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Abstract: The degeneracies of single-centered dyonic 1
4 -BPS black holes (BH) in Type II

string theory on K3×T 2 are known to be coefficients of certain mock Jacobi forms arising

from the Igusa cusp form Φ10. In this paper we present an exact analytic formula for these BH

degeneracies purely in terms of the degeneracies of the perturbative 1
2 -BPS states of the theory.

We use the fact that the degeneracies are completely controlled by the polar coefficients of the

mock Jacobi forms, using the Hardy-Ramanujan-Rademacher circle method. Here we present

a simple formula for these polar coefficients as a quadratic function of the 1
2 -BPS degeneracies.

We arrive at the formula by using the physical interpretation of polar coefficients as negative

discriminant states, and then making use of previous results in the literature to track the

decay of such states into pairs of 1
2 -BPS states in the moduli space. Although there are an

infinite number of such decays, we show that only a finite number of them contribute to the

formula. The phenomenon of BH bound state metamorphosis (BSM) plays a crucial role in

our analysis. We show that the dyonic BSM orbits with U -duality invariant ∆ < 0 are in

exact correspondence with the solution sets of the Brahmagupta-Pell equation, which implies

that they are isomorphic to the group of units in the order Z[
√
|∆|] in the real quadratic

field Q(
√
|∆|). We check our formula against the known numerical data arising from the

Igusa cusp form, for the first 1650 polar coefficients, and find perfect agreement.
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1 Introduction and summary of results

String theory has proven to be a powerful description of the microscopic degeneracy of states

of supersymmetric black holes. The original breakthrough of [1, 2] gave us two complemen-

tary pictures of viewing the black hole—as a bound state of microscopic excitations of strings
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and branes carrying a statistical entropy, and as a solution to the equations of motion of

macroscopic supergravity having a thermodynamic Bekenstein-Hawking-Wald entropy asso-

ciated to the black hole horizon. A lot of progress has occurred since then on sharpening

both these pictures: on the macroscopic side we have learned how to include stringy effects

as well as quantum gravitational effects in the calculation of the exact quantum gravitational

entropy; and on the microscopic side we have learned how to take into account subtle effects

like wall-crossing to isolate the states of the black hole from the full statistical ensemble of

string theory. The two complementary pictures of a black hole can now be recast as the

exact AdS2/CFT1 correspondence in the near-horizon region of the black hole [3], with two

well-defined quantum systems each having its own rules of calculations. This formulation has

allowed us to quantitatively test the picture of a black hole as an ensemble of microstates well

beyond the thermodynamic approximation, and has provided examples of AdS/CFT valid at

finite N .

Perhaps more importantly, the formulation of this correspondence has allowed us to ask

sharp questions on both sides of the story which would not have been possible earlier—each

side of the correspondence provides a novel guide for organizing the observables and calcula-

tions on the other side which may not be a priori obvious. In this context, we present in this

paper an exact analytic formula for the integer quantum degeneracies of dyonic black holes

in the four-dimensional N = 4 string theory arising from Type II string theory compacti-

fied on K3×T 2. The origins of this formula involve an intricate interplay between physical

ideas (AdS2/CFT1, localization in supergravity, instanton sums, black hole metamorphosis),

and mathematical ones (Siegel modular forms, mock Jacobi forms, and their Rademacher

expansions). We do not have a rigorous mathematical proof of our formula, but we are able

to use the above ideas to obtain a precise conjectural statement relating the Fourier coeffi-

cients of the inverse of the Igusa cusp form 1/Φ10 and the Fourier coefficients of the power

of the Dedekind eta function 1/η24, which we have checked numerically to high order. In the

rest of the introduction we present, successively, the context and the physics motivation, the

mathematical formula, the idea of the calculation, and its interpretation in gravity.

1.1 Motivation and context

A prototype for an exact gravitational entropy formula can be found for 1
8 -BPS dyonic black

holes in N = 8 string theory (Type II string theory compactified on T 6) [4]. In that case the

exact degeneracies of supersymmetric black holes are known to be coefficients of a certain

Jacobi form of weight −2 and index 1, ZN=8(τ, z) =
∑
n,`

CN=8(n, `) e2πinτ e2πi`z. The black

hole is labelled by the discriminant 4n− `2 which grows, at large charges, as the square of the

area of the horizon. The Hardy-Ramanujan-Rademacher formula for Jacobi forms provides an

exact analytic expression for the coefficients CN=8(n, `) of this Jacobi form as an infinite sum

over Bessel functions with successively decreasing arguments. Importantly, this formula has

no free parameters, and the only inputs are the modular transformation properties (the weight
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and index) of the Jacobi form ZN=8 and its overall normalization which is fixed.1 Each term

in the formula is then interpreted, via a localization calculation in the gravitational theory,

as a functional integral over the smooth fluctuations around certain asymptotically AdS2

configurations [5–7].

We would now like to do the same for situations with less supersymmetry. The next-

simplest example is 1
4 -BPS dyonic black holes in N = 4 string theories, which are labelled

by the T -duality invariants of the charges n = Q2/2, ` = Q · P , m = P 2/2. (As above,

the area of the horizon grows as
√

∆ where the discriminant is ∆ = 4mn − `2.) In a class

of N = 4 string theories the generating function of 1
4 -BPS states is also known in terms of

Siegel modular forms. The simplest example is Type II compactified on K3×T 2 in which

case the generating function of the supersymmetric index that counts the 1
4 -BPS microstates

is the inverse of the Igusa cusp form Φ10(τ, z, σ) [8]. The main subtlety in N = 4 string

theory compared to N = 8 string theory is that, at strong coupling, the supersymmetric

index receives contributions from 1
4 -BPS single-centered black holes as well as bound states

of two 1
2 -BPS black holes. The question then arises to isolate the microstates that contribute

to the single-centered black hole only. Doing so breaks the modular invariance which was

crucial to interpret the formula as a gravitational functional integral.

It was shown in [9] that one can isolate the degeneracies of single-centered black holes

in N = 4 string theory while keeping the essence of modularity intact. More precisely,

the degeneracies of single-centered dyonic black holes in Type II on K3×T 2 are the Fourier

coefficient of certain mock Jacobi forms. One can calculate the mock Jacobi forms and their

coefficients for any set of given charges, using a computer algorithm. This indeed clarifies the

modular nature of the degeneracies of black hole microstates, but we would like to do better

and find an explicit formula for them, as in theN = 8 theory. Upon applying the circle method

of Hardy-Ramanujan-Rademacher to the known modular completions of the mock Jacobi

forms, one obtains an analytic formula for the black hole degeneracies [10] which is similar to,

but more complicated than, the one in the N = 8 theory—there are some additional terms

coming from the fact that one has mock Jacobi and not true Jacobi forms, but the bottom

line is that for a given mock Jacobi form one has an infinite series of terms controlled purely

by a finite number of integers. (The explicit formula is presented in (A.12).) The integers

in question are the polar coefficients of the mock Jacobi forms themselves. Here polar state

(and correspondingly polar coefficient) means states with discriminant ∆ = 4mn− `2 < 0.

In this paper we present a simple analytic formula for the polar coefficients in terms of

the degeneracies of 1
2 -BPS states in N = 4 string theory. In the heterotic duality frame, these

are realized as perturbative fluctuations of the fundamental strings i.e., the Dabholkar-Harvey

states [11]. This means that the full quantum degeneracy of the black hole—which is a non-

perturbative bound state of strings, branes, and KK-monopoles—is completely controlled by

simple perturbative elements of string theory! The nature of the formula, presented below

1The Rademacher formula, reviewed in Appendix A, typically has a finite number of integers (the polar

degeneracies) as input, but in this case the large symmetry of the theory implies there is only one independent

polar degeneracy which can be normalized to one.
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in (1.5), is also noteworthy: the polar coefficients of the mock Jacobi forms are simply linear

combinations of quadratic functions of the 1
2 -BPS degeneracies. The latter can be interpreted

as counting worldsheet instantons or, more precisely, genus-one Gromov-Witten invariants.

This structure is clearly reminiscent of the OSV formula ZBH = |Ztop|2 [12], but the details

are somewhat different. The right-hand side of our formula, involving instanton degeneracies,

is controlled by Ztop, while the left-hand side is the “seed” for the 1
4 -BPS BH degeneracies via

an intricate series which is dictated by the mock modular symmetry. The idea of exploiting

modular symmetry in order to reach a precise non-perturbative definition for the OSV formula

was already initiated in [13], but the technical complications of N = 2 string theories did

not allow for an explicit formula. Here we use the fact that many aspects of N = 4 string

theories are solvable in order to reach such a formula.

1.2 The main formula

In order to present our main formula we briefly review the procedure [9] to calculate the

single-centered black hole degeneracies in Type II string theory on K3×T 2. One first expands

the partition function in the chemical potential conjugate to the magnetic charge invariant m

to obtain the Fourier-Jacobi expansion

1

Φ10(τ, z, σ)
=

∑
m≥−1

ψm(τ, z) e2πimσ . (1.1)

The Igusa cusp form Φ10 is a Siegel modular form of weight 10 which implies that the func-

tions ψm are meromorphic Jacobi forms of weight −10 and index m. Since Φ10 has a double

zero at z = 0, ψm is meromorphic in z with a double pole at z = 0. This meromorphicity has

its physical origin in the wall-crossing phenomenon, whereupon bound states of two 1
2 -BPS

centers appear or decay as one moves around the moduli space of the compactification. It

was shown in [9] that the functions ψm have a canonical decomposition into two pieces,

ψm(τ, z) = ψF
m(τ, z) + ψP

m(τ, z) , (1.2)

where ψF
m and ψP

m count the degeneracies of dyonic 1
4 -BPS single-centered black holes, and

two-centered 1
2 -BPS black hole bound states, respectively. Further, the function ψF

m is a mock

Jacobi form [9, 14, 15], which is holomorphic in z. This implies a Fourier expansion of the

form

ψF
m(τ, z) =

∑
n,`

cF
m(n, `) e2πinτ e2πi`z . (1.3)

The microsocpic degeneracies of 1
4 -BPS single-centered black holes are related to these Fourier

coefficients as

dBH
micro(n, `,m) = (−1)`+1 cF

m(n, `) for ∆ = 4mn− `2 > 0 . (1.4)

We now present the analytic formula for the black hole degeneracies which is a combina-

tion of the following two formulas:
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1. The BH coefficients cF
m(n, `), ∆ > 0 are completely controlled by the polar coeffi-

cients cF
m(n, `), ∆ < 0. The relevant formula follows from the ideas of Hardy-Ramanujan-

Rademacher applied to mock Jacobi forms, which by now has become a well-established

technique in analytic number theory [16–18]. We review this in Section 2. For the partic-

ular mock Jacobi forms ψF
m the formula was obtained in [10], which we recall in (A.12).

2. The polar coefficients cF
m(n, `), ∆ < 0 are given by

cF
m(n, `) =

∑
γ∈W(n,`,m)

(−1)`γ+1 |`γ | d(mγ) d(nγ) for ∆ = 4mn− `2 < 0 . (1.5)

We obtain this formula using the ideas and results of [19], by tracking all possible

ways that a two-centered black hole bound state of total charge (n, `,m) decays into

its constituents across a wall of marginal stability. Here W(n, `,m) is a set of SL(2,Z)

matrices that encode the relevant Walls of marginal stability. This set is finite and

we will spend a large part of the paper characterizing this set. The precise formulas

are given in (7.4), (7.7). The quantities (nγ , `γ ,mγ) are the T -duality invariants of

the charges (Q,P ) transformed by γ, and d(n) is the degeneracy of 1
2 -BPS states with

charge invariant n, given by [11]

1

η(τ)24
=

∞∑
n=−1

d(n) e2πinτ . (1.6)

We have checked the main formula (1.5) against the polar coefficients of ψF
m extracted from

the Igusa cusp form Φ10 using formula (1.1) for magnetic charge invariant up to m = 30, which

corresponds to 1650 coefficients. In order to extract the polar coefficients from Φ10 the steps

required are to (a) build Φ10 from the additive lift [20], (b) inverting it, and (c) extracting

the relevant polar coefficients. The main computational bottleneck in this procedure is the

inversion. Using recursion relations [9], which is much faster than a direct division, already

took us a computing time of the order of hours on a MacBookPro. In contrast, the right-hand

side of the formula (1.5) for a given value of m can be computed in milliseconds on the same

computer, which is a factor of O(105).

1.3 The idea of the calculation

When the charges have a negative discriminant they cannot form a single-centered black

hole (recall that the discriminant is proportional to the square of the classical horizon area).

We know that the only other configurations that contribute to the 1
4 -BPS index in N = 4

string theory are two-centered bound states of 1
2 -BPS black holes [19, 21]. Thus the problem

becomes one of calculating all possible ways a given set of charges with negative discriminant

contributing to cF
m can be represented as two-centered black hole bound states.

Now, any such bound state is an S-duality (SL(2,Z)) transformation of the basic bound

state, which consists of an electrically charged 1
2 -BPS black hole with invariant n = Q2/2, a
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magnetically charged 1
2 -BPS black hole with invariant m = P 2/2, and the electromagnetic

fields carry angular momentum ` = Q · P . The indexed degeneracy of this system equals

(−1)`+1 |`| · d(n) · d(m) . (1.7)

The factors d(n) and d(m) in this formula are, respectively, the internal degeneracies of the

electric and magnetic 1
2 -BPS black holes, and the factor (−1)`+1|`| is the indexed number

of supersymmetric ground states of the quantum mechanics of the relative motion between

the two centers [22]. The degeneracy of an arbitrary bound state can be calculated by

acting on the charges (Q,P ) by the appropriate S-duality transformation and replacing the

charge invariants in (1.7) by their transformed versions. This is precisely the structure of the

formula (1.5).

The final ingredient of the formula is to state precisely what are the allowed values of γ

which labels all possible bound states. A very closely related problem was solved in an

elegant manner in [19], which we use after making small adaptations (note that the modular

and elliptic structures are manifest in our presentation). The basic intuition comes from

particle physics—any bound state must decay into its fundamental constituents somewhere,

and so the question of which bound states exist is the same as the question of what are all the

possible decays of two-centered 1
2 -BPS black holes. As was shown in [19] the possible decays

are labelled by a certain set of SL(2,Z) matrices. The exact nature of this set is a little

subtle due to a phenomenon called black hole bound state metamorphosis (BSM) [19, 23, 24],

which identifies different-looking physical configurations with each other. This is the step

which lacks a rigorous mathematical proof, but the physical picture is well-supported. The

sum over W(n, `,m) in (1.5) is precisely the sum over all possible decay channels after taking

metamorphosis into account. Thus our checks of the formula (1.5) can be thought of as

providing more evidence for the phenomenon of metamorphosis.

The metamorphosis can be of three types: electric, magnetic, and dyonic. The corre-

sponding identifications generate orbits of length 2 in the first two cases and of infinite length

in the third. In the first two cases the metamorphosis has a simple Z/2Z structure, while

the group structure of the dyonic case was less clear so far. We show in this paper that

the identifications due to dyonic BSM have a group structure of Z. Moreover, the problem

of finding BSM orbits maps precisely to finding the solutions to a well-studied Diophantine

equation, namely the Brahmagupta-Pell equation, whose structure is completely known. In

the language of algebraic number theory, this is the problem of finding the group of units in

the order Z[
√
|∆|] in the real quadratic field Q(

√
|∆|).

1.4 Gravitational intepretation

Recall that the quantum entropy of the gravitational theory is formulated as a functional

integral over asymptotically AdS2 configurations. Using the technique of supersymmetric

localization in the variables of supergravity, a formula for the exponential of the quantum

entropy was derived in [5–7]. The result takes the form of an infinite sum of finite-dimensional
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integrals over the (off-shell) fluctuations of the scalar fields around the attractor background,

where the integrand includes a tree-level and a one-loop factor in the off-shell theory. The infi-

nite sum is interpreted as different orbifold configurations in string theory with the same AdS2

boundary [7]. In the N = 8 theory, this result agrees exactly with the Rademacher expansion

for the coefficient of the Jacobi form controlling the microscopic index.

