. This allows
for some form of communication between the players as discussed by Spohn in [15, §2].

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/
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Definition 2.1 (Dependency equilibrium [13],[14]). A dependency equilibrium is a joint
probability distribution p ∈ ∆ such that

(∗) p+...+k+...+ 6= 0 for all players i and pure strategies k of player i and

E
(i)
k (p) ≥ E

(i)
k′ (p)

for all players i and all pure strategies k, k′ of player i

or such that p is the limit of a sequence in Pd1···dn−1 with the property (∗).

Defining dependency equilibria via a limit for some cases is necessary, since the de-
nominators of the conditional expected payoffs may be zero. These boundary cases are
studied to in detail in [14]. For now, we will focus on totally mixed dependency equilibria,
which live in the open simplex ∆, i.e. for which the joint probabilities pj1···jn

are neither 0

nor 1, and which can therefore simply be described by the equations E
(i)
k (p) = E

(i)
k′ (p) for

all players i and all pure strategies k, k′ of player i. By multiplying these equations by the
denominators, one finds that the totally mixed dependency equilibria can be described
via a determinantal variety.

Definition 2.2. The Spohn variety V of a game X is defined as the vanishing set of the
2 × 2 minors of the matrices M1, . . . , Mn, given by

Mi(p) :=




...
...

p+...+k+...+

d1∑
j1=1

· · ·
d̂i∑

ji=1
· · ·

dn∑
jn=1

X
(i)
j1···k···jn

pj1···k···jn

...
...




∈ Rdi×2.

In this paper, we will focus mainly on 2 × 2 games. In this case, for simplicity, we will
denote the 2 × 2 payoff tables X(1) as A and X(2) as B. Then, the conditional expected
payoffs are given by

E
(1)
1 (p) =

a11p11 + a12p12

p11 + p12
, E

(1)
2 (p) =

a21p21 + a22p22

p21 + p22
,

E
(2)
1 (p) =

b11p11 + b21p21

p11 + p21

, E
(2)
2 (p) =

b12p12 + b22p22

p12 + p22

.

If p ∈ ∆ (or more general, if p ∈ ∆ and p1+, p2+, p+1, p+2 6= 0), then p is a dependency
equilibrium if and only if

p ∈ V = V(det M1, det M2) ⊂ P3
C

for

M1 =

[
p11 + p12 a11p11 + a12p12

p21 + p22 a21p21 + a22p22

]
, M2 =

[
p11 + p21 b11p11 + b21p21

p12 + p22 b12p12 + b22p22

]
.

More precisely,

det M1 = (a21 − a11)p11p21 + (a22 − a11)p11p22 + (a21 − a12)p12p21 + (a22 − a12)p12p22,

det M2 = (b12 − b11)p11p12 + (b22 − b11)p11p22 + (b12 − b21)p12p21 + (b22 − b21)p21p22.

(1)

Example 2.3 (Prisoner’s Dilemma). Consider the 2 × 2 game with payoff tables

A =

(
2 0
3 1

)
, B =

(
2 3
0 1

)
.

The Spohn variety is defined by the determinants of the matrices
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M1 =

[
p11 + p12 2p11

p21 + p22 3p21 + p22

]
, M2 =

[
p11 + p21 2p11

p12 + p22 3p12 + p22

]
,

namely

V = V(p11p21 − p11p22 + 3p12p21 + p12p22, p11p12 − p11p22 + 3p12p21 + p21p22).

Example 2.4. [14, Proposition 4.6] Consider the 2 × 2 game with payoff tables

A =

(
−1 −1
−2 3

)
, B =

(
−3 0
0 0

)
.

The Spohn variety is defined by the determinants of the matrices

M1 =

[
p11 + p12 −p11 − p12

p21 + p22 −2p21 + 3p22

]
, M2 =

[
p11 + p21 −3p11

p12 + p22 0

]
,

namely

V = V(−p11p21 + 4p11p22 − p12p21 + 4p12p22, 3p11p12 + 3p11p22).

The point p =

(
0 3

8
1
2

1
8

)
lies on the Spohn variety and is a dependency equilibrium.

The point p =

(
0 0
1
2

1
2

)
has p1+ = 0. It lies on the Spohn variety but is not a dependency

equilibrium: For any sequence p(r) converging to p it is

−1 = lim
r→∞

−p
(r)
11 − p

(r)
12

p
(r)
11 + p

(r)
12

= lim
r→∞

−2p
(r)
21 + 3p

(r)
22

p
(r)
21 + p

(r)
22

= −1 +
3

2
=

1

2
.

Proposition 2.5. [13, Theorem 6] If the payoff tables of a game are generic, then the
Spohn variety V is irreducible of codimension d1 + . . . + dn − n and degree d1 · · · dn. The
intersection of V with the Segre variety in the open simplex ∆ is precisely the set of totally
mixed Nash equilibria for the game X.

The following result shows that the case of 2 ×2 games is unique and needs to be studied
separately.

Proposition 2.6. [13, Theorem 8] If n = d1 = d2 = 2 then the Spohn variety V is an
elliptic curve. In all other cases, the Spohn variety is rational, represented by a map onto
(P1)n with linear fibers.

It is important to bear in mind that the above Propositions 2.5 and 2.6 are proven for
generic games and do not necessarily hold for specific games. For example, in the game
Prisoner’s dilemma from Example 2.3, the Spohn curve is reducible and singular.