We can now offer a physical interpretation of our exact degeneracy formula (A.12), (1.5)

from this point of view. The sum over k in (A.12) runs over all positive integers with the

argument of the Bessel function suppressed as 1/k and the Kloosterman sum depending on k.

This part of the structure comes from a sum over Γ∞\SL(2,Z) of the circle method, and can

be interpreted in the gravitational theory exactly as in the N = 8 theory, namely as a sum

over orbifolds of the type (AdS2 × S1 × S2)/Zk [7]. The Kloosterman sum arises from an

analysis of Chern-Simons terms in the full geometry. The degeneracies of polar states cF
m(n, `)

(with ∆ = 4mn− `2 < 0) is interpreted as the number of states of a given (n, `,m) which do

not form a big single-centered BH. The finite sum over γ ∈ W(n, `,m) in (1.5) is indicative

of a further fine structure where the smallest units are the 1
2 -BPS instanton states with

their corresponding degeneracy. This is the sense in which the final degeneracy formula is

constructed out of the instantonic elements.

The outline of the paper is as follows: In Section 2 we explain in detail why one can reduce

the counting of 1
4 -BPS states to counting bound states of 1

2 -BPS states. In Section 3 we discuss

the macroscopic supergravity counting of 1
4 -BPS states. Section 4 discusses several details

that are important for the proper counting of negative discriminant states. In Sections 5

and 6 we present all the relevant calculations that will lead to the explicit formula for the

negative discriminant states. In Section 6, we characterize the orbits of dyonic metamorphosis

in terms of the orbits of the solutions to the Brahmagupta-Pell equation. The final Section 7

presents our exact black hole formula and lists some numerical data that shows its validity.

In Appendix A we review the details of the Rademacher formula applied to our case of

interest. Appendix B provides numerical evidence for one special case that we could not solve

analytically. Lastly, in Appendix C we provide further explicit data for the interested reader.

2 Exact dyonic black hole degeneracies and the attractor region

In this section we first review the microscopic counting formula for single-centered 1
4 -BPS

states in N = 4 string theory. We then explain how an exact analytic formula for the corre-

sponding black hole degeneracies reduces to the problem of counting bound states of 1
2 -BPS

centers, and how this problem can be efficiently solved using the results of [19].

Four-dimensional N = 4 string theory can be described either in terms of heterotic string

theory compactified on T 6, or in another duality frame in terms of Type II string theory

compactified on K3×T 2. Dyonic states are charged under the 28 U(1) gauge fields, with the

charge vector (Q,P ) taking values in the integral second cohomology lattice of Γ6,22 ⊕ Γ6,22.
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The theory has S-duality group SL(2,Z) and T -duality group O(6, 22,Z). The T -duality

invariants are

(n, `,m) := (Q2/2, Q · P, P 2/2) . (2.1)

The dyonic charges (Q,P ) transform as a doublet under S-duality, and the discriminant ∆ =

4mn− `2 is invariant under U -duality.

The microscopic degeneracies of dyonic 1
4 -BPS states2 in the above theory are given by

a Fourier transform of the inverse of the Igusa cusp form Φ10, the unique automorphic form

of weight 10 defined on Sp(2,Z) [8, 27–29]

d 1
4
(Q,P ) = (−1)`+1

∫
C

dτ dσ dz e−2πi(τn+z`+σm) 1

Φ10(τ, z, σ)
. (2.2)

Here, C indicates a certain contour in the three complex dimensional space spanned by (τ, z, σ),

so that the degeneracies on the left-hand side depend on this contour (this dependence has

been suppressed in the notation). Importantly, the contour C depends on the moduli of the

compactification [30]. When moving through the moduli space for a fixed set of charges (Q,P ),

the degeneracies jump when C crosses a pole in the partition function Φ−1
10 . This is a mani-

festation of the wall-crossing phenomenon where a 1
4 -BPS bound state of two 1

2 -BPS states

appears or decays upon crossing codimension-one surfaces in the moduli space. Thus, the

moduli space is divided into chambers separated by walls of marginal stability. In a given

chamber the degeneracies for a given (Q,P ) are constant, and they jump as one crosses a

pole in moving to another chamber. This phenomenon will be central to our investigations

in the rest of the paper, and we will discuss the contour C in more detail below.

Single- and multi-centered degeneracies

In the macroscopic supergravity description, the gravitational configurations captured by the

index (2.2) correspond to either (a) 1
4 -BPS single-centered black holes, or (b) 1

4 -BPS bound

states of two 1
2 -BPS black holes [21].3 The bound states exist depending on the region of

the moduli space and the values of the charges (Q,P ) [22], in accordance with the wall-

crossing phenomenon discussed above. In contrast, single-centered solutions exist everywhere

in the moduli space provided the U -duality invariant ∆ is positive. For large values of ∆,

this is consistent with the semi-classical picture of BHs where the classical area of the black

hole is 4π
√

∆. The conjecture of [31] extrapolates this intuition to all positive values of ∆.

2Here and in the following, we refer to dyons with torsion 1, i.e. gcd {QiPj −QjPi , 1 ≤ i, j ≤ 28} = 1. A

similar story for generic dyons [25, 26] should follow along the same lines.
3Multi-centered black hole bound states exist in theories with any number of supercharges. A bulk-analysis

of preserved and broken supersymmetry [21] shows that only certain types of configurations contribute to the

relevant indices: single-centered 1
8
-BPS BHs contribute to the 1

8
-BPS index in N = 8 string theory, single

centered 1
4
-BPS BHs and two-centered bound states of 1

2
-BPS BHs contribute to the 1

4
-BPS index in N = 4

string theory, and all single and multi-BH bound states which are 1
2
-BPS contribute to the 1

2
-BPS index

in N = 2 string theory. This makes N = 4 string theory a simple starting point to analyze effects of black

hole bound states on the index.

– 8 –



Far away from the black hole, the massless moduli can take any value, but the attractor

mechanism [32] implies that they are “attracted” to values that are completely determined

by the charges near the black hole horizon. In the N = 4 string theory under consideration,

this is elegantly captured by the attractor contour [30]

C∗ = {Im(τ) = 2m/ε, Im(σ) = 2n/ε, Im(z) = −`/ε, 0 ≤ Re(τ),Re(σ),Re(z) < 1} , (2.3)

where ε → 0+, so that the single-centered degeneracies d∗(Q,P ) evaluated using (2.2) and

the contour C∗ are functions of the charges (Q,P ) only.

It was shown in [9] that these single-centered degeneracies are Fourier coefficients of

certain mock Jacobi forms ψF
m. It is important to note however that the converse is not true,

namely that not all coefficients of ψF
m are degeneracies of single-centered black holes, and this

will play an important role in what follows. To construct ψF
m, one begins by expanding the

partition function Φ−1
10 around the σ → i∞ point,

1

Φ10(τ, z, σ)
=

∑
m≥−1

ψm(τ, z) e2πimσ . (2.4)

The functions ψm(τ, z) in this expansion are Jacobi forms of weight −10 and index m that

are meromorphic4 in the z variable. The attractor contour (2.3) then shows that to ex-

tract d∗(Q,P ) from ψm, the inverse Fourier transform in z should be taken along a path such

that

Im(z)/Im(τ) = −`/2m. (2.5)

This contour was called the “attractor contour” in [9], and applies to general meromorphic

Jacobi forms of index m. Without loss of generality one can choose5 n > m, and furthermore

the fact that the degeneracies d∗(Q,P ) are invariant under spectral flow implies that we can

restrict ` to the window 0 ≤ ` < 2m. Taking the remaining inverse Fourier transforms, [9]

then showed that the single-centered degeneracies d∗(Q,P ) are the Fourier coefficients of the

so-called finite part of ψm, defined as

ψF
m(τ, z) := ψm(τ, z)− ψP

m(τ, z) , (2.6)

where

ψP
m(τ, z) =

d(m)

η(τ)24

∑
s∈Z

qms
2+s ζ2ms+1

(1− qsζ)2
. (2.7)

Above, q := e2πiτ , ζ := e2πiz and d(m) is defined in (1.6). The Appell-Lerch sum in (2.7)

exhibits wall-crossing since its Fourier expansion differs in the strips α−1 < Im(z)/Im(τ) ≤ α,

4This meromorphicity descends from the poles in the 1
4
-BPS states partition function responsible for the

wall-crossing phenomenon discussed above.
5This is allowed since the full physical system has a symmetry that exchanges τ and σ. For our purposes,

it will be convenient to work at fixed magnetic charge m.
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with α ∈ Z. Subtracting ψP
m from the functions ψm in (2.4) implies that the resulting finite

part ψF
m is holomorphic in z and as such has an unambiguous Fourier expansion

ψF
m(τ, z) =

∑
n,`

cF
m(n, `) qn ζ` . (2.8)

The discussion of single-centered degeneracies so far can then be summarized as

d∗(Q,P ) = (−1)`+1 cF
m

(
n, `
)

for ∆ = 4mn− `2 > 0 . (2.9)

The central mathematical result of [9] is that ψF
m is a mock Jacobi form. This means that

its usual modular behavior under SL(2,Z) is modified. To salvage modularity it is possible

to add a correction term, known as the shadow, to build a function ψ̂F
m that is modular.

The shadow is however non-holomorphic in τ , so modularity is restored at the expense of

holomorphicity [14, 15].

Starting from the completion ψ̂F
m, the Fourier coefficients cF

m(n, `) for ∆ > 0 can be

computed using a generalization of the Hardy-Ramanujan-Rademacher formula suited for

mixed mock modular forms [10, 17]. We briefly review this in Appendix A and the final result

is presented in (A.12). One of the main points of the formula is that, in order to compute

the Fourier coefficients of positive discriminant states entering (2.9), the only required input

are the polar coefficients of ψF
m, defined as

c̃m(n, `) := cF
m(n, `) for ∆ = 4mn− `2 < 0 . (2.10)

By construction, the polar coefficients c̃m(n, `) count the number of negative discriminant

states encoded in the generating function ψF
m. They will be the central focus of the present

paper, and we will give an explicit formula for them based on a careful analysis of wall-crossing

and bound states.

The moduli space and the attractor region

Having reviewed the 1
4 -BPS single-centered degeneracies, we now discuss in a bit more detail

the structure of walls in the moduli space. The moduli-dependent contour C in (2.2) can be

written in terms of the moduli-dependent central charge matrix Z [30]. The latter can be

parameterized6 by a complex scalar Σ = Σ1 + iΣ2 as

Z = Σ−1
2

(
|Σ|2 Σ1

Σ1 1

)
. (2.11)

In terms of this matrix, the contour in (2.2) reads (with ε→ 0+)

C = {Im(τ) = Σ−1
2 /ε, Im(σ) = Σ−1

2 |Σ|
2/ε, Im(z) = −Σ−1

2 Σ1/ε, 0 ≤ Re(τ),Re(σ),Re(z) < 1} .
(2.12)

6This parametrization corresponds to a projection from the full moduli space to the two-dimensional axio-

dilaton moduli space of the heterotic frame.
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(a) The M-theory limit (2.4) (b) The full Σ moduli space

Figure 1: The region R in the moduli space

The expansion (2.4) then corresponds to taking the limit Σ2 →∞ while keeping Σ1 and εΣ2

fixed. This limit has a physical interpretation as the M-theory limit, where one of the circles

inside the internal T 2 of the Type II frame becomes large [9]. In this limit, the expansion (2.4)

around σ → i∞ takes us high into the upper half-plane parameterized by Σ, and varying Σ1

moves us horizontally. This is depicted in Figure 1a. The wall-crossing captured, in the M-

theory limit, by the Appell-Lerch sum (2.7) divides the moduli space into chambers separated

by parallel marginal stability walls located at Σ1 = α ∈ Z. The attractor contour (2.5)

then corresponds to picking a particular chamber, which we denote by R. As mentioned

below (2.5), ` can be restricted to 0 ≤ ` < 2m, so it follows that R is the chamber between

the walls located at α = 0 and α = −1. Thus,

R : −Im(τ) < Im(z) ≤ 0 . (2.13)

Now, in the chamber R, the Fourier coefficients of ψP
m in the range 0 ≤ ` < 2m van-

ish because the coefficients of the Appell-Lerch sum vanish in this chamber, as can easily

be checked. Therefore, the Fourier coefficients of the meromorphic Jacobi forms ψm in the

chamber R are equal to the coefficients of the finite part ψF
m. For ∆ > 0, these coefficients

correspond precisely to the single-centered black hole degeneracies, as given by (2.9). How-

ever, ψF
m also has coefficients with ∆ < 0 which live in the chamber R. Thus, we arrive at

the following physical interpretation of the Fourier coefficients cF
m: they count the indexed

number of 1
4 -BPS dyonic states in the chamber R. This is true for ∆ > 0 (which are single-

centered black holes) as well as, importantly, for ∆ < 0 (which correspond to multi-centered

black holes).

Because of the Rademacher formula (A.12), our task of finding an analytic formula for

the single-centered degeneracies (2.9) is thus reduced to finding an analytic formula for the
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negative discriminant degeneracies, for which we will use the above physical picture. As

explained in the introduction, the 1
4 -BPS bound states counted by (2.10) always decay upon

crossing a wall of marginal stability. We therefore have to track them in the Σ moduli space

and reconstruct them as a sum of their 1
2 -BPS constituents. The decays corresponding to

moving horizontally by varying Σ1 have been taken into account by ψP
m, so they will not

contribute to cF
m(∆ < 0). As discussed above, the contribution from ψP

m in the region R
actually vanishes.7 This is consistent with the analysis of [19]. In addition, there can be

other decays in the full moduli space, and to see them we need to go away from the M-theory

limit. As shown in [19], the region R extends also vertically downwards back to the Σ2 = 0

line. Therefore, away from the M-theory limit, the negative discriminant states contained

in R can also decay further upon crossing circular walls (the precise shape of these walls is

charge-dependent), which are shown in Figure 1b. We can now use the results of [19] to count

how many negative discriminant states live in the region R and obtain the polar coefficients

(2.10). This will be reviewed in Section 4.

3 Localization of N = 4 supergravity and black hole degeneracy

Before presenting the derivation of the formula for the polar coefficients c̃m(n, `) defined

in (2.10), we review how the main idea originates from physical considerations.8 In [33] two

of the present authors were able to compute the asymptotic degeneracies of 1
4 -BPS single-

centered BHs as a supergravity functional integral in the AdS2 near-horizon geometry of

the BHs, following the ideas of [3, 5]. This computation relied on some approximations and

assumptions that we spell out below, and as such did not yield the exact answer matching

the microscopic prediction. It did, however, lead to a result that could be interpreted as

an approximate relation between the polar coefficients of the counting function ψF
m and the

Fourier coefficients of the Dedekind eta function, which was checked to be true to a good

approximation. As we explain below, the main formula of the present paper (1.5) can be seen

as correcting the approximate result of [33] to an exact formula.

3.1 The quantum entropy of 1
4-BPS single-centered black holes

In the introduction we mentioned the two pictures—macroscopic and microscopic—of BHs in

string theory. While we mainly focus on the microscopic picture in the rest of the paper, the

origins of our formula came from a macroscopic intuition that we now review. Using ideas of

the AdS2/CFT1 correspondence, a macroscopic supergravity description for the degeneracies

of microstates of supersymmetric BHs, called the quantum entropy formalism, was put for-

ward in [3]. The near-horizon geometry of extremal black holes universally contains an AdS2

factor, and the proposal of [3] is that the degeneracies of supersymmetric extremal black holes

7If we are however interested in another chamber of the moduli space where the Appell-Lerch sum does not

vanish, it is important to remove the associated decays taking place when varying Σ1.
8This section can be skipped without losing any of the logical steps, but it may provide some intuition

towards the main result.
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is a functional integral on this AdS2 space defined as

dmacro(Q,P ) =
〈

exp
[
qI

∫
S1

AI
]〉finite

EAdS2

. (3.1)

Here the brackets indicate that one should compute the expectation value of the Wilson

line around the Euclidean time circle S1 for the U(1) gauge fields AI under which the black

hole is charged, qI denotes the corresponding charges of the BH, and the superscript “finite”

indicates a particular infra-red regularization scheme to deal with the infinite volume of the

EAdS2 factor in the near-horizon geometry (see [3] for details).

To compute the path integral (3.1) beyond the leading large-charge approximation, pow-

erful techniques of supersymmetric localization have been employed starting with the work

of [5]. Localization has been an invaluable tool in the study of partition functions in gauge

theories and in many cases has allowed us to reduce a complicated path integral to a much

simpler finite dimensional integral. A complete review falls outside the scope of the present

paper,9 so we will simply give the final result obtained in [6, 35–40] for (3.1) after localiza-

tion and for the class of black holes we are interested in. For 1
2 -BPS black hole solutions of

an N = 2 supergravity theory with holomorphic prepotential F , we have

dmacro(Q,P ) =

∫
MQ

nV∏
I=0

dφI µ(φI) exp
[
4π Im[F (pI , φI)]− π qIφI

] (
χV(pI , φI)

)2− 1
12

(nV +1)
.

(3.2)

The definition of the various quantities entering (3.2) are as follows. The integral is over the

manifold MQ, which is characterized by the bosonic field configurations that are supersym-

metric with respect to a specific supercharge Q preserved by the black hole solution. This

manifold is (nV + 1)-dimensional, where nV is the number of abelian vector multiplets un-

der which the black hole is charged, and φI denote the coordinates on MQ. The integrand

is completely specified by the prepotential F (pI , φI) of the theory, which is a homogeneous

holomorphic function of its arguments. The associated Kähler potential χV(pI , φI) is built

out of this prepotential. Finally, we have denoted by µ(φI) the measure on MQ, which was

not obtained from first principles in the above references, but constrained to be a function

that contributes O(1) growth to the entropy when all the charges are scaled to be large.

To apply the formula (3.2) to the 1
4 -BPS single-centered black hole solution of the N = 4

theory discussed in Section 2, one consistently truncates the latter theory to an N = 2 theory

with nV = 23 multiplets and prepotential [41]

F (pI , φI) = −X
1

X0
XaCabX

b +
1

2iπ
log
[
η24
(X1

X0

)]
, with XI = φI + i pI , (3.3)

where Cab is the intersection matrix on the middle homology of the internal K3 manifold

and a, b = 2, . . . , 23. Using this data and assuming a certain measure on MQ, [33, 43]

showed that the finite dimensional integral (3.2) could be put in the form of a sum of I-

Bessel functions indicative of a Rademacher-type expansion for the macroscopic degeneracies

9See [34] for an introduction and reviews in the context of field theory.
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of single-centered 1
4 -BPS black holes, similar to the exact microscopic formula (A.12). The

above assumption about the measure was essentially a statement of consistency with a certain

way of expanding the microscopic formula (2.2), as we now explain.

3.2 The measure and Rational Quadratic Divisors

The z-integral in the microscopic degeneracy formula (2.2) can be performed by calculating

residues at the so-called Rational Quadratic Divisors (RQDs) of the Igusa cusp form Φ10. The

leading contribution to the integral comes from the RQD located at z = 0 [8]. Near z = 0,

the Igusa cusp form behaves as

Φ10(τ, z, σ) = 4π2 (2z − τ − σ)10 z2 η(τ)24 η(σ)24 +O(z4) . (3.4)

The remaining integral in τ and σ can then be expressed as [42]

d 1
4
(Q,P ) ' (−1)`+1

∫
C2

d2τ

τ2
2
e−F(τ1,τ2) , (3.5)

where ' indicates that there are subleading contributions coming from other RQDs (addi-

tional poles in Φ−1
10 ), and τ = τ1 + iτ2. The function F(τ1, τ2) is given by

F(τ1, τ2) = − π

τ2

(
n− `τ1 +m(τ2

1 + τ2
2 )
)

+ ln η24(τ1 + iτ2) + ln η24(−τ1 + iτ2) + 12 ln(2τ2)

− ln

[
1

4π

{
26 +

2π

τ2
(n− `τ1 +m(τ2

1 + τ2
2 ))

}]
, (3.6)

and the contour of integration C2 is required to pass through the saddle-point of F(τ1, τ2).

This way of manipulating the microscopic degeneracy formula corresponds, in physics, to

calculating the degeneracies of BHs whose magnetic as well as electric charges grow at the

same rate. In contrast, the expansion studied in Section 2 following [9] corresponds to fixing

the magnetic charges and letting the electric charges grow (see Equation (2.4)).

Adding a total derivative term and comparing to the macroscopic localized integral (3.2),

the authors of [33, 43] concluded that the measure factor, corresponding to the leading RQD

of Φ10 located at z = 0, should take the form

µ(φI) = m+ E2

(φ1 + ip1

φ0

)
+ E2

(
−φ

1 − ip1

φ0

)
, (3.7)

where E2 is the Eisenstein series of weight 2, related to the Dedekind eta function as

E2(τ) =
1

2πi

d

dτ
log η(τ)24 . (3.8)

Using the measure (3.7) in the integral (3.2) leads to an infinite sum of I-Bessel functions

coming from integrating term-by-term the series expansions of the prepotential and the mea-

sure [33]. It was noticed in that paper that this infinite sum begins with terms that become

smaller up to a point, but that the integrals start diverging after a while. This behavior is
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characteristic of an asymptotic series, which prompted [33] to truncate the sum after a finite

number of terms. This was achieved using a contour prescription given in [43]. The end

result, after evaluating the integrals, was then

dmacro(Q,P ) ' 2π
∑

0≤ ˜̀≤m
∆̃<0

(˜̀− 2 ñ) d(m+ ñ− ˜̀) d(ñ)
cos
(
π(m− ˜̀)`/m

)
√
m

×

×
( |∆̃|

∆

)23/4
I23/2

( π
m

√
|∆̃|∆

)
,

(3.9)

where d(n) is the nth Fourier coefficient of the Dedekind eta function as given in (1.6), ∆ is

the usual discriminant 4mn − `2, and the I-Bessel function is defined in (A.9). Comparing

the above macroscopic result to the Fourier coefficients (A.8) and (A.11), we see that dmacro

is the first (k = 1) term in the Rademacher expansion for a Jacobi form of weight −10 upon

making the identification

cm(ñ, ˜̀) = (˜̀− 2 ñ) d(m+ ñ− ˜̀) d(ñ) for ∆̃ = 4mñ− ˜̀2 < 0 . (3.10)

This proposal, motivated by the exact computation of a supergravity path integral, already

offered a very good numerical agreement with the microscopic data and hinted at an intricate

relationship between the Fourier coefficients of a simple modular form (the Dedekind eta

function) and those of the more complicated mock Jacobi forms ψF
m. However, detailed

numerical investigations also showed that the formula (3.10) cannot be the complete answer,

as evidenced by the small discrepancies between the left- and right-hand sides highlighted in

the tables of [33].

Since the derivation reviewed above relied on the approximations related to the asymp-

totic nature of the series, it was already clear that (3.9) is just the beginning of the complete

formula. In the rest of the paper, we obtain the correct and exact relationship between the

polar terms of ψF
m and the Fourier coefficients of η(τ)−24 based on a precise analysis of neg-

ative discriminant states in N = 4 string theory, as summarized in our main formula (1.5).

Therefore, the results of the present paper can be interpreted as giving us the precise way

to take into account the subleading RQDs that correct the measure (3.7), and truncate the

infinite sum of Bessel functions arising from (3.2).10 11

4 Negative discriminant states and walls of marginal stability

Now we turn back to our main goal, which is to obtain an analytic formula for the degeneracies

of negative discriminant 1
4 -BPS states c̃m(n, `) as defined in (2.10) in terms of the coefficients

10The idea of summing up the contributions from all the RQDs of Φ10 to obtain the exact degeneracy of the

dyonic BH was put forward in [44], but the lack of good technology at the time also led to divergent sums.
11The conclusions of this paper do not mean that there is not another way to obtain the exact single-centered

BH degeneracies after resummation of the residues of the RQDs in a manner consistent with the Sp(2,Z)

symmetry of Φ10. We note, however, that such an enterprise would involve some notion of a “mock” Siegel

form that has not been made precise in the mathematical literature to the best of our knowledge.
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of the Dedekind eta function. In this section we set up the problem in a convenient form

after reviewing some facts about negative discriminant states and walls of marginal stability

associated to negative discriminant state decays. As reviewed in Section 2, we are interested

in counting the number of negative discriminant states in the region R, which correspond

to bound states of two 1
2 -BPS states. Following [19], a convenient way to do so is to count

how bound states appear or decay as we move around the moduli space parameterized by Σ

discussed around (2.11). When we cross a wall of marginal stability, bound states appear or

decay and contribute to the degeneracies of all negative discriminant states contained in ψF
m.

We now review the structure of these walls of marginal stability, referring the reader to [19, 45]

for more details.

4.1 Walls of marginal stability: Notation

1. In the Σ upper half-plane, the walls of marginal stability are of two types [45]:

(a) Semi-circles connecting two rational points p/r and q/s such that ps− qr = 1. We

denote these walls as S-walls.

(b) Straight lines connecting i∞ to an integer. These can be thought of as special cases

of the above expressions when r = 0 and p = s = 1, or when s = 0 and q = −r = 1.

We denote these walls as T-walls.

Figure 2: Structure of T-walls (green) and S-walls (red) in the upper half-plane.

To any T- or S-wall we associate the following matrix,

γ =

(
p q

r s

)
∈ PSL(2,Z) . (4.1)
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2. Given an initial charge vector (n, `,m) = (Q2/2, Q · P, P 2/2), there is an associated

charge breakdown at a wall γ of the form (4.1), given by(
Q

P

)
−→

(
p(sQ− qP )

r(sQ− qP )

)
+

(
q(−rQ+ pP )

s(−rQ+ pP )

)
, (4.2)

and which corresponds to a 1
4 -BPS BH decaying into two 1

2 -BPS centers. The charges

of the two centers are given by γ ·

(
Qγ
0

)
and γ ·

(
0

Pγ

)
, with

(
Qγ
Pγ

)
= γ−1 ·

(
Q

P

)
, (4.3)

which shows that after the breakdown one center is purely electric while the other is

purely magnetic in the new frame. We define (nγ , `γ ,mγ) = (Q2
γ/2, Qγ · Pγ , P 2

γ /2),

which are given explicitly by

nγ = s2n+ q2m− sq` ,
`γ = −2srn− 2pqm+ `(ps+ qr) ,

mγ = r2n+ p2m− pr` .
(4.4)

3. The set of matrices that characterize the walls in the Σ upper half-plane can be divided

into subsets that satisfy the following properties:

Γ+
S :=

{
γ =

(
p q

r s

)
∈ PSL(2,Z)

∣∣∣ r > 0, s > 0

}
,

Γ−S :=

{
γ =

(
p q

r s

)
∈ PSL(2,Z)

∣∣∣ r > 0, s < 0

}
,

ΓT :=

{
γ =

(
p q

r s

)
∈ PSL(2,Z)

∣∣∣ rs = 0

}
.

(4.5)

Because the above matrices have unit determinant, the walls in Γ+
S have p/r > q/s, and

the walls in Γ−S have p/r < q/s. We denote by ΓS = Γ−S ∪ Γ+
S the full set of S-walls.

Notice that PSL(2,Z) = ΓS ∪ ΓT .

4. We define the orientation of a wall γ to be q/s→ p/r. With respect to this orientation,

a bound state of 1
2 -BPS states exists in the chamber to the right of the wall if `γ < 0,

and in the chamber to the left of the wall if `γ > 0 [19].

5. The attractor region R in (2.13) is the region of the Σ upper half-plane bounded by

the T-walls 0 → i∞, 1 → i∞ and the semi-circular S-wall 0 → 1. (Note that, because

of the negative sign in the contour (2.12), the attractor region −Im(τ) < Im(z) ≤ 0 as

in (2.13) maps to 0 ≤ Re(Σ) < 1.) We will be interested in the degeneracies of negative

discriminant states in this region, as reviewed in Section 2.
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From Point 4 combined with (4.4), it is clear that none of the T-walls contribute in the

region R. For example, when r = 0, γ =
(

1 q
0 1

)
which means (nγ , `γ ,mγ) = (n+ q2m− q`, `−

2qm,m). Recalling that we can restrict ourselves to 0 ≤ ` < 2m, this shows that when q ≥ 0,

the above T-walls contribute to the right of the region R. This is consistent with our analysis

of Section 2, where we showed that ψP
m, which captures all the T-walls, actually has vanishing

Fourier coefficients in the region R.

For the S-walls, there exists a map between the sets Γ+
S and Γ−S , given by the right

multiplication of an element of Γ+
S by the matrix

S̃ =

(
0 −1

1 0

)
. (4.6)

This map reverses the orientation of the wall and flips the sign of `γ . Furthermore, S̃ squares

to −I, which means that it is an involution in PSL(2,Z). Therefore we can focus only on

elements of Γ+
S when discussing the details of negative discriminant states breakdowns across

walls of marginal stability.

4.2 Towards a formula for black hole degeneracies

Upon crossing a wall of marginal stability, the index jumps by an amount controlled by the

generating function of each of the associated 1
2 -BPS centers. The latter is given by the inverse

of η(τ)24, whose Fourier coefficients are given by the partition function into 24 colors p24(n)

(cf. Equation (1.6)). Summing up all possible decays across the S-walls leads to the following

counting formula for negative discriminant states living in the region R:

1

2

∑
γ∈ΓS

(−1)`γ+1 θ(γ,R) |`γ | d(mγ) d(nγ) , (4.7)

where the function θ(γ,R) is a step-function giving 1 if the bound state exists on the same

side of the wall γ bounding R and 0 otherwise. Formally, it is defined as follows

θ(γ,R) =

∣∣∣∣∣O(γ,R) + sgn(`γ)

2

∣∣∣∣∣ , O(γ,R) =

{
+1, γ ∈ Γ+

S

−1, γ ∈ Γ−S
. (4.8)

On one hand this sum can be written in a more covariant manner by extending it to a sum

over all matrices in PSL(2,Z),

1

2

∑
γ∈PSL(2,Z)

(−1)`γ+1 θ(γ,R) |`γ | d(mγ) d(nγ) , (4.9)

by extending the θ function to all of PSL(2,Z) via

θ(γ,R) = 0 , γ ∈ ΓT , (4.10)

because the T-walls do not contribute in the region R as we saw above. On the other hand,

the sum (4.8) can also be written as a sum over a smaller set as follows. Note that the
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summand in equation (4.7) is invariant under a transformation by the matrix S̃ given in

equation (4.6) because nγS̃ = mγ , mγS̃ = nγ , `γS̃ = −`γ and S̃ exchanges Γ+
S and Γ−S . This

means that the contributions from the sum over γ ∈ Γ+
S and γ ∈ Γ−S are equal and we can

sum over Γ+
S only. So, we can alternatively write (4.7) as∑

γ∈Γ+
S

(−1)`γ+1

∣∣∣∣1 + sgn(`γ)

2

∣∣∣∣ |`γ | d(mγ) d(nγ) . (4.11)

4.3 A subtlety from bound state metamorphosis

While accounting for all the negative discriminant states in the region R, there is a further

subtlety that needs to be taken into account due to a phenomenon known as bound state

metamorphosis (BSM) [19, 23, 24]. BSM stems from the fact that when one or both 1
2 -BPS

centers making up a 1
4 -BPS bound state carry the lowest possible charge invariant (that is,

when nγ = −1, mγ = −1 or nγ = mγ = −1 for a given wall γ), two or more bound states

must be identified following a precise set of rules to avoid overcounting in the index (4.11).