While, generically, Nash equilibria consist of finitely many points, the Spohn variety
clearly does not. It is natural to ask if this means that by looking at the dependency
equilibria one can always find a better outcome than the one coming from Nash equilibria.
The payoff curve, as defined in [13], describes the payoffs coming from totally mixed
dependency equilibria. It can be computed via the determinant of the Konstanz matrix,
the matrix that gives the parametrization in Proposition 2.6. For any two points on
the curve, if one has higher payoffs for both players, it Pareto dominates the other one.
For generic 2 × 2 games, there is only one totally mixed Nash equilibrium, which can
be computed as in [19, Theorem 6.6]. Using quantifier elimination in Mathematica [20],
we propose a method in [8] to check whether this Nash point is Pareto dominated by a
dependency equilibrium.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/index.html#computations-for-section-2
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3. Denseness of real points

When we are interested in dependency equilibria, we are automatically interested in
the Spohn variety. This is, because, as seen above, dependency equilibria for which
the denominators of the conditional expected payoff do not vanish can be completely
described as the intersection of the Spohn variety with the open probability simplex ∆.
From an algebraic viewpoint, it is much nicer to work with a variety, especially one we
already know basic properties about, as seen above. The discrepancy between studying
the Spohn variety and actual dependency equilibria arises not only from the boundary
cases but also from the fact that we consider the Spohn variety as a projective variety
over the complex numbers, while the probabilities making up the dependency equilibria of
course have to be real. We can easily bridge this gap, and for example adopt statements
of dimension and degree to the real part, if we can show that the real points lie dense
within the Spohn variety. In general, this can be achieved via the parametrization in
Proposition 2.6. We need to focus on the case of 2 × 2 games separately, in which the
Spohn variety is a curve in P3 given by two quadrics.

3.1. Reducibility of the Spohn cubic. For a 2 × 2 game with payoff matrices X(1) =
(aij), X(2) = (bij), the Spohn variety is defined by the two quadrics det(M1) and det(M2).
We may eliminate p2,2 in these equations while the elliptic curve remains the same up to
isomorphy. After a relabeling of the variables to x = p11, y = p12, z = p21 for simplicity,
the resulting planar model is the ternary cubic C ⊂ P2, given by

f = c1x2y + c2x
2z + c3xy2 + c4xz2 + c5y

2z + c6yz2 + c7xyz,

where

c1 = (a11 − a22)(b11 − b12),

c2 = (a11 − a21)(b22 − b11),

c3 = (a12 − a22)(b11 − b12),

c4 = (a11 − a21)(b22 − b21),

c5 = (a12 − a22)(b21 − b12),

c6 = (a12 − a21)(b22 − b21),

c7 = (a12 − a21)(b22 − b11) + (a11 − a22)(b21 − b12).

A ternary cubic of this form is called a Spohn cubic. For reasons that will become clearer
later on, we are interested in the irreducible components of the Spohn cubic. According
to 2.5, for generic payoff matrices, the Spohn variety, and therefore also the Spohn cubic
C, is irreducible. But what conditions must the entries of the payoff tables fulfill in order
for C to be reducible?

Remark 3.1. The cubic equation f is zero and therefore C = P2 if and only if one of the
following holds

(1) One of the payoff tables is constant.
(2) a11 = a21, a12 = a22, b11 = b12, b21 = b22

(3) a11 = a12 = a22, b11 = b21 = b22

(4) a11 = a12 = a21, b11 = b12 = b21

The second case is exactly when det M1 = det M2.

The following result answers, to some extent, the questions posed in [14, Problem 4.3].
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Lemma 3.2. The cubic C is reducible if and only if f is non-zero and one of the following
cases holds:

(1) a11 = a12

(2) a11 = a21

(3) a21 = a22

(4) b11 = b12

(5) b11 = b21

(6) b12 = b22

(7) a12 = a22, b21 = b22

(8) a12 = a21, b12 = b21

(9) 0 = a12(b12 − b22) + a21(b22 − b21) + a22(b21 − b12)

= a11(b22 − b12) + a21(b11 − b22) + a22(b12 − b11)

= a11(b22 − b21) + a12(b11 − b22) + a22(b21 − b11)

(10) 0 = a11(b12 − b21) + a12(b21 − b22) + a21(b22 − b12)

= a12(b11 − b21) + a21(b12 − b11) + a22(b21 − b12)

= a11(b11 − b21) + a21(b22 − b11) + a22(b21 − b22)

(11) 0 = a12(b22 − b21) + a21(b12 − b22) + a22(b21 − b12)

= a11(b22 − b21) + a21(b11 − b22) + a22(b21 − b11)

= a11(b22 − b12) + a12(b11 − b22) + a22(b12 − b11)

(12) 0 = a11(b12 − b21) + a12(b22 − b12) + a21(b21 − b22)

= a12(b11 − b12) + a21(b21 − b11) + a22(b12 − b21)

= a11(b11 − b21) + a12(b22 − b12) + a21(b21 − b11) + a22(b12 − b22)

Proof. The detailed computations can be found in [8]. The ternary cubic C ⊂ P2 is re-
ducible if and only if there exists a projective line completely contained in it. Take three
lines L1, L2, L3 which do not have a common point of intersection and consider their
intersections Xi = Li ∩C with the cubic. Clearly, if any of these intersections is the whole
line, then C is reducible. If this is not the case, then, since any two lines in P2 intersect,
any line contained in C passes through a pair of distinct points (p1, p2) ∈ X1 × (X2 ∪ X3).

Consider the projective lines L1 = V(x), L2 = V(y) and L3 = V(z). We have

f(0, y, z) = yz(c5y + c6z),

f(x, 0, z) = xz(c2x + c4z),

f(x, y, 0) = xy(c1x + c3y).

If any of these is zero, then this means that the entire corresponding line is contained in
the cubic. Hence, if c5 = c6 = 0, c2 = c4 = 0 or c1 = c3 = 0, the cubic is reducible and
we are done. If not, we look at the points of intersection Xi = C ∩ Li of the cubic with
these lines, which can be obtained through the zeros of the polynomials above. Namely,

X1 = {[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : −
c5

c6
]},

X2 = {[0 : 0 : 1], [1 : 0 : 0], [1 : 0 : −
c2

c4
]},

X3 = {[0 : 1 : 0], [1 : 0 : 0], [1 : −
c1

c3
: 0]},

where the last element of each set is only contained if the corresponding denominator is
nonzero.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#proof-of-lemma-3-2
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We now take pairs of distinct points (p1, p2) ∈ X1 × ((X2 \ X1) ∪ (X3 \ X1)). By inserting
both points into a line equation ax + by + cz = 0 we obtain the defining equation of the
line going through them. For example, the first pair gives us c = 0 and a − c1

c3

b = 0,
which results in the given line. If one of these lines is contained in C, then, under the
given assumptions, C is reducible; if not, it must be irreducible.