Thus we can write the set of all contributing walls as the quotient

ΓBSM(n, `,m) = PSL(2,Z)/BSM , (4.12)

and write the polar degeneracies (2.10) as

c̃m(n, `) =
1

2

∑
γ∈ΓBSM(n,`,m)

(−1)`γ+1 Θ(γ) |`γ | d(mγ) d(nγ) . (4.13)

Here we have to introduce a new function Θ(γ) which generalizes the function θ(γ,R)

defined above to take into account the phenomenon of BSM so that it is defined on the

coset ΓBSM(n, `,m). We will be in a position to give a proper definition after a discussion of

BSM in the following sections. We can also present this formula as a sum over the set ΓS
or Γ+

S modulo the identifications due to BSM for the reasons discussed above (T-walls do not

contribute in R, and S̃ gives a map between Γ−S and Γ+
S ):

c̃m(n, `) =
∑

γ∈Γ+
S /BSM

(−1)`γ+1 Θ(γ) |`γ | d(mγ) d(nγ) . (4.14)

Given that the left-hand side of this formula is finite, it is reasonable to expect that

given a set of initial charges (n, `,m), only a finite subset of walls of marginal stability gives

a non-zero contribution to the above sums. This expectation turns out to be correct and we

can write the final formula as a sum over the finite set W(n, `,m)

c̃m(n, `) =
∑

γ∈W(n,`,m)

(−1)`γ+1 |`γ | d(mγ) d(nγ) . (4.15)

Our goal in the following sections is to now fully characterize the subset W(n, `,m) and show

that it contains a finite number of elements for a given charge vector (n, `,m).
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It will be convenient to split the characterization of the set W(n, `,m) depending on

whether BSM does not or does occur. This will be the subject of sections 5 and 6, respec-

tively. Before initiating the study of the finiteness of W(n, `,m), we recall from the discussion

below (2.5) that we can restrict the charge vector to be such that 0 ≤ ` < 2m. In addition,

ψF
m has even weight so there is a reflection symmetry `→ −` which allows us to restrict our-

selves to the case12 ` ∈ {0, . . . ,m}. The index m runs from −1 to +∞ in the expansion (2.4).

For m = −1 and m = 0, there is no macroscopic BH as explained in Section 2, and therefore

we only study m > 0 in the following. Thus our goal is to study the set W(n, `,m) of walls of

marginal stability for a charge vector (n, `,m) that satisfies m > 0, n ≥ −1 and 0 ≤ ` ≤ m.

5 Negative discriminant states without metamorphosis

In this section, we begin to characterize W(n, `,m). For the time being we ignore the phe-

nomenon of BSM (which will be the subject of the next section), and show that the contri-

bution to W(n, `,m) in this case is finite. Accordingly, in order to identify the walls that

contribute to the polar degeneracies c̃m(n, `), we study the system of inequalities mγ ≥ 0

and nγ ≥ 0 defined in (4.4) for a given charge vector (n, `,m) such that ∆ = 4mn − `2 < 0

and 0 ≤ ` ≤ m. As explained above, we focus on walls in Γ+
S ⊂ PSL(2,Z), which allows us

to choose r, s > 0 in the following. The condition mγ ≥ 0 then amounts to

mγ = m
(p
r

)2
− `

(p
r

)
+ n ≥ 0 . (5.1)

The first equality defines a parabola in the (p/r, y = mγ)−plane and the condition m > 0

means that the inequality has two branches:

p

r
≥
`+

√
|∆|

2m
or

p

r
≤
`−

√
|∆|

2m
. (5.2)

We will call these positive and negative “runaway branches” since p/r is unbounded from

above or from below, respectively. The condition nγ ≥ 0 amounts to

nγ = m
(q
s

)2
− `

(q
s

)
+ n ≥ 0 . (5.3)

Moreover, using that the determinant of γ must be equal to one, we have

q

s
=
p

r
− 1

rs
, (5.4)

and so the first equality in (5.3) can also be seen as a parabola in the (p/r, y = nγ)−plane,

shifted by 1/(rs) compared to the first parabola. The condition nγ ≥ 0 also has a positive

and negative runaway branch,

p

r
≥
`+

√
|∆|

2m
+

1

rs
or

p

r
≤
`−

√
|∆|

2m
+

1

rs
. (5.5)

12Note that even though ψF
m is not modular but only mock modular, both its completion ψ̂F

m and its shadow,

and therefore ψF
m itself, enjoy this `→ −` symmetry [9].
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Recall from Section 4 that we focus on Γ+
S walls which corresponds to rs > 0. We split

the argument in two cases. Considering

`−
√
|∆|

2m
+

1

rs
<
`+

√
|∆|

2m
, (5.6)

the smaller intercept with the p/r axis of the shifted nγ-parabola is smaller than the larger

intercept with the p/r axis of the mγ-parabola. This situation is illustrated in Figure 3a. In

(a) The two runaway branches A± in the case where rs > m√
∆
> 0

(b) The runaway branches B± and the bounded branch C when m√
∆
> rs > 0

Figure 3: The regions where mγ ≥ 0 and nγ ≥ 0 for rs > 0, denoted in green

this case, requiring both inequalities mγ ≥ 0 and nγ ≥ 0 implies that

p

r
≥
`+

√
|∆|

2m
+

1

rs
and rs >

m√
|∆|

> 0 , (5.7)
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on the positive runaway branch which we denote A+, or

p

r
≤
`−

√
|∆|

2m
and rs >

m√
|∆|

> 0 , (5.8)

on the negative runaway branch which we denote A−. For a given set of (n, `,m), the

conditions (5.7) have solutions over the integers for (p, r, s). However, if we supplement this

system with the condition that `γ > 0 (since this is a Γ+
S wall this condition is necessary to

have a non-zero contribution owing to the Θ function in (4.14)), then there are no solutions

for (p, r, s). Indeed these conditions imply that

0 < 2
r

s
nγ + `γ = `− 2

q

s
m = `− 2

(
p

r
− 1

rs

)
m

=⇒ p

r
<

`

2m
+

1

rs
,

(5.9)

which is in contradiction with the first equality of (5.7). Similarly, supplementing the

branch A− by the condition `γ > 0, there are no solutions for (p, r, s). This can be seen by

showing that the inequality 2 srmγ+`γ > 0 is in contradiction with the first inequality of (5.8).

The other case to consider is when

`−
√
|∆|

2m
+

1

rs
≥
`+

√
|∆|

2m
. (5.10)

This means that the smaller intercept of the shifted parabola is larger than or equal to the

larger intercept of the original one, as illustrated in Figure 3b. In this case, we still have the

usual runaway branches which we call B+ and B−, but in addition a new branch of solutions

for p/r opens up, which we call the bounded branch C,

`+
√
|∆|

2m
≤ p

r
≤
`−

√
|∆|

2m
+

1

rs
and

m√
|∆|
≥ rs > 0 . (5.11)

Once again, adding the condition that `γ > 0 suffices to show that there are no integer

solutions (p, r, s) to the system of inequalities characterizing the runaway branches B±. The

proof of this is identical to the one above for A±. There are now however solutions for the C

branch. Observe that on this branch we also have a condition on the original charges: since r

and s are integers, rs ≥ 1 and so the second condition in (5.11) demands that m ≥
√
|∆|.

Including the inequality `γ > 0, we obtain the following system for potential walls without

BSM contributing to the polar coefficients:
`+
√
|∆|

2m ≤ p
r ≤

`−
√
|∆|

2m + 1
rs

m√
|∆|
≥ rs > 0

−2nrs− 2mpq + `(ps+ qr) > 0

. (5.12)
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To analyze this system, we start by using the unit determinant condition to eliminate q,

and then express everything in terms of the variables

P := ps , R := rs . (5.13)

Then (5.12) takes the form of a system of inequalities on two variables (P,R):
`+
√
|∆|

2m ≤ P
R ≤

`−
√
|∆|

2m + 1
R

m√
|∆|
≥ R > 0

−2nR− 2mP
R (P − 1) + `(2P − 1) > 0

. (5.14)

We can analyze this system on a case-by-case basis, depending on the original charges (n, `,m).

Recall that we must only consider 4mn− `2 < 0, m > 0 and 0 ≤ ` ≤ m.

1. Case 1: m > 0, n = −1

In this case, there are no integer solutions to (5.14). We see from equations (4.4) that

n = −1 and nγ ≥ 0, mγ ≥ 0 require that p, q 6= 0. The left-hand-side of the first

inequality in equation (5.14) implies that P/R > 0, which then implies that p > 0

since r, s > 0. The determinant condition ps − qr = 1 then requires that q > 0 as

well. However, this is a contradiction since the right-hand-side of the first inequality in

equation (5.14) can be rewritten as

q

s
=
P

R
− 1

R
≤
`−

√
|∆|

2m
< 0 . (5.15)

Here we used that for m > 0, n = −1 we have
√
|∆| =

√
`2 + 4m > `.

2. Case 2: m > 0, n = 0, and ` > 0

In this case we find solutions given by

P = 1 , 0 < R ≤ m

`
. (5.16)

Translating back to the original (p, q, r, s) variables, this yields matrices of the form(
1 0

r 1

)
, with 0 < r ≤ m

`
. (5.17)

Note that all entries in the above matrix are bounded from above by m. As we will see

below, such m-dependent bounds always arise when considering the set of contributing

walls W(n, `,m).

3. Case 3: m > 0, n > 0 and ` > 0

This case is slightly more involved. First, notice from the left-hand-side of the first

inequality in equation (5.14) that P = ps > 0. Therefore we split the discussion

depending on whether P = 1 or P > 1.
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(a) Case 3a: P = 1

In this case the inequalities (5.14) with P = 1 impose

P = 1 , 0 < R ≤
`−

√
|∆|

2n
. (5.18)

In the variables (p, q, r, s), we therefore have a non-zero contribution to the polar

coefficients from matrices of the form:(
1 0

r 1

)
, with 0 < r ≤

`−
√
|∆|

2n
≤ m− 1

2n
. (5.19)

Again, note that all entries in the above matrix are smaller than m.

(b) Case 3b: P > 1

In this case, the inequalities (5.14) yield the following bounds on P and R:

1 < P ≤ 1

2

(
1 +

`√
|∆|

)
,

`+
√
|∆|

2n
(P − 1) ≤ R ≤

`−
√
|∆|

2n
P . (5.20)

The corresponding walls do not start at q/s = 0 but instead are strictly inside the

largest semi-circular S-wall 0 → 1.

Note that we can again get an m-dependent upper bound on P by using the fact

that ` ≤ m and
√
|∆| ≥ 1. We can also use this upper bound on P in the upper

bound on R directly to obtain

P ≤ m+ 1

2
, R ≤ m√

|∆|
. (5.21)

The above implies that all matrix entries of γ ∈ PSL(2,Z) satisfying (5.20) are

bounded from above by m.

This exhausts all possible cases for contributions without BSM: the conditions (5.17), (5.19)

and (5.20) with n ≥ 0 and `,m > 0 fully characterize the set W(n, `,m) in this case. By in-

spection, this set has a finite number of elements. Observe that all the walls giving a non-zero

contribution to (4.15) have entries bounded from above by m.

6 Effects of black hole bound state metamorphosis

We now turn to identifying the walls of marginal stability for which BSM is relevant. We

study the problem systematically in three different cases viz., magnetic-, electric-, and dyonic-

metamorphosis, corresponding to mγ = −1, nγ = −1 and mγ = nγ = −1, respectively.
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6.1 Magnetic metamorphosis case: mγ = −1, nγ ≥ 0

As in Section 5, we start with a charge vector (n, `,m) such that 4mn−`2 < 0 and 0 ≤ ` ≤ m.

However, we are now interested in the walls γ for which mγ = −1 and nγ ≥ 0. The idea

behind magnetic metamorphosis is that when there is a wall γ such that mγ = −1, then there

is another wall γ̃ which has the exact same contribution to the index as γ. Furthermore,

one needs to implement a precise prescription to properly account for such walls, and avoid

overcounting in the polar degeneracies, as shown in [19, 24]. It will be useful to explicitly

review some details of this phenomenon. To do so, we begin with the following definition:

Definition 6.1. For a wall γ with mγ = −1, nγ ≥ 0, we define its metamorphic dual as

γ̃ := γ ·

(
1 −`γ
0 1

)
. (6.1)

With this definition, the prescription found in [19, 24] to properly account for magnetic-

BSM can be summarized as follows (we refer the reader to the references just mentioned for

a physical justification of this):

A wall γ at which magnetic-BSM occurs contributes to the polar coefficients c̃m(n, `)

if and only if γ and its metamorphic dual γ̃ both contribute in R. If so, the con-

tributions of γ and γ̃ should be counted only once.

A necessary condition for the second part of the prescription is that both γ and γ̃ have the

same index contribution, as we now review. First, from Definition 6.1, it is easy to see that

a wall γ and its metamorphic dual γ̃ have the same end point p/r,

γ =

(
p q

r s

)
⇐⇒ γ̃ =

(
p −p`γ + q

r −r`γ + s

)
. (6.2)

With this, we prove the following statement:

Proposition 6.1. For a given set of charges (n, `,m), the wall γ̃ has the same index contri-

bution as γ to the polar coefficients c̃m(n, `).

Proof. First consider the wall γ for which the electric and magentic centers are

Qγ = sQ− qP , Pγ = −rQ+ pP . (6.3)

Thus, we have

`γ = Qγ · Pγ = −srQ2 − qpP 2 + (sp+ qr)Q · P. (6.4)

A similar calculation for γ̃ shows that Qγ̃ = Qγ + `γPγ and Pγ̃ = Pγ , as well as

`γ̃ = (Qγ + `γPγ) · Pγ = `γ + `γP
2
γ = −`γ , (6.5)
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where in the last equality we have made use of the fact that mγ = P 2
γ /2 = −1. We also note

that the above considerations imply

mγ = mγ̃ = −1 , nγ̃ =
(
nγ + `2γmγ + `2γ

)
= nγ . (6.6)

From (6.5), (6.6) and the fact that a given bound state of charges (n′, `′,m′) has indexed

degeneracy (−1)`
′+1|`′|d(n′)d(m′), we conclude that a wall γ and its metamorphic image γ̃

contribute equally to the negative discriminant degeneracies.

We now illustrate the potential non-zero contributions to the formula (4.14) from magnetic-

BSM walls, implementing the above prescription. Recall that the walls we are summing over

in the index formula are in Γ+
S and are thus oriented from left to right (they have p/r > q/s).

From (6.2), we then have the following possible configurations for the wall γ and its dual:

1. Case
p

r
>
−p`γ + q

−r`γ + s
>
q

s
, as shown in Figure 4

(a) Case
p

r
>
−p`γ + q

−r`γ + s
>
q

s
, `γ = −`γ̃ > 0 (b) Case

p

r
>
−p`γ + q

−r`γ + s
>
q

s
, `γ = −`γ̃ < 0

Figure 4: Metamorphosis for
p

r
>
−p`γ + q

−r`γ + s
>
q

s

(a) The situation `γ = −`γ̃ > 0 shown in Figure 4a leads to a contradiction as follows.

If −r`γ + s > 0, then we find from
−p`γ + q

−r`γ + s
>
q

s
that −ps`γ + qs > −rq`γ + qs

which implies 0 > `γ(ps − qr) = `γ (because γ ∈ PSL(2,Z)), which contradicts

the assumption that `γ > 0. For −r`γ + s < 0, we find from
p

r
>
−p`γ + q

−r`γ + s
that −pr`γ + ps < −pr`γ + qr which leads to the contradiction 1 = ps − qr < 0.

Therefore this scenario does not occur.

(b) The situation `γ = −`γ̃ < 0 as seen in Figure 4b does occur but does not contribute

to the index computed in the region R owing to the BSM prescription presented

below Definition 6.1.
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(a) Case
p

r
>
q

s
>
−p`γ + q

−r`γ + s
, `γ = −`γ̃ < 0 (b) Case

p

r
>
q

s
>
−p`γ + q

−r`γ + s
, `γ = −`γ̃ > 0

Figure 5: Metamorphosis for
p

r
>
q

s
>
−p`γ + q

−r`γ + s

2. Case
p

r
>
q

s
>
−p`γ + q

−r`γ + s
, as shown in Figure 5

(a) For the case `γ = −`γ̃ < 0 as in Figure 5a, we run into a contradiction analogous

to the one of Figure 4a.

(b) The case of `γ = −`γ̃ > 0 as in Figure 5b does again occur but does not contribute

to the black hole degeneracy in the region R owing to the BSM prescription.

3. Case
−p`γ + q

−r`γ + s
>
p

r
>
q

s
as shown in Figure 6

(a) Case
−p`γ + q

−r`γ + s
>
p

r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

−p`γ + q

−r`γ + s
>
p

r
>
q

s
, `γ = −`γ̃ < 0

Figure 6: Metamorphosis for
−p`γ + q

−r`γ + s
>
p

r
>
q

s

(a) For the case as in Figure 6a, there will be a contribution to the index in the regionR
from the walls γ and γ̃, in accordance with the BSM prescription. Furthermore,
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Proposition 6.1 shows that both contributions are equal, and the prescription states

that they must be identified to avoid overcounting.

(b) The case shown in Figure 6b does not contribute to the black hole degeneracy in R
since neither γ nor γ̃ contribute in R.

In summary, we have shown that the only magnetic-BSM walls that give a non-trivial

contribution to (4.14) must satisfy mγ = −1, nγ ≥ 0, `γ > 0, as well as
−p`γ + q

−r`γ + s
>

p

r
.

Observe now that if −r`γ +s > 0, then we can rewrite the latter inequality as 0 > ps−qr = 1

which is a contradiction. Thus, we find that the walls giving a non-trivial contribution to

the index (4.14) must have −r`γ + s < 0, which implies `γ > s/r and therefore is stronger

than `γ > 0.

Upon eliminating q using the condition that the walls are in PSL(2,Z), we can write the

three conditions mγ = −1, nγ ≥ 0 and `γ > s/r as

m
(ps− 1

r

)2
− `
(ps− 1

r

)
s+ ns2 ≥ 0 ,

mp2 − `pr + nr2 = −1 ,

−2nrs− 2m
p

r
(ps− 1) + `(2ps− 1) >

s

r
.

(6.7)

We split the discussion in various cases depending on the values of the charges (n, `,m),

subject to the conditions 4mn− `2 < 0, m > 0 and 0 ≤ ` ≤ m. We further focus on the Γ+
S

walls that have r, s > 0.

1. Case 1: m > 0, n = −1

In this case we solve for r in (6.7) and obtain two solutions

r± =
1

2

(
±
√
p2|∆|+ 4− `p

)
. (6.8)

Since r− is negative we can discard it and focus on the r+ solution. Inserting this in

the inequalities nγ ≥ 0 and `γ > s/r, we obtain the following inequalities on s,

max
[1

2

(
`
√
p2|∆|+ 4− p|∆|

)
, 0
]
< s ≤ 1

4

(
`+

√
|∆|
)(√

p2|∆|+ 4− p
√
|∆|
)
, (6.9)

where we have taken into account the fact that we are only interested in solutions

with s > 0. Clearly the right-hand side must be greater or equal to one for this to

have solutions in Z, which in turn translates to an upper bound on p, given below.

A lower bound on p arises because the lower bound on s will become p-dependent

for sufficiently small p (certainly for p ≤ 0). In that case we know that the lower

bound 1
2

(
`
√
p2|∆|+ 4− p|∆|

)
= 1

2

(
`(2r+ + `p)− p|∆|

)
is an integer or a half-integer.

Since s has to be strictly larger than this lower bound but smaller than the upper bound,
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we find that the gap between the upper and lower bound on s has to be at least 1/2,

which leads to a lower bound on p. The final range one obtains is

− 1 +
1

4m

(
`(1 + 4m)√
|∆|+ 1

)
≤ p ≤ 1

2
+

1

2m

(
`(m+ 1)√
|∆|

− 1

)
. (6.10)

Since 0 ≤ ` ≤ m, the upper bound on p is maximized by taking ` = m, in which

case one obtains p ≤ 1
2

(
1 − 1

m + m+1√
m(m+4)

)
< 1, while the lower bound on p trivially

implies that p ≥ 0. So, we actually find that there are only solutions with p = 0, which

then implies that r = r+ = 1 and q = (ps − 1)/r = −1. The range for s simplifies

substantially and the only matrices that contribute in this case are(
0 −1

1 s

)
, with ` < s ≤ 1

2

(
`+

√
|∆|
)
< m+ 1 . (6.11)

Here we have used that 0 ≤ ` ≤ m to get a simple m-dependent upper bound on s.

2. Case 2: m > 0, n = 0 and ` > 0

In this case, the system (6.7) imposes

r =
1 +mp2

`p
. (6.12)

Requiring r > 0 to be an integer fixes p = 1 and ` | (m+1). Then the condition `γ > s/r

is automatically satisfied for s > 0, while the condition mγ ≥ 0 requires s = 1. Thus,

the matrices satisfying (6.7) are of the form(
1 0

m+1
` 1

)
, with ` | (m+ 1) . (6.13)

This set of matrices has entries that are trivially bounded from above by (m + 1)/`.

Among all matrices that contribute to the index (4.14), we obtain here the maximal

entry m+ 1 for ` = 1.

3. Case 3: m > 0, n > 0 and ` > 0

In this case we solve for r using mγ = −1 and obtain two solutions

r± =
1

2n

(
`p±

√
p2|∆| − 4n

)
. (6.14)

Note that sign(p) = sign(r±), so our restriction to r > 0 implies in this case p > 0. The

reality of the square root in r± actually implies a stronger lower bound on p,

2

√
n

|∆|
≤ p . (6.15)
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Together with the conditions nγ ≥ 0 and `γ > s/r, we find

max
[ 1

2n

(
p|∆| ± `

√
p2|∆| − 4n

)
, 0
]
< s ≤ 1

4n

(
`+

√
|∆|
)(

p
√
|∆| ±

√
p2|∆| − 4n

)
,

(6.16)

where the upper and lower signs are for r = r+ and r = r−, respectively. We should

require that the right-hand side of the above equation be greater than one to have

integer solutions for s. For the lower sign, this criterion yields an upper bound on p,

p ≤ 1

2
+

1

2m

(
`(m+ 1)√
|∆|

− 1

)
, (6.17)

which shows that there is a finite number of walls with r = r− contributing to (4.14).

Furthermore, the wall matrix entries are again bounded by simple m-dependent func-

tions, as follows. For p as in (6.17) we notice that the upper bound is maximized

for ` = m and |∆| = 1,13 in which case one finds p < 1
2

(
2 +m− 1

m

)
< 1+ m

2 . Similarly,

we can derive an m-dependent upper bound on s > 0 as follows: p
√
|∆| −

√
p2|∆| − 4n

is a monotonically decreasing function of p and therefore maximal when p is at its lower

bound 2
√
n/|∆| from (6.15). Taking into account that 1 ≤ n and

√
|∆| < ` ≤ m, we

then find s ≤ `+
√
|∆|

2
√
n

< m. Using the upper bound on s we likewise find an upper bound

on the remaining entry, 0 ≤ q = (ps− 1)/r− ≤
(
p
√
|∆| −

√
p2|∆| − 4n

)
/2 <

√
m/2.

For the upper sign, which corresponds to picking r = r+ in (6.14), requiring that the

right-hand side of (6.16) be greater than one does not yield additional constraints on p.

In this case, we thus only have the lower bound (6.15). However, numerical investi-

gations up to m = 30 show that the set of walls with r = r+ is finite, and in fact

consists of only a single element for a given value of m,n, ` > 0. Furthermore, the

entries of the matrix associated to such walls are always strictly less than m. It seems

that imposing integrality of the matrix entries on top of the above conditions severely

restricts the contributing walls with r = r+, although we have not managed to show

this analytically. We leave this as an interesting problem for the future.

The above analysis shows that the set of walls at which magnetic-BSM occurs and that

give a non-trivial contribution to the index (4.14) is finite with entries bounded from above

by m + 1 (see Equation (6.13)). Aside from the case with m,n, ` > 0 and r = r+, we were

able to show this analytically. Nevertheless, our numerical investigations have shown that the

same conclusion holds for the latter walls. Some more details are presented in Appendix B.

6.2 Electric metamorphosis case: nγ = −1,mγ ≥ 0

Having expounded the details of the magnetic metamorphosis case in the previous subsection,

we can make use of these results to work out the electric metamorphosis case at almost no

13These values cannot actually be obtained, so there is a slightly stronger but more complicated bound.
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extra cost. This follows from combining Proposition 6.1 with the observation below (4.6),

which shows that acting with S̃ on the metamorphic dual γ̃ (6.1) of a wall γ with mγ = −1

produces a wall with nγ = −1 and with the same orientation as that of γ. Indeed, the charges

associated with the wall γ̃ · S̃ are given by

(nγ̃S̃ , `γ̃S̃ , mγ̃S̃) = (mγ , `γ , nγ) = (−1, `γ , nγ) . (6.18)

As in the magnetic-BSM case, for a wall γ such that electric metamorphosis occurs there is

another wall γ̃ which gives the same contribution to the index:

Definition 6.2. For a wall γ with nγ = −1, mγ ≥ 0, we define its metamorphic dual as

γ̃ = γ ·

(
1 0

−`γ 1

)
. (6.19)

We must then employ a prescription analogous to the one presented below Definition 6.1

for electric-BSM contributions to avoid overcounting. This is again necessary since an electric-

BSM wall and its metamorphic dual (6.19) have the same contribution to the index:

Proposition 6.2. For a given set of charges (n, `,m), the wall γ̃ has the same index contri-

bution as γ to the polar coefficients c̃m(n, `).

Proof. This is proven completely analogously to the proof of Proposition 6.1.

Furthermore we recall that, as explained below (4.10), the summand of the counting

formula for negative discriminant states is invariant under an S̃-transformation. From (6.18),

it is clear that the electric-BSM wall γ̃ · S̃ gives the same contribution to the polar coef-

ficients c̃m(n, `) as the magnetic-BSM wall γ. Thus, in addition to the above prescription

that requires us to identify an electric-BSM wall with its metamorphic dual, we also need to

identify the contribution of electric-BSM walls with the contribution of magnetic-BSM walls

to avoid further overcounting. The BSM prescription in the case of magnetic or electric walls

therefore identifies four contributions together for a given set of charges (n, `,m).

From Definition 6.2, it is easy to see that a wall γ and its metamorphic dual γ̃ have the

same starting point q/s,

γ =

(
p q

r s

)
⇐⇒ γ̃ =

(
−q`γ + p q

−s`γ + r s

)
. (6.20)

Given this and the fact that we look for walls in Γ+
S (with p/r > q/s), we have the following

possible configurations for the electric-BSM wall γ and its dual:

1. Case
p

r
>
−q`γ + p

−s`γ + r
>
q

s
, as shown in Figure 7

(a) For the situation `γ = −`γ̃ > 0 as in Figure 7a, one can show that this configura-

tion leads to a contradiction, analogous to the magnetic-BSM case of Figure 4a.

Therefore this scenario does not occur.
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(a) Case
p

r
>
−q`γ + p

−s`γ + r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

p

r
>
−q`γ + p

−s`γ + r
>
q

s
, `γ = −`γ̃ < 0

Figure 7: Metamorphosis for
p

r
>
−q`γ + p

−s`γ + r
>
q

s

(b) The case `γ = −`γ̃ < 0 as seen in Figure 7b does occur but does not contribute to

the index in the region R owing to the BSM prescription.

2. Case
−q`γ + p

−s`γ + r
>
p

r
>
q

s
, as shown in Figure 8

(a) Case
−q`γ + p

−s`γ + r
>
p

r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

−q`γ + p

−s`γ + r
>
p

r
>
q

s
, `γ = −`γ̃ < 0

Figure 8: Metamorphosis for
−q`γ + p

−s`γ + r
>
p

r
>
q

s

(a) For the case `γ = −`γ̃ < 0 as in 8a, there is again a contradiction which prevents

this configuration from happening, as in the magnetic-BSM case of Figure 5a.

(b) The case `γ = −`γ̃ > 0 as in Figure 8a does again occur but does not contribute

to the index in the region R owing to the BSM prescription.

3. Case
p

r
>
q

s
>
−q`γ + p

−s`γ + r
, as shown in Figure 9
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(a) Case
p

r
>
q

s
>
−q`γ + p

−s`γ + r
, `γ = −`γ̃ > 0 (b) Case

p

r
>
q

s
>
−q`γ + p

−s`γ + r
, `γ = −`γ̃ < 0

Figure 9: Metamorphosis for
p

r
>
q

s
>
−q`γ + p

−s`γ + r

(a) For the case as in Figure 9a, there will be a contribution to the index in the regionR
from γ and γ̃. Here, just as in the magnetic-BSM case, both these contributions

are equal owing to Proposition 6.2 and must be identified according to the BSM

prescription.

(b) The case as shown in Figure 9b does not contribute to the black hole degeneracy

in the region R since neither γ nor γ̃ does.

Just as in the previous section, the above analysis shows that the only electric-BSM walls

that give a non-trivial contribution to (4.14) must satisfy mγ ≥ 0, nγ = −1, `γ > 0, as

well as
q

s
>
−q`γ + p

−s`γ + r
. Once again, the last inequality leads to a stronger restriction on `γ ,

namely `γ > r/s. We now explicitly give the form of the walls for which electric-BSM occurs,

for all values of (n, `,m) with the usual restrictions that 4mn− `2 < 0, m > 0 and 0 ≤ ` ≤ m.

We make use of the observation at the beginning of this section regarding the action of S̃ on

the metamorphic dual of a magnetic-BSM wall.

1. Case 1: m > 0, n = −1

Acting on the metamorphic dual (6.1) of (6.11) with an S̃-transformation, we obtain

the walls (
1 0

s− ` 1

)
, with ` < s ≤ 1

2

(
`+

√
|∆|
)
< m+ 1 . (6.21)

2. Case 2: m > 0, n = 0 and ` > 0

Acting on the metamorphic dual (6.1) of (6.13) with an S̃-transformation, we obtain

the walls (
` 1

m m+1
`

)
, with ` | (m+ 1) . (6.22)
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This set of matrices has entries that are bounded from above by max[m, (m + 1)/`].

Among all matrices that contribute to the index, we obtain here the maximal entry m+1

for ` = 1.

3. Case 3: m > 0, n > 0 and ` > 0

Acting on the metamorphic dual (6.1) of the walls of Case 3 in Section 6.1 with an S̃-

transformation, we obtain a finite set of electric-BSM walls. This can be shown an-

alytically when acting on walls with r = r−, and numerically when acting on walls

with r = r+. Moreover, all entries are strictly bounded from above by m. See again

Appendix B for some numerical checks.

Just as in the magnetic-BSM analysis of Section 6.1, in all the above cases we obtain a

finite number of electric-BSM walls whose entries are bounded by m+1 (see Equation (6.22)).

In the next section, we turn to the final case that remains to be analyzed, which is when both

transformed charges mγ and nγ are equal to −1.

6.3 Dyonic metamorphosis case: mγ = nγ = −1

The final case of metamorphosis occurs when both the electric and magnetic charges attain

their lowest possible values. In the previous two cases of BSM, a magnetic or electric wall

came with a single metamorphic dual, and as explained above the resulting four walls for a

given charge vector (n, `,m) have to be identified to obtain the correct contribution to the

polar coefficients c̃m(n, `). When both mγ = nγ = −1, there are two centers to be identified

and we can identify the magnetic and electric centers alternatively. This generates an infinite

sequence of dual walls [19]. The metamorphic duals can be generated in two ways depending

on which center we start the identification with. Since they are equivalent, we choose to start

the identification with the magnetic center.

Definition 6.3. Let γ be a wall at which mγ = nγ = −1. The metamorphic duals are

γ̃ i = γ̃ i−1 ·M(imod 2) for i > 0 , and γ̃0 = γ , (6.23)

where M1, M0 are defined as

M1 :=

(
1 −`γ
0 1

)
, M0 :=

(
1 0

`γ 1

)
. (6.24)

For example, γ̃1 = γ ·M1, γ̃2 = γ̃1 ·M0, γ̃3 = γ̃2 ·M1, . . .
14 Note that the identification of the

electric center in M0 does not have a ‘−`γ ’ unlike in (6.19) and this dual wall will have the

same sign of `γ as γ.

Proposition 6.3. For a given set of charges (n, `,m), the walls γ̃ i>0 all have the same index

contribution as γ to the polar coefficients c̃m(n, `).