(p1, p2) Line through p1 and p2

[0 : 0 : 1], [1 : − c1

c3

: 0] V ( c1

c3

x + y)

[0 : 1 : 0], [1 : 0 : − c2

c4

] V ( c2

c4

x + z)

[0 : 1 : − c5

c6

], [1 : 0 : 0] V ( c5

c6

y + z)

[0 : 1 : − c5

c6

], [1 : 0 : − c2

c4

] V ( c2

c4

x + c5

c6

y + z)

[0 : 1 : − c5

c6

], [1 : − c1

c3

: 0] V ( c1c5

c3c6

x + c5

c6

y + z)

Notice that the pairs only actually appear here if all denominators of coordinates are
nonzero.

Inserting these lines into the conic equation and decomposing yields

f(x, −
c1

c3

x, z) =
−xz(a21 − a22)(a11 − a12)((b11 − b22)x + (b21 − b22)z)

a12 − a22

,

f(x, y, −
c2

c4
x) =

xy(b12 − b22)(b11 − b21)((a11 − a22)x + (a12 − a22)y)

b21 − b22
,

f(x, y, −
c5

c6
y) =

xy(d3x + e3y)

(a12 − a21)2(b21 − b22)
,

f(x, y, −
c2

c4
x −

c5

c6
y) =

−xy(d4x + e4y)

(a12 − a21)2(b21 − b22)
,

f(x, y, −
c1c5

c3c6

x −
c5

c6

y) =
x((a11 − a22)x + (a12 − a22)y)(d5x + e5y)

(a12 − a21)2(b21 − b22)
,

where the dl and el are very long polynomials in the entries of the payoff matrices with in-
teger coefficients. Note that, under the given assumptions, the denominators are nonzero.
The cubic is now reducible if, under the given assumptions, one of the numerators of these
polynomials is zero everywhere or, more precisely, if one of the factors in their decompo-
sitions above is zero.

First, let us take a look at the simpler factors. The first polynomial, f(x, − c1

c3

x, z), is
zero if and only if a21 = a22, a11 = a12 or b11 = b21 = b22. We assume here that c3 6= 0,
but actually reducibility follows from these cases even if this is not satisfied: Indeed, if
c3 = 0, then there are two possibilities. If b11 = b12, then c1 = c3 = 0. If a12 = a22, then
a12 = a21 = a22 implies c5 = c6 = 0 and a11 = a12 = a22 implies c1 = c3 = 0. The case
that b11 = b21 = b22 implies c2 = c4 = 0 anyways and can therefore actually be omitted.
We are left with the cases (1) and (3) from the classification.
Very similarly, the second polynomial gives us the cases (5) and (6). The case a11 =
a12 = a22 coming from the last factor cannot occur, since we assume c3 6= 0 here.

We just used that C is reducible if c1 = c3 = 0, c2 = c4 = 0 or c5 = c6 = 0. Given the sim-
pler cases we just obtained, this now reduces to b11 = b12, a11 = a21, (a12 = a22 ∧b22 = b21)
or (a12 − a21 ∧ b21 − b12), namely the cases (2), (4), (7) and (8).
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For the cases under which the long factors vanish we consider the ideals Ji = (di, ei), since
we are interested in the conditions on the payoff matrix entries that guarantee di = ei = 0.

Let us decompose for example J5:

J5 = (b21 − b22, b12 − b22) ∩ (b12 − b22, a11 − a21) ∩ (b12 − b21, b11 − b21)

∩ (b12 − b21, a12 − a21) ∩ (b11 − b21, a11 − a21) ∩ (a12 − a21, a11 − a21)

∩ I11 ∩ I12

Here, I11 and I12 are the ideals corresponding to the cases (11) and (12). One can check
that the vanishing of all the other components is already covered by the cases (1) to
(8). In order to actually obtain (11) and (12) from I11 and I12 we need to show that the
assumption that c3 6= 0 and c6 6= 0 is not necessary. Let for instance c3 = 0. If b11 = b12,
then that is case (4). To see what happens if a12 = a22 we look at the decomposition of
the two ideals

I11 + (a12 − a22)

= (b12 − b22, a12 − a22, a21b11 − a22b11 − a11b21 + a22b21 + a11b22 − a21b22)

∩ (a21 − a22, a12 − a22, a11 − a22),

I12 + (a12 − a22)

= (b11 − b21, a12 − a22, a11b12 − a22b12 − a11b21 + a21b21 − a21b22 + a22b22)

∩ (a21 − a22, a12 − a22, a11 − a22).

The second components cannot vanish, since f is nonzero (Remark 3.1). The first com-
ponents vanishing is already covered by the existing cases. Hence, it is not necessary
to assume that c3 6= 0 and, similarly, neither is c6 6= 0. In this case we also note that
f(x, y, − c1c5

c3c6
x− c5

c6
y) also vanishes if a11 = a12 = a22, but this is already covered by case (1).

For J3 and J4, we can proceed similarly. Decomposing J3 gives us the cases (9) and (10),
and decomposing J4 gives us the cases (11) and (12) again. Assumptions are required for
none of both. �

Given the cases from Lemma 3.2 and assuming that the payoff tables are otherwise
generic, one can compute the actual irreducible components of the Spohn cubic, as is
done in [8]. We see that here, the Spohn cubic always decomposes into a line and a conic.

Let us take a closer look at what these cases look like. For the first 8 cases, it is quite
clear that the Spohn cubic is reducible. The longer cases are not as obvious but there is
still some pattern to them. In fact, the game Prisoner’s Dilemma from Example 2.3 falls
under case (9). Notice that the equalities in the cases are invariant under operations on
the payoff tables that preserve the Spohn curve (see also Example 4.7).