14Starting with the electric center, we would have γ̃1 = γ ·M0, γ̃2 = γ̃1 ·M1, γ̃3 = γ̃2 ·M0, . . .
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Proof. From the previous sections, we have already shown that the matrices that identify

magnetic centers (6.1) and electric centers (6.19) leave the value of electric and magnetic

charges invariant while only flipping the sign of `γ . Therefore, the infinite set of walls gener-

ated in (6.23) have the same contribution to the index.

We now characterize dyonic metamorphosis. The possible cases for dyonic metamorphosis

are shown in Figure 10, where only one case as shown in Figure 10b can in principle contribute

to the black hole degeneracy in the attractor region R. The reason for this is our BSM

prescription: all walls and their metamorphic must contribute in the same region to contribute

to the polar coefficients c̃m(n, `). To obtain the explicit form of the dyonic-BSM walls we

(a) Case of mγ = −1, nγ = −1 metamorphosis

where all the metamorphic walls are inside the

original wall.

(b) Case of mγ = −1, nγ = −1 metamorphosis

where all the metamorphic walls are outside the

original wall.

Figure 10: Possible cases of metamorphosis for mγ = −1, nγ = −1. There are an infinite

series of walls to be identified but we have not depicted them here in order to avoid cluttering

of the images.

must solve the following system,

nγ = s2n+ q2m− sq` = −1 ,

mγ = r2n+ p2m− rp` = −1 ,

`γ = −srn− pqm+ `(ps+ qr) =
√
|∆|+ 4 ,

(6.25)

with

(
p q

r s

)
∈ PSL(2,Z). It is important to recall that the discriminant ∆ is a U -duality

invariant. For this reason, the value of `γ is not independent and is fixed in terms of the

charges (n, `,m) as `2γ − 4 = `2 − 4mn = |∆|. We further restrict to the case where `γ

is positive i.e., `γ =
√
|∆|+ 4 so that the wall contributes to the region R. Given a

charge vector (n, `,m), there is an infinite sequence of walls, all with associated transformed

charges (nγ , `γ , mγ) = (−1,
√
|∆|+ 4, −1), which get identified by the BSM prescription.
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We now study the explicit form of the contributing walls. When n = 0, the discriminant

is |∆| = `2 (with ` > 0). This reduces (6.25) to

nγ = q2m− sq` = −1 ,

mγ = p2m− rp` = −1 ,

`γ = −pqm+ `(ps+ qr) =
√
|∆|+ 4 .

(6.26)

Demanding that `γ ∈ Z implies that |∆|+ 4 is a perfect square i.e., `2 + 22 = `2γ for `γ ∈ Z.

We know, however, that there is no Pythagorean triple with 2 as an element. (The difference

of two squares form an increasing sequence 3, 5, 7, 8, . . . and this does not include 22 = 4.)

Therefore, there is no dyonic metamorphosis for n = 0.

When n 6= 0, we can solve the system (6.25) after eliminating q using the PSL(2,Z)

relation q = (ps− 1)/r. From mγ = −1 we obtain

r = r± =
1

2n

(
`p±

√
p2|∆| − 4n

)
. (6.27)

For each value of r, the condition nγ = −1 is quadratic in s and yields two branches of

solutions. We therefore arrive at the following dyonic-BSM walls15

γ+,± =

 p 1
2

(
±p
√
|∆|+ 4 +

√
|∆| p2 − 4n

)
1

2n

(
`p+

√
p2|∆| − 4n

)
1

4n

(
`p+

√
|∆|p2 − 4n

)(
`±

√
|∆|+ 4

)
−mp

 , (6.28)

and

γ−,± =

 p 1
2

(
±p
√
|∆|+ 4−

√
|∆| p2 − 4n

)
1

2n

(
`p−

√
p2|∆| − 4n

)
1

4n

(
`p−

√
|∆|p2 − 4n

)(
`±

√
|∆|+ 4

)
−mp

 . (6.29)

Since −γ+,±(−p) = γ−,±(p) and we look for walls in PSL(2,Z), we can focus on one type

of walls, say γ−,±. We therefore drop the first subscript and simply denote walls of the

form (6.29) as γ±. Examining the top-right entry of γ±, a necessary condition for these walls

to have integer entries is that
√
|∆|+ 4,

√
|∆|p2 − 4n ∈ Z. In the following we let y = p

and D = |∆|. The requirement that D + 4 is a perfect square implies that D is not a square

(as already observed above), and further that D is congruent to 0 or 1 modulo 4.

The requirement
√
Dy2 − 4n ∈ Z can then be expressed as the requirement for y to be

a solution of √
Dy2 − 4n = x =⇒ x2 −Dy2 = −4n , (6.30)

with x, y ∈ Z. We now split the discussion in two cases.

15As mentioned above, a consequence of U -duality is that the equation `γ =
√
|∆|+ 4 is not independent

and does not yield additional constraints.
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1. Case 1: n = −1

In the case n = −1, the condition (6.30) takes the form

x2 −Dy2 = 4 . (6.31)

This equation is the so-called Brahmagupta-Pell equation and has been well-studied

over the years.16 It is one of the classic Diophantine equations, and its solutions have

been fully classified. In the language of modern algebraic number theory this problem is

closely related to the problem of finding units in the ring of integers of the real quadratic

field Q(
√
D). We will present the solution below in elementary terms, and later make

some comments on the more formal interpretation. We follow the treatment of [46–48].

The equation (6.31) has an infinity of solutions given as follows. Let

u = u0 +
√
Dv0 , (6.32)

be such that u2
0−Dv2

0 = 4 with the least strictly positive v0. Then all solutions of (6.31)

are given by [46]

x+
√
Dy

2
=
(u0 +

√
Dv0

2

)k
with k ∈ Z . (6.33)

In general the difficulty is to find the fundamental solution u, as u0 and v0 need not

be small even for small D.17 In our case however, we can can use the physics of the

problem which guarantees that `γ =
√
D + 4 is an integer. Therefore, the fundamental

solution is simply

u =
√
D + 4 +

√
D ⇐⇒ (u0, v0) = (

√
D + 4, 1) . (6.34)

From this solution we generate all other solutions from (6.33). Expanding that equation

and matching the coefficients of unity and
√
D leads to the recurrence

2xk+1 =
√
D + 4xk +Dyk ,

2 yk+1 = xk +
√
D + 4 yk ,

(6.35)

for k ≥ 0. Given a solution xk +
√
Dyk to (6.31), the matrix (6.29) reads

γ±(k) =

 yk
1
2

(
±yk
√
D + 4− xk

)
1
2

(
xk − `yk

)
1
4

(
xk
(
`±
√
D + 4

)
− yk

(
D ± `

√
D + 4

))
 . (6.36)

16In the literature, it is common to denote “the” Pell equation as the equation where the right-hand side is

equal to one. However, the latter is a special case of our equation (6.30) with n = −1, see e.g., [46–48].
17A famous example (Fermat’s challenge) is the equation a2−D b2 = 1 with D = 61, where the fundamental

solution is given by a0 = 1766319049 and b0 = 226153980. As we see below, this example does not appear in

the physical system we study because D+ 4 = 65 is not a perfect square. It is interesting to wonder, however,

whether such phenomena are relevant to generating large scales in nature. We thank D. Anninos for this

suggestion and for interesting conversations about this issue.

– 37 –



Using the recursion relations (6.35), we can now show that acting on the right of γ+(k)

with M1 · S̃ =

(√
D + 4 1

−1 0

)
yields

γ+(k) ·M1 · S̃ = γ+(k + 1) ∀ k ≥ 0 , (6.37)

while acting on the right of γ−(k) with M0 · S̃ =

(
0 1

−1
√
D + 4

)
yields

γ−(k) ·M0 · S̃ = γ−(k + 1) ∀ k ≥ 0 . (6.38)

In the language of Definition 6.3, the recurrence (6.37) can be written as

γ̃k =

{
γ+(k) · S̃ for k ≥ 1 odd

γ+(k) for k ≥ 2 even
, and γ̃0 = γ+(0) , (6.39)

where we used M0 = S̃ ·M1 · S̃. Had we chosen to start the identification with the

electric center in Definition 6.3, we would have used (6.38) instead. Equation (6.39)

shows that all metamorphic duals of the dyonic-BSM walls γ±(0) are precisely all the

solutions to the Brahmagupta-Pell equation (6.31).

The first representative of the orbit (the wall with k = 0) is given by

γ±(0) =

(
0 −1

1 1
2

(
`±
√
D + 4

)) . (6.40)

Note that `2 = D−4m ≡ D+4 (mod 2), which implies that ` ≡
√
D + 4 (mod 2), so that

the bottom-right entry of (6.40) is always an integer. Since ` <
√
D + 4, the wall γ−(0)

is an element of Γ−S . Therefore, provided that
√
D + 4 ∈ Z, the wall γ+(0) ∈ Γ+

S and all

the metamorphic duals to be identified according to the BSM prescription are generated

by the right action of M1 · S̃. These dual walls are given by all the solutions to (6.31) as

in (6.36). This completely characterizes dyonic-BSM in the case n = −1. Furthermore,

since 0 ≤ ` ≤ m, the first representative of this orbit γ+(0) clearly has entries bounded

by 0 < 1
2

(
`+
√
D + 4

)
≤ m+ 1.

2. Case 2: n ≥ 1

In this case we are interested in the solutions to the so-called generalized Brahmagupta-

Pell equation (6.30)

x2 −Dy2 = −4n . (6.41)

As before, we have that D > 0 is not a square. Unlike in the n = −1 case, this equation

does not necessarily have a solution for general D and n. However, when there is a

solution (x0, y0) then there are infinitely many solutions which are all generated by

multiplication with powers of the fundamental unit given in (6.34),

x+
√
Dy = (x0 +

√
Dy0)

(√
D + 4 +

√
D

2

)k
for any k ∈ Z . (6.42)
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By repeating the same steps as in Case 1 above, one can again show that the orbit of

metamorphic duals is precisely the solution set of the generalized Pell equation, and is

generated by the matrices (6.37) and (6.38) acting on

γ±(0) =

(
y0

1
2

(
±y0

√
D + 4− x0

)
1

2n

(
`y0 − x0

)
1

4n

(
`y0 − x0

)(
`±
√
D + 4

)
−my0

)
. (6.43)

As in (6.40), we have
√
D + 4 ∈ Z and ` ≡

√
D + 4 (mod 2). In order for the matrix

entries to be integer, a sufficient condition is x0 ≡ `y0 (mod 2n). By (6.41) we have x2
0 ≡

Dy2
0 (mod 2n). Together with the fact that D ≡ `2 (mod 2n), this implies that x2

0 ≡
`2 y2

0 (mod 2n), so that if n is square free, then we automatically have x0 ≡ `y0 (mod 2n).

Once this condition is met, the full orbit of metamorphic duals is generated by M1 · S̃
or M0 · S̃ as before.

Since k runs over all integers in (6.42), it is clear that every Pell orbit—and therefore

every dyonic BSM orbit—has an element with smallest |y|, which is called the funda-

mental solution. Although there is no existence theorem for solutions to the generalized

Brahmagupta-Pell equation (6.41) when n ≥ 1, there is a powerful theorem [47, 48]

which states that the fundamental solution is bounded according to

x2 ≤ 2n
(√
D + 4 +

√
D
)
, y2 ≤ 2n

(√
D + 4 +

√
D

D

)
. (6.44)

These bounds are very restrictive, and in particular, they imply that the set of dyonic-

BSM orbits is finite, with a representative whose entries are strictly less than m+ 1.

We have thus fully characterized the dyonic-BSM walls and explained how the infinite

orbit of metamorphic duals defined in Definition 6.3 is in one-to-one correspondence with the

infinite orbit of solutions to the (generalized) Brahmagupta-Pell equation. Crucial to being

able to solve the problem was the fact that U -duality fixes `γ =
√
|∆|+ 4 to be an integer.

It is instructive to restate the solutions of the Brahmagupta-Pell equation in the language

of algebraic number theory [46–48]. Consider the real quadratic field K = Q(
√
D) where

D > 0 is not a square. We will denote elements of this field either as (x, y) or as x +
√
Dy

with x, y ∈ Q. The norm of this element is N(x, y) = x2−Dy2. By a change of variables ([46],

p. 355) one can bring the basic Brahmagupta-Pell equation to the form

x2 −Dy2 = 1 . (6.45)

Thus we are looking for elements of norm 1. By multiplicativity of the norm, it is clear that

if u = x +
√
Dy is a solution of (6.45), then so is uk for k ∈ Z. (It is easy to check, by

rationalizing denominators and using (6.45), that negative powers are also good solutions.)

The problem of finding all solutions to the basic Brahmagupta-Pell equation is then precisely

the problem of finding all units in the order Z[
√
D]. Denoting the discriminant of K as D0,
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we have D = D0f
2. When f = 1 the solution to this problem is given by Dirichlet’s unit

theorem, that all solutions are generated as powers of the fundamental unit a0 +
√
D b0 which

is the unit with least positive b0. In fact this statement holds even when f > 1 (one can use

a proof by induction on the number of prime powers of f). By changing variables back, we

obtain the formulation (6.33).

For the general case we have, after the change of variables mentioned above,

x2 −Dy2 = −n , (6.46)

with n ∈ Z (our interest in this paper is in n ≥ −1 with n 6= 0). In this case, we are looking

for elements in K with norm −n. Once again it is easy to see, by the multiplicativity of the

norm, that given one such element (x0, y0) with N(x0, y0) = −n we have an infinite number

of elements with the same norm generated by multiplying x0 +
√
Dy0 by arbitrary powers

of a unit. The main theorem in this case says that there are a finite number of fundamental

solutions (x0, y0) which lie in the range |x0| ≤
√
|n|u, |y0| ≤

√
|n|u/D, where u is any unit

satisfying u > 1 and N(u) = 1. This last condition, translated back to our variables is

presented in (6.44).

Summary

For convenience, we now summarize the results of Sections 5 and 6 where we have charac-

terized all the walls contributing to the negative discriminant degeneracies (4.14). There are

two notable points.

Finiteness. Examining the various cases (with and without BSM), we see that the set of

relevant walls is finite, and in fact small in the following sense: it consists of S-walls with

entries bounded (in absolute value) from above by m+ 1, where the upper bound is optimal

for certain values of the original charges (n, `,m), as evidenced e.g., in (6.13). Moreover, all

walls are such that |p/r| ≤ 1 and |q/s| ≤ 1 and so their endpoints lie in the strip Σ1 ∈ [−1,+1]

in the Σ moduli space.

Structure. The structure of walls of electric and magnetic BSM form an orbit generated by

the corresponding BSM transformation which acts as Z/2Z. The dyonic bound state meta-

morphosis has a very interesting characterization. We already knew that there is an infinite

set of different-looking gravitational configurations, all with the same total dyonic charge

invariants with negative discriminant, which are related by U -duality to each other. The

phenomenon of BSM [19, 24] says that these configurations actually should not be considered

as distinct physical configurations; rather, they must be identified as different avatars of the

same physical entity. Our considerations in this section show that the following sets are in

one-to-one correspondence:

1. The orbit of dyonic metamorphic duals with charges (n, `,m) with `2 − 4mn = D > 0,

and
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2a. Solutions to the generalized Brahmagupta-Pell equation x2 −Dy2 = −4n with funda-

mental solution (x0, y0), and the conditions
√
D + 4 ∈ Z and x0 ≡ ` y0 (mod 2n), or,

equivalently,

2b. The set of algebraic integers of norm −n in the order Z[
√
D] of the real quadratic

field K = Q(
√
D) with 1

2(
√
D + 4 +

√
D) as the fundamental unit, as well as the second

congruence condition above.

Moreover, these sets are isomorphic to each other (and to Z) as an additive group. The

generators of the groups are given, respectively, by the generators in Definition 6.3 (modulo S̃),

and by multiplication in K by the fundamental unit.

7 The exact black hole formula and experimental checks

In this section we assemble all the elements of the previous sections into one formula, and

then we present checks of this formula. So far we have seen that the walls of marginal stability

contributing to the polar coefficients according to Equation (4.14) are a subset of PSL(2,Z).