Remark 3.3. Denote by I9, I10, I11, I12 the ideals spanned by the (quadric) polynomials
in the cases (9) to (12) of Lemma 3.2. First we notice computationally ([8]), that

I9 = I9 + (a11(b12 − b21) + a12(b11 − b12) + a21(b21 − b11))

I10 = I10 + (a11(b11 − b12) + a12(b22 − b11) + a22(b12 − b22))

I11 = I11 + (a11(b12 − b21) + a12(b21 − b11) + a21(b11 − b12))

I12 = I12 + (a11(b11 − b21) + a12(b22 − b11) + a22(b21 − b22),

a11(b11 − b12) + a21(b22 − b11) + a22(b12 − b22)).

(2)

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#decomposition-of-spohn-cubic
https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#remark-3-3
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The original generators of the ideals I9, I10, I11 (i.e., the polynomials in Lemma 3.2) are
interchangeable with these new polynomials that have been added in (2): any choice of
three of the four generators (i.e. of the three original generators and the generator added
in (2)) is sufficient to generate the entire ideal Im, for m = 9, 10, 11. For case (12), the
third generator of I12 does not fit in with the others. Here, any choice of three of the
first two original generators of I12 and the two additional generators in (2) is sufficient to
generate the entire ideal. We can therefore forget about the long term in (12) and replace
it with the shorter ones that fit in with the other cases.
For each of the generating four polynomials of Im, there is exactly one aij that does
not occur in the polynomial. These aij are pairwise different within the four generators.

Denote by f
(m)
ij the polynomial among the generators of Im that does not contain aij .

These 4-element sets of polynomials can be represented in the payoff tables A and B as
follows:

f
(12)
12

f
(11)
12

f
(10)
12

f
(9)
12f

(9)
11

f
(10)
11

f
(11)
11

f
(12)
11

f
(10)
21

f
(11)
21

f
(12)
21

f
(9)
22f

(9)
21

(9)

(10)

f
(10)
22

(11)

f
(11)
22

(12)

f
(12)
22

Figure 1. For a polynomial f
(m)
lk , the dots on the left side in A represent the

variables aij appearing in f
(m)
lk . The lines on the right side of the same color in

B represent the two variables bij that occur in the same monomial as aij within

f
(m)
lk . For example, the yellow line in B for f

(9)
11 represents the monomials a12b12

and a12b22 in f
(9)
11 .

There is only one way (up to sign) to arrange monomials in f
(m)
lk such that each variable

occurs exactly in two monomials and one monomial that it occurs in has a negative
sign and one has a positive sign. Therefore, Figure 1 combinatorially determines the

polynomials f
(m)
lk .

The triangles in B either agree in their placement with the triangles in A, or they are
mirrored on the hypotenuse of A. For a fixed m = 9, 10, 11, 12, either both triangles in
A with the hypotenuse on the diagonal are mirrored on it in B, or they both remain
the same in B. The same holds for the anti-diagonal. We also notice that, for the
(purple) point aij in the triangle in A that is not on the hypotenuse, the corresponding
line in B is always the hypotenuse of B. For the other (blue and yellow) points aij in
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the triangle, either the corresponding edge in B goes through the point bij in the same
position or through the point that lies opposite of bij in B. Within each case (m), for
both diagrams in which the triangles have an edge on the diagonal, exactly one of the
two choices explained above holds for all blue and yellow points. The same holds for the
anti-diagonal.

3.2. Finding real smooth points. As hinted, knowing about the irreducible compo-
nents of a variety is useful in determining the denseness of its real part. A pertinent
comment to explicitly state here is that not all quadrics defined over R have real points,
and not all quadrics with dense real points have a common smooth real point. This is
different from the case of irreducible plane cubics with a distinguished point for which a
smooth real point always exists.

Theorem 3.4. [10, Theorem 2.2.9] Let V be an irreducible complex affine variety defined
by real polynomials. If V has a smooth point with real coordinates, then V (R), the set of
real points of V , lies Zariski dense in V .

By covering the ambient projective space with dense open affine subsets, we may apply
this to the Spohn cubic, as well as the Spohn variety.

Lemma 3.5. Given that the defining equation f is non-zero, every irreducible component
of the Spohn cubic C contains a smooth point with real coordinates. In particular, the set
of real points C(R) lies Zariski dense in C.

Proof. If f is zero, the real points trivially lie dense in C. Hence assume that f 6= 0. If
f is irreducible, then the cubic is an elliptic curve and has real points. If the cubic C is
reducible, it is either the union of a line and a conic or the union of three lines. All lines
in P2 are smooth and contain real points. While all irreducible conics are projectively
equivalent to x2 + yz and therefore smooth, it can happen that they contain no real
smooth points. Hence, it suffices to take a closer look at those conics that we obtain from
the cases in Lemma 3.2, as shown in [8].1 We may assume that the defining polynomials
are always irreducible, as otherwise we obtain a union of two (possibly identical) lines.
(1) & (3) The conic in this case is of the form g = d1xy + d2xz + d3yz + d4z

2 and its
Jacobian at a point p is given by

J(p) =
(
d1y + d2z d1x + d3z d2x + d3y + 2d4z

)
.

Clearly, if d1 = 0, then g is reducible. Hence, we can assume that d1 6= 0, under which
circumstance the point [0 : 1 : 0] is a smooth point.
(2) The conic in this case is of the form

g = (a21 − a22)(b11 − b12)x2 + (a12 − a22)(b11 − b12)xy

+ ((a21 − a12)(b11 − b22) + (a21 − a22)(b21 − b12))xz

+ (a22 − a12)(b12 − b21)yz + (a21 − a12)(b21 − b22)z2

= d1x
2 + d2xy + d3xz + d4yz + d5z2

and its Jacobian at a point p is given by

J(p) =
(
2d1x + d2y + d3z d2x + d4z d3x + d4y + 2d5z

)
.

Assume for contradiction that d2 = d4 = 0. This implies that a12 = a22, in which case
g = (a21 − a12)(x + z)((b11 − b12)x + (b21 − b22)z), or that b11 = b12 = b21, in which case
d1 = 0 and g is divisible by z. Therefore, either d2 or d4 is non-zero and hence [0 : 1 : 0]
is a smooth point.