Bound state metamorphosis is an equivalence relation on the set PSL(2,Z) and therefore

divides it into orbits µ. We denote the set of orbits as (cf. Equation (4.12))

ΓBSM(n, `,m) = PSL(2,Z)/BSM . (7.1)

The orbits are of the following three types:

1. Walls for which there are no metamorphosis. These walls have no duals and therefore

lie in an orbit of length 1.

2. Walls with either electric or magnetic metamorphosis, for which there is exactly one

dual with the same contribution to the index. These walls lie in an orbit of length 2.

3. Walls with dyonic metamorphosis for which there are an infinite number of dual walls.

These walls lie in an orbit of infinite length with a group structure isomorphic to Z.

We have seen that the contribution of an orbit to the index is one if all its elements contribute,

and zero otherwise. This can be encoded in the following function defined on orbits (recalling

Equations (4.8), (4.10) for the definition of the θ function),

Θ(µ) =
∏
γ∈µ

θ(γ,R) , µ ∈ ΓBSM(n, `,m) , (7.2)

which can be lifted to a function on the space of walls as (using the same notation)

Θ(γ) = Θ(µ) , γ ∈ µ . (7.3)
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We now have all the elements to present the full formula for the polar degeneracies (2.10). in

the range 0 ≤ ` ≤ m we have:18

c̃m(n, `) =
1

2

∑
γ∈ΓBSM(n,`,m)

(−1)`γ+1 Θ(γ) |`γ | d(mγ) d(nγ) . (7.4)

The sum in the above formula runs over ΓBSM(n, `,m) which was defined as a coset

of PSL(2,Z) in (7.1). We can also write the formula so that the sum runs over a smaller set,

by using the symmetry of the theory and making a choice in obtaining the coset representative.

Such a choice makes the formula more explicit and is useful for computations. We had already

illustrated the idea of two such formulas in our preliminary discussion in Section 4.2 where

we didn’t take BSM into account. In that case we had a sum over PSL(2,Z) in (4.9) but by

using the involution S̃, we could equivalently write it as a sum over Γ+
S as in (4.11) with an

additional factor of 1
2 . When BSM is present this discussion needs to be modified. When we

have pure electric or pure magnetic BSM, the orbits of length 2 discussed in Case 2 above

are actually part of a full symmetry orbit of length 4 via the following identifications:

(nγ , `γ ,mγ) = (N 6= −1, L > 0,−1)
γ̃m7−→ (N,−L,−1)

S̃7−→ (−1, L,N)
γ̃e7−→ (−1,−L,N) .

(7.5)

In particular, the combined symmetry of BSM and S̃ implies an identification of two walls

in Γ+
S , namely the first and the third of the above sequence.

By definition, a given wall belongs to one and only one symmetry orbit, and, as we have

shown in the previous sections, when 0 ≤ ` ≤ m, every orbit has a non-empty intersection

with the set {(
p q

r s

)
⊂ Γ+

S

∣∣∣∣ |p| , |q| , |r| , |s| ≤ m+ 1

}
. (7.6)

The set W(n, `,m) is defined as the set of representative of orbits of BSM combined with S̃ in

this finite set having a non-zero value of Θ. With this definition we rewrite the degeneracies

of negative discriminant states for 0 ≤ ` ≤ m as

c̃m(n, `) =
∑

γ∈W(n,`,m)

(−1)`γ+1 |`γ | d(mγ) d(nγ) . (7.7)

We now present checks of this formula. Table 1 lists negative discriminant states for

m = 1, . . . , 5. Column I lists the charge invariants (m,n, `) with discriminant ∆ = 4mn−`2 <
0. Note that we have changed the order of the charge invariants here with respect to the

rest of the paper. The organization is as follows: we first list m which is the index of

the mock Jacobi form, followed by n and `. The range of ` is m, . . . , 0 which covers all

the cases as explained in Section 2, and n runs over all values that produce a negative

18Recall from the discussion in Section 2 that the c̃m(n, `) are coefficients of a (mock) Jacobi form of index m,

and as such they are a function of ∆ = 4mn − `2 and ` mod (2m). Recall also that the modular properties

imply that this can further reduced to 0 ≤ ` ≤ m.
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discriminant with non-zero coefficient for ψF
m. Column II lists the walls γ ∈W(n, `,m) which

contribute to the degeneracy of states with these charge invariants. These walls have been

discussed in Sections 5 and 6. The walls in Column II, as stated in (4.5), are semicircles

from q/s → p/r, where

(
p q

r s

)
is a PSL(2,Z) matrix. Column III shows the transformed

charges at the wall γ. In the γ-transformed S-duality frame the decay products are (Qγ , 0)

and (0, Pγ) with invariants (mγ , nγ , `γ) (cf. (4.2) and (4.4)). Cases with either mγ = −1

or nγ = −1 correspond, respectively, to magnetic and electric metamorphosis. An example

is (m,n, `) = (1,−1, 0) where we have the walls (mγ , nγ , `γ) = (−1, 0, 2) and (−1, 0,−2) (with

contribution 48) are identified due to magnetic BSM as shown in the table. According to the

discussion around (7.5), we also need to identify these walls with (0,−1, 2) and (0,−1,−2)

(which we have not explicitly displayed in the table). In a similar manner, we have only

displayed pure magnetic, but not pure electric BSM phenomena in the table. The cases

with mγ = nγ = −1 correspond to dyonic metamorphosis, in which case an infinite number

of walls must be identified (see Section 6.3). An example is (m,n, `) = (1,−1, 1). Here we

have exhibited four walls corresponding to the first two solutions to the Brahmagupta-Pell

equation (6.31) (the trivial solution with p = 0 and the first non-trivial one with p = 1) and

their respective first metamorphic duals (γ̃ built with M1 in Definition 6.3). Column IV is

the index contribution of each wall and Column V is the total index c̃m(n, `) according to our

formula (7.7). This agrees with with a direct calculation of the polar degeneracies of ψF
m(τ, z).

We have run similar checks up to m = 30 which includes 1650 polar coefficients and find

perfect agreement between the formula (7.7) and the polar coefficients of ψF
m. In Appendix C

we show more values of the total index (corresponding to Columns I and V of Table 1).

In [33], two of the authors of this paper compared the degeneracies of negative discrimi-

nant states of ψF
m for m = 1, · · · , 7 and the result of the formula (3.10) which, as explained in

Section 3, was found by a combination of physical and mathematical ideas. It was observed

in that paper that (3.10) agrees with the data from ψF
m for many but not all the cases of nega-

tive discriminant states. The main formula of this paper (7.4) or, equivalently, (7.7), removes

these discrepancies completely. As an example, the approximate formula (3.10) gives 6400 for

the charges (m,n, `) = (3,−1, 0), while the correct answer is 6404. In the table we explicitly

see the correction of 4 coming from the subleading contribution of dyonic-BSM walls.

A natural extension of this technique is to extend it to the cases of ZN CHL orbifolds.

We have preliminary data which we hope to analyze in the near future, thereby generalizing

the formula presented here. Here, the comparison against coefficients of the inverse of the

orbifolded Igusa cusp form, Φk would involve the Rademacher technique for mock Jacobi

forms on congruence subgroups of SL(2,Z). This would be a generalization of the analysis

for 1
2 -BPS black holes under CHL orbifolds as studied in [49] and the techniques studied

in [50, 51].
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I. II. III. IV. V.

Charges Walls Transf. charges Contribution Net Index

(m,n, ` ; ∆) γ = q/s → p/r (mγ , nγ , `γ) from wall c̃m(n, `)

(1,−1, 1 ;−5)

−1/2 → 0/1 (−1, −1, 3)

3 3

−1/− 1 → 0/1 (−1, −1, −3)

0/1 → 1/1 (−1, −1, 3)

−3/− 2 → 1/1 (−1, −1, −3)
...

...

(1,−1, 0 ;−4)
−1/1 → 0/1 (−1, 0, 2)

48 48
−1/− 1 → 0/1 (−1, 0, −2)

(1, 0, 1 ;−1)

0/1 → 1/1 (0, 0, 1) 576

6000/1 → 1/2 (−1, 0, 1)
24

−1/− 1 → 1/2 (−1, 0, −1)

(2,−1, 2 ;−12)

−1/3 → 0/1 (−1, −1, 4)

4 4

−1/− 1 → 0/1 (−1, −1, −4)

0/1 → 1/1 (−1, −1, 4)

−4/− 3 → 1/1 (−1, −1, −4)
...

...

(2,−1, 1 ;−9)
−1/2 → 0/1 (−1, 0, 3)

72 72
−1/− 1 → 0/1 (−1, 0, −3)

(2,−1, 0 ;−8)
−1/1 → 0/1 (−1, 1, 2)

648 648
−1/− 1 → 0/1 (−1, 1, −2)

(2, 0, 2 ;−4) 0/1 → 1/1 (0, 0, 2) 1152 1152

(2, 0, 1 ;−1)

0/1 → 1/1 (1, 0, 1) 7776

8376
0/1 → 1/2 (0, 0, 1) 576

0/1 → 1/3 (−1, 0, 1)
24

−1/− 2 → 1/3 (−1, 0, −1)

(3,−1, 3 ;−21)

−1/4 → 0/1 (−1, −1, 5)

5 5

−1/− 1 → 0/1 (−1, −1, −5)

0/1 → 1/1 (−1, −1, 5)

−5/− 4 → 1/1 (−1, −1, −5)
...

...

(3,−1, 2 ;−16)
−1/3 → 0/1 (−1, 0, 4)

96 96
−1/− 1 → 0/1 (−1, 0, −4)
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(3,−1, 1 ;−13)
−1/2 → 0/1 (−1, 1, 3)

972 972
−1/− 1 → 0/1 (−1, 1, −3)

(3,−1, 0 ;−12)

−1/1 → 0/1 (−1, 2, 2)
6400

6404

−1/− 1 → 0/1 (−1, 2, −2)

−1/2 → 0/1 (−1, −1, 4)

4

−1/− 2 → 0/1 (−1, −1, −4)

0/1 → 1/2 (−1, −1, 4)

−4/− 7 → 1/2 (−1, −1, −4)
...

...

(3, 0, 3 ;−9) 0/1 → 1/1 (0, 0, 3) 1728 1728

(3, 0, 2 ;−4)

0/1 → 1/1 (1, 0, 2) 15552

156000/1 → 1/2 (−1, 0, 2)
48

−2/− 3 → 1/2 (−1, 0, −2)

(3, 0, 1 ;−1)

0/1 → 1/1 (2, 0, 1) 76800

85176

0/1 → 1/2 (1, 0, 1) 7776

0/1 → 1/3 (0, 0, 1) 576

0/1 → 1/4 (−1, 0, 1)
24

−1/− 3 → 1/4 (−1, 0, −1)

(4,−1, 4 ;−32)

−1/5 → 0/1 (−1, −1, 6)

6 6

−1/− 1 → 0/1 (−1, −1, −6)

0/11 → 1/1 (−1, −1, 6)

−6/− 5 → 1/1 (−1, −1, −6)
...

...

(4,−1, 3 ;−25)
−1/4 → 0/1 (−1, 0, 5)

120 120
−1/− 1 → 0/1 (−1, 0, −5)

(4,−1, 2 ;−20)
−1/3 → 0/1 (−1, 1, 4)

1296 1296
−1/− 1 → 0/1 (−1, 1, −4)

(4,−1, 1 ;−25)
−1/2 → 0/1 (−1, 2, 3)

9600 9600
−1/− 1 → 0/1 (−1, 2, −3)

(4,−1, 0 ;−16)

−1/1 → 0/1 (−1, 3, 2)
51300

51396
−1/− 1 → 0/1 (−1, 3, −2)

−1/2 → 0/1 (−1, 0, 4)
96

−1/− 2 → 0/1 (−1, 0, −4)

(4, 0, 4 ;−16) 0/1 → 1/1 (0, 0, 4) 2304 2304
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(4, 0, 3 ;−9) 0/1 → 1/1 (1, 0, 3) 23328 23328

(4, 0, 2 ;−4)
0/1 → 1/1 (2, 0, 2) 153600

154752
0/1 → 1/2 (0, 0, 2) 1152

(4, 0, 1 ;−1)

0/1 → 1/1 (3, 0, 1) 615600

700776

0/1 → 1/2 (2, 0, 1) 76800

0/1 → 1/3 (1, 0, 1) 7776

0/1 → 1/4 (0, 0, 1) 576

0/1 → 1/5 (−1, 0, 1)
24

−1/− 4 → 1/5 (−1, 0, −1)

(5,−1, 5 ;−45)

−1/6 → 0/1 (−1, −1, 7)

7 7

−1/− 1 → 0/1 (−1, −1, −7)

0/1 → 1/1 (−1, −1, 7)

−7/− 6 → 1/1 (−1, −1, −7)
...

...

(5,−1, 4 ;−36)
−1/5 → 0/1 (−1, 0, 6)

144 144
−1/− 1 → 0/1 (−1, 0, −6)

(5,−1, 3 ;−29)
−1/4 → 0/1 (−1, 1, 5)

1620 1620
−1/− 1 → 0/1 (−1, 1, −5)

(5,−1, 2 ;−24)
−1/3 → 0/1 (−1, 2, 4)

12800 12800
−1/− 1 → 0/1 (−1, 2, −4)

(5,−1, 1 ;−21)

−1/2 → 0/1 (−1, 3, 3)
76950

76955

−1/− 1 → 0/1 (−1, 3, −3)

−1/3 → 0/1 (−1, −1, 5)

5

−1/− 2 → 0/1 (−1, −1, −5)

0/1 → 1/2 (−1, −1, 5)

−5/− 9 → 1/2 (−1, −1, −5)
...

...

(5,−1, 0 ;−20)

−1/1 → 0/1 (−1, 4, 2)
352512

353808
−1/− 1 → 0/1 (−1, 4, −2)

−1/2 → 0/1 (−1, 1, 4)
1296

−1/− 2 → 0/1 (−1, 1, −4)

(5, 0, 5 ;−25) 0/1 → 1/1 (0, 0, 5) 2880 2880

(5, 0, 4 ;−16) 0/1 → 1/1 (1, 0, 4) 31104 31104
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(5, 0, 3 ;−9)

0/1 → 1/1 (2, 0, 3) 230400

2304720/1 → 1/2 (−1, 0, 3)
72

−3/− 5 → 1/2 (−1, 0, −3)

(5, 0, 2 ;−4)

0/1 → 1/1 (3, 0, 2) 1231200

1246800
0/1 → 1/2 (1, 0, 2) 15552

0/1 → 1/3 (−1, 0, 2)
48

−2/− 5 → 1/3 (−1, 0, −2)

(5, 0, 1 ;−1)

0/1 → 1/1 (4, 0, 1) 4230144

4930920

0/1 → 1/2 (3, 0, 1) 615600

0/1 → 1/3 (2, 0, 1) 76800

0/1 → 1/4 (1, 0, 1) 7776

0/1 → 1/5 (0, 0, 1) 576

0/1 → 1/6 (−1, 0, 1)
24

−1/− 5 → 1/6 (−1, 0, −1)

(5, 1, 5 ;−5)

0/1 → 1/1 (1, 1, 3) 314928

315255

0/1 → 1/2 (−1, 1, 1)
324

−1/− 1 → 1/2 (−1, 1, −1)

1/3 → 1/2 (−1, −1, 3)

3

−2/− 3 → 1/2 (−1 − 1, −3)

1/2 → 2/3 (−1, −1, 3)

−5/− 7 → 2/3 (−1, −1, −3)
...

...