1These 12 cases are presented in the section titled Decompostion of the Spohn Cubic in [8].
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The cases (4),(5) and (6) follow in the same way as the previous three.
(7), (11) & (12) The conic in this case is of the form g = d1xy + d2xz + d3yz and its
Jacobian at a point p is given by

J(p) =
(
d1y + d2z d1x + d3z d2x + d3y

)
.

Since g is irreducible, d1 must be non-zero and thus [1 : 0 : 0] is a smooth point.
(8) The conic in this case is of the form g = d1xy + d2y

2 + d3xz + d4z
2 and its Jacobian

at a point p is given by

J(p) =
(
d1y + d3z d1x + 2d2y d3x + 2d4z

)
.

If d1 = d3 = 0, then g is reducible over C, hence we may assume that one of them is
non-zero, under which circumstance the point [1 : 0 : 0] is smooth.
(9) & (10) The conic in this case is of the form g = d1x

2 + d2xy + d3xz + d4yz and its
Jacobian at a point p is given by

J(p) =
(
2d1x + d2y + d3z d2x + d4z d3x + d4y

)
.

Since g is irreducible, d4 must be non-zero and thus [0 : 1 : 0] is a smooth point. �

Our aim is to extend these properties to the Spohn variety V ⊆ P3. For generic games,
this has already been done in [14, Proposition 4.1], but we are interested in the non-generic
cases from Lemma 3.2. We start by decomposing V into its irreducible components in
the twelve cases and under the assumption that all the other entries are generic. This
can be found in [8].

Proposition 3.6. [1, Proposition 5.8] Let V ⊂ Cm be an irreducible variety defined over

R of dimension d and π : Cm → Cd+1 be a generic projection defined over R. If π(V )
contains a real smooth point, then so does V .

Theorem 3.7. For each of the cases from Lemma 3.2, assuming that all the other entries
of the payoff tables are generic, the irreducible components of the Spohn variety V each
contain a smooth point with real coordinates, hence the set of real points of V lies Zariski
dense in V.

Proof. Consider an irreducible component V = VP3(P ) of V, where P is prime. If W :=
VP2(P ∩ C[p11, p12, p21]) is an irreducible component of C, then, under our assumptions,

it contains a smooth real point p. By covering P2 with the affine open spaces Ũp11=1,

Ũp12=1 and Ũp21=1, for illustration we assume here that p ∈ Ũp11=1. Let Up11=1 be the
corresponding affine open space of P3 and π : C3 → C2 the generic projection between
affine spaces. Then

V ∩ Up11=1 ≃ VC3(g(1, ·) | g ∈ P )

and

π(VC3(g(1, ·) | g ∈ P )) = VC2(g(1, ·) | g ∈ P ∩ C[p11, p12, p21]) ≃ W ∩ Ũp11=1.

If now dim V = 1, then by Proposition 3.6, the preimage V ∩ Up11=1 also contains a
smooth real point.
Considering the specific cases, we start by looking at the decompositions of V ([8]). One
can check in all cases that every irreducible component has codimension 2. For all cases
except (7), one can also check that the elimination ideals of the minimal primes are exactly
the minimal primes of C for that specific case. By the above reasoning, this implies the
existence of a real smooth point in the components of V. In case (7), the components
V(p21, p11) and V(p12, p11) remain the same after eliminating p22. They are proper subsets
of the component V(p11) of C. However, since they are lines, they must contain a smooth

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#decomposition-of-the-spohn-variety
https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#proof-of-theorem-3-7
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real point. Elimination from the third component gives the remaining component of C in
that case, so as before, this gives us a real smooth point in said component of V. �

If the cubic C ⊆ P2 is reducible, then so is the Spohn variety V ⊆ P3. There are, however,
cases in which V is reducible and C is not.

Example 3.8. Assume that a12 = a22 and that all other entries are generic. This is
not among the cases from Lemma 3.2, hence, C = V(f) is irreducible. We can, however,
compute that

I(V) = (p21, p11) ∩ (det M1, det M2, ((a21 − a22)b11 + (a22 − a21)b21)p2
12

+(a21 − a11)b12 + (a11 − a21)b21)p12p21

+((a21 − a22)b11 + (a22 − a11)b12 + (a11 − a22)b21 + (a22 − a21)b22)p12p22

+((a11 − a21)b21 + (a21 − a11)b22)p21p22

+((a11 − a22)b21 + (a22 − a11)b22)p2
22)

Eliminating p22 from these gives the ideals (p21, p11) and (f). It is V := V(p21, p11) (
V(f) = C. This corresponds to C being irreducible and also, one can observe that we
cannot simply obtain a real smooth point in V by pulling back a real smooth point in
the planar model. Since V is a line, it contains a real smooth point anyways; therefore,
the real points also lie dense in C in this case.

Similarly, V is reducible if b21 = b22. There are no other known cases where V is reducible
but C is not.

Under the cases of Lemma 3.2, the cubic C is reducible if and only if the defining
equation f is non-zero. Similarly, the conditions for V being reducible are also not ac-
tually closed. For example, if a11 = a21 6= a12 = a22 and b11 = b12 6= b21 = b22, then
V = V (p11p22 + p12p21) is irreducible. Notice that this also results from f being zero in
this case.

Tracing back from the reducibility and the denseness of real points of the Spohn curve
to what this means in practice, it is natural to ask if in the cases when the Spohn curve
is reducible, the probabilities that lie on it are actually dependency equilibria.

Remark 3.9. Following [14], denote

W := V((p11 + p12)(p21 + p22)(p11 + p21)(p12 + p22)).

Then, any point p ∈ ∆∩(V \ W)
Zar

is a dependency equilibrium. For any point contained
in the union of hyperplanes W, that is not necessarily the case. [14, Theorem 4.9] proves
that, assuming all other entries of the payoff tables are generic, in the cases (1) to (7)

from Lemma 3.2, it is ∆ ∩ (V \ W)
Zar

( ∆ ∩ V, which means we cannot make general
statements about dependency equilibria from the Spohn variety in these cases. It also
shows that in the cases (8) to (12), equality holds and that, therefore, any point p ∈ ∆∩V
is a dependency equilibrium. Indeed, one can see in the decomposition of V in [8] that,
in the cases (1) to (7), some components of V are contained in W and that, in the cases
(8) to (12), no component of V is entirely contained in W. Furthermore, in these latter
cases, [14, Corollary 3.19] also guarantees that every Nash equilibrium of the game is also
a dependency equilibrium.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#example-3-8
https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#remark-3-9
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4. Equivalent games from elliptic curve invariants

We have studied in detail when the Spohn curves of 2 × 2 games are reducible and
therefore not smooth. We will now take a closer look at Spohn curves from generic 2 × 2
games, for which we already know that real points lie dense in them ([14, Proposition
4.1]) and that the points in ∆∩V are dependency equilibria ([14, Corollary 3.19]) . Also,
by Proposition 2.6, these Spohn varieties are elliptic curves and we may use properties of
elliptic curves to make statements about dependency equilibria of generic 2 × 2 games.

It is natural to ask when two generic games are equivalent with respect to their Spohn
curves. This can be addressed using invariants of elliptic curves, particularly the j-
invariant (9). The j-invariant of an elliptic curve classifies endomorphism algebras of
elliptic curves and demonstrates isomorphisms between elliptic curves (Theorem 4.6).
Two 2 × 2 games are equivalent with respect to the Spohn curve if and only if their j-
invariants are equal. This implies that they have the same totally mixed dependency
equilibria. Elliptic curves obtained from 2 × 2 games have a very specific form but we
review the calculation of the j-invariant of an elliptic curve given by the intersection
of two quadrics in P3 in the general case where the quadrics are defined over Q. We
restrict to elliptic curves over Q since in many known examples of games, the payoffs are
rational. Should this not be the case, payoffs can be approximated by rational numbers
(for example, via the method of continued fractions [5, § 1.8]). See Appendix A for more
details.

Definition 4.1 (Elliptic curve over K). An elliptic curve over a field K, (char(K) 6= 2)
is a smooth (projective) curve of genus 1 with at least one K-rational point.

As mentioned above, we restrict ourselves to the case of K = Q. Elliptic curves over
Q can be expressed in the form of a cubic equation known as the Weierstrass form.

Theorem 4.2 ([17], Chapter III.2.3). Every elliptic curve over Q can be expressed as a
cubic in P2 with the following form:

EQ := y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3, a1,2,3,4,6 ∈ Q (3)

which upon dehomogenization gives the more recognizable long Weierstrass form of the
curve:

EQ := y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, a1,2,3,4,6 ∈ Q .

Remark 4.3 (Short Weierstrass form, [17], Chapter III.1). Every elliptic curve over
Q can be reduced further into the short Weierstrass form (via appropriate coordinate
transformations) which is given by

EQ := y2 = x3 + Ax + B, A, B ∈ Q .

Equation (3) can be obtained from the intersection of two quadrics in P3, with inter-
section at a known Q-point.

4.1. Invariants for Spohn curves as intersection of quadrics in P3. Consider two
quadric equations P1, P2 ∈ Q[x, y, z, t] in P3. In the context of 2×2 games, these quadrics
are the exact same equations that appear in (1) after renaming the variables. We require
that these quadrics intersect in P3 at an arbitrary rational point k = [x0 : y0 : z0 : t0]. It
is important to know what this point is, and in all the cases at hand we are given this
rational point. Finding rational points on elliptic curves is an interesting and challenging
endeavor in its own right. We do not make any comments on finding a common rational
solution since for Spohn curves, we know that e.g. k = [0 : 0 : 0 : 1], i.e. the point at
infinity in P3, is a rational solution. Now, given two such intersecting quadrics with and
a common rational point, we wish to compute the j-invariant.
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The first step is representing quadrics in P3. Let the coordinates in P3 be V =
(x, y, z, t)⊤.2 We represent the quadrics as

P1 = V ⊤ · A · V, A =




a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


 , A ∈ Mat4×4(Q)

P2 = V ⊤ · B · V, B =




b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33


 , B ∈ Mat4×4(Q) .

Given k = [x0 : y0 : z0 : t0], the common rational solution to the two quadrics P1, P2, we
define

Q =




1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 t0


 . (4)

When the common rational solution is [0 : 0 : 0 : 1], the matrix Q as in (4) is just the
4 ×4 identity matrix. This is always the case we have when considering the Spohn curve.
Having the common rational point at infinity is necessary to project the curve to lower
dimensions and compute its j-invariant.

In case the common rational solution of the intersection of the two quadrics is not the
point at infinity i.e. Q is not the 4 × 4 identity matrix, one needs to perform coordinate
transformations on P1 and P2 such that the common rational solution becomes the point
at infinity. This straightforward algorithm is explained below and also in [9]. To transform
the two quadrics such that the common solution is the point at infinity:

(Step I) Normalize solutions: Choose a normalization of the solutions such that t0 6= 0.
One may also assume that t0 = 1 as in [9].

(Step II) Coordinate change: Now, let V = (x, y, z, 1)⊤ be the coordinates of P3. Trans-
form to coordinates W = (X, Y, Z, T )⊤ such that the common rational point in
the new coordinates is at [X0 : Y0 : Z0 : T0] = [0 : 0 : 0 : 1]. This is done by the
following transformation:

V =




1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1


 · W, W =




1 0 0 −x0

0 1 0 −y0

0 0 1 −z0

0 0 0 1


 · V .

(Step III) Change of quadrics: Under the coordinate change, the quadrics transform as
follows

P1(x, y, z, t) 7→ P ′

1(X, Y, Z, T ) = W ⊤ · Q⊤ · A · Q · W

P2(x, y, z, t) 7→ P ′

2(X, Y, Z, T ) = W ⊤ · Q⊤ · B · Q · W .

2These are projective coordinates but for the sake of explaining the algorithm, we represent them as
a vector.
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(Step IV) Eliminating terms: This follows from [4, § 7.2.2]. We now have two quadrics
P ′

1[X, Y, Z, T ], P ′

2[X, Y, Z, T ] ⊆ P3 with a common rational point at [0 : 0 : 0 : 1].
Both these quadrics can be expressed as

P ′

i (X, Y, Z, T ) = Ki T 2 + Li(X, Y, Z) T + Mi(X, Y, Z), i = 1, 2

where Ki is a constant, Li(X, Y, Z) are linear in X, Y, Z and Mi are quadratic in
X, Y, Z. Since the common rational point is already at [0 : 0 : 0 : 1], Ki = 0 for
i = 1, 2. This means that the two intersecting quadrics take the form

P ′

1(X, Y, Z, T ) = L1(X, Y, Z) T + M1(X, Y, Z)

P ′

2(X, Y, Z, T ) = L2(X, Y, Z) T + M2(X, Y, Z) .

It is important to note that L1 and L2 above are linearly independent. The proof
of this statement can be found in [4, § 7.2.2]. To state it succinctly, if L1, L2

are linearly dependent, then there is a linear combination which will make the
intersecting quadric a genus 0 curve, which is false for elliptic curves.

(Step V) Reduction to cubic in P2. The equation

C(X, Y, Z) = L1(X, Y, Z)M2(X, Y, Z) − L2(X, Y, Z)M1(X, Y, Z), C ⊆ P2

is homogeneous of degree 3, and represents an elliptic curve in homogeneous, pro-
jective coordinates. One may wish to proceed to represent the curve in Weierstrass
form from here, however it is not necessary for the purposes of this paper.

Remark 4.4 (Defining elliptic curves from cubics in Pari/GP). In Pari/GP [12], one can
use in-built commands ellfromeqn and ellinit to define elliptic curves directly from
the cubic in P2. The file getJ.gp in [8] contains the relevant code to do this in Pari/GP.

Remark 4.5. To re-iterate, since [0 : 0 : 0 : 1] is always a common rational solution for
Spohn curves, one may proceed straight to (Step IV) above.

4.2. Aronhold invariants and the j-invariant. Starting with two quadrics that in-
tersect at an arbitrary rational point, we now have a cubic in P2. This cubic depends on
the monomials in the two quadrics, as well as the common rational point in P3, which
has been transformed to [0 : 0 : 0 : 1]. A generic rational cubic equation in 3 variables
(x, y, z)3 will have the following form

C(x, y, z) := ax3 +by3+cz3 +3dx2y+3ey2z+3fz2x+3gxy2+3hyz2+3izx2 +6jxyz , (5)

where the coefficients a, b, c, d, e, f, g, h, i, j ∈ Q. From the coefficients of the cubic (and
as a result, the coefficients of the monomials of P1, P2 and the common rational point
[x0 : y0 : z0 : t0]), we may derive the two Aronhold (S and T ) invariants of the cubic
C(x, y, z). We wish to point out that the Aronhold invariants as in (6) and (7) are
equivalent to the expressions given in [3] and [18] under the rescaling of the coefficients
of the cubic.4

For the cubic equation of the form (5), the S invariant is given as:

S = agec − agh2 − ajbc + ajeh + afbh − afe2 − d2ec + d2h2 + dibc

− dieh + dgjc − dgfh − 2dj2h + 3djfe − df 2b − i2bh + i2e2 − ig2c

+ 3igjh − igfe − 2ij2e + ijfb + g2f 2 − 2gj2f + j4 ,

(6)

3We reset to lowercase coordinates for ease of readability henceforth. For the case of Spohn curves,
the coordinates (x, y, z, t) = (X, Y, Z, T ).

4Since in these references, the cubic is represented as C(x, y, z) = ax3 + by3 + cz3 + dx2y + ey2z +
fz2x + gxy2 + hyz2 + izx2 + jxyz, i.e. without the factors of 3’s and 6.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#computations-for-section-4
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and the T invariant is given by:

T = a2b2c2 − 3a2e2h2 − 6a2behc + 4a2bh3 + 4a2e3c − 6adgbc2

+ 18adgehc − 12adgh3 + 12adjbhc − 24adje2c + 12adjeh2

− 12adfbh2 + 6adfbec + 6adfe2h + 6aigbhc − 12aige2c + 6aigeh2

+ 12aijbec + 12aije2h − 6aifb2c + 18aifbeh − 24ag2jhc − 24aijbh2

− 12aife3 + 4ag3c2 − 12ag2fec + 24ag2fh2 + 36agj2ec + 12agj2h2

+ 12agjfbc − 60agjfeh − 12agf 2bh + 24agf 2e2 − 20aj3bc − 12aj3eh

+ 36aj2fbh + 12aj2fe2 − 24ajf 2be + 4af 3b2 + 4d3bc2 − 12d3ehc

+ 8d3h3 + 24d2ie2c − 12d2ieh2 + 12d2gjhc + 6d2gfec − 24d2j2h2

− 12d2ibhc − 3d2g2c2 − 24g2j2f 2 + 24gj4f − 12d2gfh2 + 12d2j2ec

− 24d2jfbc − 27d2f 2e2 + 36d2jfeh + 24d2f 2bh + 24di2bh2

− 12di2bec − 12di2e2h + 6dig2hc − 60digjec + 36digjh2 + 18digfbc

− 6digfeh + 36dij2bc − 12dij2eh − 60dijfbh + 36dijfe2 + 6dif 2be

+ 12dg2jfc − 12dgj3c − 12dgj2fh + 36dgjf 2e − 12dgf 3b + 24dj4h

+ 12dj2f 2b + 4i3b2c + 24i2g2ec − 27i2g2h2 − 36dj3fe − 12i3beh

+ 8i3e3 − 24i2gjbc + 36i2gjeh + 6i2gfbh + 12i2j2bh − 3i2f 2b2

− 12dg2f 2h − 12i2gfe2 − 24i2j2e2 + 12i2jfbe − 12ig3fc + 12ig2j2c

+ 36ig2jfh − 12ig2f 2e − 36igj3h − 12igj2fe + 12igjf 2b + 24ij4e

− 12ij3fb + 8g3f 3 − 8j6 .

(7)

These invariants can also be found at [2]. The discriminant of the elliptic curve is

∆ =
64S3 − T 2

1728
. (8)

The j-invariant of the elliptic curve is

j =
64S3

∆
. (9)

The j-invariant and discriminant as above are again equal to the corresponding expres-
sions in [18] under the change in notation for the coefficients of the cubic. The j-invariant
in terms of the coefficients of the two quadrics in P3 that intersect at an arbitrary rational
point is available in Generic J invt.txt5 at [8]. The j-invariant for Spohn curves as in
Section 2 is given in SpohnCurveJInv.txt, also available at [8]. It corresponds to the
result in [13, Proposition 12]

Theorem 4.6. Two elliptic curves are isomorphic if and only if their j-invariants are
equal.

Proof. See [17, Chapter III, Proposition 1.4]. �

Example 4.7. Consider the quadrics

P1 = −xz + 2xt − 2yz + yt = t(2x + y) − (xz + 2yz)

P2 = −5yx − 6xt − 3yz − 4zt = −t(6x + 4z) − (5xy + 3yz)

5This file does not explicitly set t0 = 1 as is assumed in Step 1 of the algorithm to transform the
quadrics to have a common rational solution at infinity.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#computations-for-section-4
https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#computations-for-section-4
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coming from the 2 × 2 game with payoff tables X(1) =

(
1 2
0 3

)
and X(2) =

(
6 1
4 0

)
. The

point [0 : 0 : 0 : 1] is a common rational solution, so we have no terms quadratic in t in
the quadrics. To reduce to a cubic in P2, we have

L1 = (2x + y), L2 = −(6x + 4z)

M1 = −(zx + 2zy), M2 = −(5yx + 3zy) ,

and we recall that Li is the term in Pi that is linear in t, and Mi is the term in Pi that
is independent of t. The reduced cubic in P2 is

C(x, y, z) = L1M2 − L2M1,

which is explicitly given by

C := (−10y − 6z) x2 +
(
−5y2 − 18zy − 4z2

)
x +

(
−3zy2 − 8z2y

)
.

Comparing with the coefficients of (5), we can compute the two Aronhold invariants S

(6) and T (7), and use them to compute the j-invariant as:

j =
2810381476

227025
.

This can be computed using the IntersectionQuadricsJ.nb in Mathematica. One can
also initialize the curve in Pari/GP using the getJ.gp script and find the same value for
the j-invariant ([8]). An immediate observation here is that for any λ1, λ2 ∈ R\{0} and
α1, α2 ∈ R, the games defined by the following two payoff matrices

(
λ1 + α1 2λ1 + α1

α1 3λ1 + α1

)
and

(
6λ2 + α2 λ2 + α2

4λ2 + α2 α2

)

have the same (elliptic) Spohn curve and thus the same j-invariant.

Example 4.8 (Singular curve). Consider the quadrics

P1(x, y, z, t) = xz + yz − xt − yt = −(x + y)t + (xz + yz)

P2(x, y, z, t) = −5xy − yz + xt + 5zt = t(x + 5z) − (5xy + yz) .

coming from the 2 × 2 game with payoff tables X(1) =

(
1 1
2 0

)
and X(2) =

(
3 −2

−1 4

)
,

for which [0 : 0 : 0 : 1] is a common solution. By following the algorithm above, we can
eliminate t to get a cubic:

C(x, y, z) = −(xz + yz)(x + 5z) + (x + y)(5xy + yz) .

The j-invariant of this cubic is infinite i.e. the discriminant ∆ as in (8) is zero and the
cubic, being singular, therefore does not define an elliptic curve. This is also apparent
from the fact that the game is not generic and falls under case (1) of Lemma 3.2.

Example 4.9. We now consider a case of intersecting quadrics in P3 for which [0 : 0 :
0 : 1] is not a common rational point. Consider the quadrics

P1(x, y, z, t) = x2 + y2 − z2 − t2

P2(x, y, z, t) = xz − zy + yt − zt .

A common rational solution in this case is [1 : 1 : 1 : 1]. By following the algorithm
above, we can reduce the two quadrics to a cubic in P2 which has the form

C(x, y, z) = −x3 − xy2 + 3x2z − y2z − xz2 + 2yz2 − z3 .

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#functions-in-the-mathematica-notebook
https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#computations-for-section-4
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This represents an elliptic curve and the j-invariant of this curve is

j =
65536

37
.

Appendix A. Continued fraction approximation of real numbers

In Pari/GP, rational approximations can be implemented using the command contfrac.
A script to compute rational approximations using continued fractions (confrac.gp) can
also be found on [8]. A short tutorial and example are presented below:

\\ Continued fraction representation of a number x to k convergents

>> contfrac(x,k)

\\ Find rational approximation of the number

>> eval_contfrac(V) = { local(x=0);

forstep(i = #V, 1, -1, x = V[i] + if(x ,1/x ,0));

return (x);}

\\ To get decimal representation , use ‘.’

Listing 1. Evaluating Continued Fractions

Example A.1 (Rational approximation to ζ(3)). Irrationality of ζ(3) was established in
the 1970’s by R. Apéry, meaning that its continued fraction representation is infinitely
long. However, one can approximate ζ(3) as a rational number to any finite precision
using continued fractions.

\\ Examples: Consider zeta (3) which is an irrational number

>> zeta (3)

output = 1.2020569031595942853997381615114499908

\\ Continued fraction of zeta (3) up to 15 convergents

>> V = contfrac(zeta (3), 15)

output = [1, 4, 1, 18, 1, 1, 1, 4, 1, 9, 9, 2, 1, 2]

\\ Evaluate the continued fraction

>> eval_contfrac(V)

output = 1479821/1231074

\\ Decimal representation of above

>> 1479821/1231074.

output = 1.2020569031593551646773467720055821177

Listing 2. Rational approximation of ζ(3)

For 15 convergents,

ζ(3) ≈
1479821

1231074

is correct up to 12 decimal places, where as

ζ(3) ≈
461424925

383862797

which is the continued fraction approximation of ζ(3) to 20 convergents gives the cor-
rect approximation to 18 decimal places. In Mathematica, the command to construct
a continued fraction is ContinuedFraction, while the command to evaluate a contined
fraction is FromContinuedFraction.

https://mathrepo.mis.mpg.de/elliptic_curves_game_theory/#rational-approximations-of-real-numbers
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