Table 1: Table of examples detailing original charge vector, contributing walls, associated

charge breakdowns at walls and index contributions.
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A (Mock) Jacobi forms and the Rademacher expansion

A Jacobi form [20] of weight w and index m with respect to the fundamental modular

group SL(2,Z) is a holomorphic function ϕ(τ, z) : H × C → C (where H is the upper half-

plane) which satisfies two functional equations,

ϕ
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w e

2πimcz2

cτ+d ϕ(τ, z) ∀

(
a b

c d

)
∈ SL(2,Z) , (A.1)

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z) ∀ λ, µ ∈ Z . (A.2)

Due to the periodicity properties encoded in the above equations, ϕ(τ, z) has a Fourier ex-

pansion

ϕ(τ, z) =
∑
n,`∈Z

c(n, `) qn ζ` , (A.3)

where q := e2πiτ and ζ := e2πiz. Owing to (A.2), a Jacobi form of weight w and index m can be

decomposed into a vector-valued modular form of weight w−1/2 via its theta-decomposition

ϕ(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) , (A.4)

where the components h`(τ) take the form

h`(τ) =
∑
∆

c(n, `) q∆/4m , ∆ = 4mn− `2 . (A.5)

The ϑm,`(τ, z) denote the standard weight 1/2, index m theta functions,

ϑm,`(τ, z) :=
∑
r∈Z

r≡`mod 2m

qr
2/4m ζr . (A.6)

The Rademacher expansion provides a powerful tool to reconstruct the Fourier coefficients

of Jacobi forms. We illustrate it here for weights w + 1/2 smaller or equal to zero, modular
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group SL(2,Z) and generic multiplier system ψ(γ). Once the modular properties of the

modular forms h`(τ) are known, the only extra ingredient required to determine the Fourier

coefficients c(n, `) with ∆ ≥ 0 are the polar coefficients, i.e. the terms with negative powers

of q in the Fourier expansion

h`(τ) =
∑
∆̃<0

c(ñ, ˜̀) q∆̃/4m +
∑
∆≥0

c(n, `) q∆/4m . (A.7)

In turn, the Rademacher expansion for the Fourier coefficients of h`(τ) takes the form

c(n, `) = 2π
∞∑
k=1

∑
˜̀∈Z/2mZ

∆̃<0

c(ñ, ˜̀)
Kl
(

∆
4m ,

∆̃
4m ; k, ψ

)
`˜̀

k

( |∆̃|
∆

) 1−w
2
I1−w

( π

mk

√
|∆̃|∆

)
. (A.8)

Here, Iρ(x) is the I-Bessel function of weight ρ, which has the following integral representation

for x ∈ R∗,

Iρ(x) =
1

2πi

(x
2

)ρ ∫ ε+i∞

ε−i∞
t−ρ−1 e t+

x2

4t dt , (A.9)

and asymptotics

Iρ(x) ∼
x→∞

ex√
2πx

(
1− µ− 1

8x
+

(µ− 1)(µ− 32)

2!(8x)3
− (µ− 1)(µ− 32)(µ− 52)

3!(8x)5
+ . . .

)
, (A.10)

with µ = 4ρ2. In (A.8), Kl
(

∆
4m ,

∆̃
4m ; k, ψ)

`˜̀ is the generalized Kloosterman sum

Kl(µ, ν ; k, ψ)
`˜̀ :=

∑
0≤h<k
(h,k)=1

e2πi
(
−hk µ+

h′

k ν
)
ψ(γ)

`˜̀, (A.11)

with γ =

(
h′ −hh′+1

k

k −h

)
∈ SL(2,Z) and hh′ ≡ −1 (mod k).

There exists a generalization of the Rademacher expansion applicable to cases where the

function ϕ is a mock Jacobi form [16–18, 52]. As discussed in the main text, the function that

is relevant to our story is the mock Jacobi form ψF
m. In this case, the generalized Rademacher
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expansion for the Fourier coefficients cF
m(n, `), ∆ ≥ 0, was obtained in [10]. It reads:

cF
m(n, `) = 2π

∞∑
k=1

∑
˜̀∈Z/2mZ

4mñ−˜̀2<0

cF
m(ñ, ˜̀) Kl( ∆

4m ,
∆̃
4m ; k, ψ

)
`˜̀

k

(
|∆̃|
∆

)23/4

I23/2

(
π

mk

√
|∆̃|∆

)

+
√

2m
∞∑
k=1

Kl
(

∆
4m ,−1 ; k, ψ

)
`0√

k

(
4m

∆

)6

I12

(
2π

k
√
m

√
∆

)
(A.12)

− 1

2π

∞∑
k=1

∑
j∈Z/2mZ
g∈Z/2mkZ
g≡j(mod 2m)

Kl
(

∆
4m ,−1− g2

4m ; k, ψ
)
`j

k2

(
4m

∆

)25/4

×

×
∫ +1/

√
m

−1/
√
m

fk,g,m(u) I25/2

(
2π

k
√
m

√
∆(1−mu2)

)
(1−mu2)25/4 du ,

where the multiplier system ψ(γ) is given explicitly in [10] in terms of the (known) multiplier

system of the Jacobi theta functions (A.6), and the function fk,g,m in the last line is given by

fk,g,m(u) :=


π2

sinh2(πuk −
πig
2mk )

if g 6≡ 0 (mod 2mk) ,

π2

sinh2(πuk )
− k2

u2
if g ≡ 0 (mod 2mk) .

(A.13)

The last two terms in (A.12) arise due to the mock modular nature of ψF
m. Note that these

terms have no free parameter, which is a consequence of the fact that the shadow of ψF
m has a

single polar coefficient equal to one. The first line is the standard Rademacher expansion for

a Jacobi form of weight −10 and index m. Although the above formula may appear daunting,

its main feature is that the coefficients cF
m(n, `) for ∆ ≥ 0 (the left-hand side) are completely

determined by the polar coefficients cF
m(n, `) for ∆ < 0, and the modular properties of ψF

m

such as its weight, index, and multiplier system.

B Checks of finiteness of the set W(n, `,m)

In this appendix, we present the magnetic-BSM walls of Section 6.1, Case 3 that have r = r+.

As explained there, we were not able to derive an analytic upper bound on their p entry.

However, we were able to check that for a given charge vector (n, `,m) only a single19 wall

contributes to the polar coefficients. Below we give the explicit form of these walls for all

charge vectors with m ≤ 30 where they exist. They are built as PSL(2,Z) matrices with p, s

entries consistent with (6.15) and (6.16), together with a numerical upper bound p ≤ 106.

19As explained in the main text, this wall comes with its metamorphic dual, whose contribution to the index

gets identified.
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The associated transformed charges are given in the third column. Lastly, we also display the

corresponding electric-BSM walls constructed following the procedure outlined in Sections 6.2

and 7, together with their transformed charges.

Charges Mag. Walls Mag. charges Elec. Walls Elec. charges

(m,n, ` ; ∆) γ = q/s → p/r (mγ , nγ , `γ) γ = q/s → p/r (mγ , nγ , `γ)

(10, 2, 9 ;−1) 2/5 → 3/7 (−1, 0, 1) 3/7 → 1/2 (0, −1, 1)

(14, 2, 11 ;−9) 2/7 → 1/3 (−1, 0, 3) 1/3 → 1/2 (0, −1, 3)

(14, 3, 13 ;−1) 3/7 → 4/9 (−1, 0, 1) 4/9 → 1/2 (0, −1, 1)

(16, 3, 14 ;−4) 3/8 → 2/5 (−1, 0, 2) 2/5 → 1/2 (0, −1, 2)

(18, 4, 17 ;−1) 4/9 → 5/11 (−1, 0, 1) 5/11 → 1/2 (0, −1, 1)

(20, 3, 16 ;−16) 3/10 → 1/3 (−1, 0, 4) 1/3 → 1/2 (0, −1, 4)

(21, 2, 13 ;−1) 2/7 → 3/10 (−1, 0, 1) 3/10 → 1/3 (0, −1, 1)

(22, 5, 21 ;−1) 5/11 → 6/13 (−1, 0, 1) 6/13 → 1/2 (0, −1, 1)

(23, 3, 17 ;−13) 2/7 → 1/3 (−1, 1, 3) 1/3 → 1/2 (1, −1, 3)

(24, 5, 22 ;−4) 5/12 → 3/7 (−1, 0, 2) 3/7 → 1/2 (0, −1, 2)

(26, 4, 21 ;−25) 4/13 → 1/3 (−1, 0, 5) 1/3 → 1/2 (0, −1, 5)

(26, 5, 23 ;−9) 5/13 → 2/5 (−1, 0, 3) 2/5 → 1/2 (0, −1, 3)

(26, 6, 25 ;−1) 6/13 → 7/15 (−1, 0, 1) 7/15 → 1/2 (0, −1, 1)

(27, 2, 15 ;−9) 2/9 → 1/4 (−1, 0, 3) 1/4 → 1/3 (0, −1, 3)

(29, 4, 22 ;−20) 3/10 → 1/3 (−1, 1, 4) 1/3 → 1/2 (1, −1, 4)

(30, 3, 19, −1) 3/10 → 4/13 (−1, 0, 1) 4/13 → 1/3 (0, −1, 1)

(30, 7, 29, −1) 7/15 → 8/17 (−1, 0, 1) 8/17 → 1/2 (0, −1, 1)

C A sample of polar degeneracies

In this section, we use our formula (7.4) to compute the polar coefficients of ψF
m(τ, z) for a

few sample cases of m. The results presented below precisely agree with the polar coefficients

extracted from the inverse of the Igusa cusp form Φ−1
10 following the method outlined in the

introduction below (1.6). For the sake of brevity, we only present a few examples owing to

the large amount of data.
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(m,n, `) Degeneracy

(8,−1,−8) 10

(8,−1,−7) 216

(8,−1,−6) 2592

(8,−1,−5) 22400

(8,−1,−4) 153900

(8,−1,−3) 881280

(8,−1,−2) 4295024

(8,−1,−1) 17807488

(8,−1, 0) 61062180

(8, 0,−8) 4608

(8, 0,−7) 54432

(8, 0,−6) 460800

(8, 0,−5) 3078000

(8, 0,−4) 16922880

(8, 0,−3) 77538312

(8, 0,−2) 293278848

(8, 0,−1) 897317904

(12,−1,−12) 14

(12,−1,−11) 312

(12,−1,−10) 3888

(m,n, `) Degeneracy

(12,−1,−9) 35200

(12,−1,−8) 256500

(12,−1,−7) 1586304

(12,−1,−6) 8589760

(12,−1,−5) 41513472

(12,−1,−4) 181071642

(12,−1,−3) 715942400

(12,−1,−2) 2558054736

(12,−1,−1) 8144997288

(12,−1, 0) 22401525768

(12, 0,−12) 6912

(12, 0,−11) 85536

(12, 0,−10) 768000

(12, 0,−9) 5540400

(12, 0,−8) 33841152

(12, 0,−7) 180384960

(12, 0,−6) 853994880

(12, 0,−5) 3621813000

(12, 0,−4) 13762586880

(12, 0,−3) 46454793840

(m,n, `) Degeneracy

(12, 0,−2) 137011625088

(12, 0,−1) 346542104640

(15,−1,−15) 17

(15,−1,−14) 384

(15,−1,−13) 4860

(15,−1,−12) 44800

(15,−1,−11) 333450

(15,−1,−10) 2115072

(15,−1,−9) 11810920

(15,−1,−8) 59304960

(15,−1,−7) 271607175

(15,−1,−6) 1145472010

(15,−1,−5) 4474748016

(15,−1,−4) 16230894480

(15,−1,−3) 54579105710

(15,−1,−2) 168940316442

(15,−1,−1) 473847914250

(15,−1, 0) 1169926333888

(15, 0,−15) 8640

(15, 0,−14) 108864
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(m,n, `) Degeneracy

(15, 0,−13) 998400

(15, 0,−12) 7387200

(15, 0,−11) 46531584

(15, 0,−10) 257692800

(15, 0,−9) 1280987136

(15, 0,−8) 5794286592

(15, 0,−7) 24054966432

(15, 0,−6) 92055592800

(15, 0,−5) 324742634880

(15, 0,−4) 1050674127360

(15, 0,−3) 3084121200240

(15, 0,−2) 8086496395392

(15, 0,−1) 18639111229056

(20,−1,−20) 22

(20,−1,−19) 504

(20,−1,−18) 6480

(20,−1,−17) 60800

(20,−1,−16) 461700

(20,−1,−15) 2996352

(20,−1,−14) 17179520

(20,−1,−13) 88957440

(20,−1,−12) 422500050

(20,−1,−11) 1861392000

(20,−1,−10) 7670991600

(20,−1,−9) 29756263680

(20,−1,−8) 109143179628

(20,−1,−7) 379708336000

(20,−1,−6) 1255072397760

(20,−1,−5) 3941870551552

(20,−1,−4) 11741887027420

(20,−1,−3) 33017035944960

(20,−1,−2) 86858448321760

(20,−1,−1) 210502750565336

(20,−1, 0) 458681404549752

(20, 0,−20) 11520

(m,n, `) Degeneracy

(20, 0,−19) 147744

(20, 0,−18) 1382400

(20, 0,−17) 10465200

(20, 0,−16) 67682304

(20, 0,−15) 386539200

(20, 0,−14) 1992646656

(20, 0,−13) 9415715400

(20, 0,−12) 41236992000

(20, 0,−11) 168761815200

(20, 0,−10) 649227576960

(20, 0,−9) 2357493364944

(20, 0,−8) 8100477591552

(20, 0,−7) 26357479662696

(20, 0,−6) 81109429456896

(20, 0,−5) 235139573743080

(20, 0,−4) 637627506612480

(20, 0,−3) 1600236038494008

(20, 0,−2) 3668952120405120

(20, 0,−1) 7591723325520696

(25,−1,−25) 27

(25,−1,−24) 624

(25,−1,−23) 8100

(25,−1,−22) 76800

(25,−1,−21) 589950

(25,−1,−20) 3877632

(25,−1,−19) 22548120

(25,−1,−18) 118609920

(25,−1,−17) 573392925

(25,−1,−16) 2577312000

(25,−1,−15) 10867238100

(25,−1,−14) 43281838080

(25,−1,−13) 163714769010

(25,−1,−12) 590657356800

(25,−1,−11) 2039489782215
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(m,n, `) Degeneracy

(25,−1,−10) 6757400879544

(25,−1,−9) 21524693185035

(25,−1,−8) 65996213108640

(25,−1,−7) 194862258910125

(25,−1,−6) 553836164704200

(25,−1,−5) 1512859258863720

(25,−1,−4) 3959104942633920

(25,−1,−3) 9871029907055100

(25,−1,−2) 23235254202421080

(25,−1,−1) 50912869133641230

(25,−1, 0) 101777445949328016

(25, 0,−25) 14400

(25, 0,−24) 186624

(25, 0,−23) 1766400

(25, 0,−22) 13543200

(25, 0,−21) 88833024

(25, 0,−20) 515385600

(25, 0,−19) 2704306176

(25, 0,−18) 13037144400

(25, 0,−17) 58419072000

(25, 0,−16) 245471731200

(25, 0,−15) 973841356800

(25, 0,−14) 3667210825824

(25, 0,−13) 13163221094712

(25, 0,−12) 45182542960512

(25, 0,−11) 148662826021776

(25, 0,−10) 469629919909200

(25, 0,−9) 1425524443410600

(25, 0,−8) 4157177177438208

(25, 0,−7) 11632258851459120

(25, 0,−6) 31142251091455056

(m,n, `) Degeneracy

(25, 0,−5) 79392136978466280

(25, 0,−4) 191354425929177600

(25, 0,−3) 431942335951930920

(25, 0,−2) 903444520233320160

(25, 0,−1) 1734243812507148504

(30,−1,−30) 32

(30,−1,−29) 744

(30,−1,−28) 9720

(30,−1,−27) 92800

(30,−1,−26) 718200

(30,−1,−25) 4758912

(30,−1,−24) 27916720

(30,−1,−23) 148262400

(30,−1,−22) 724285800

(30,−1,−21) 3293232000

(30,−1,−20) 14063484600

(30,−1,−19) 56807412480

(30,−1,−18) 218286358680

(30,−1,−17) 801606412800

(30,−1,−16) 2823908929200

(30,−1,−15) 9572984572928

(30,−1,−14) 31308644147760

(30,−1,−13) 98994300336408

(30,−1,−12) 303118553078000

(30,−1,−11) 899973382487040

(30,−1,−10) 2593304705881944

(30,−1,−9) 7256059956824960

(30,−1,−8) 19714696668645120

(30,−1,−7) 51987444460877112

(30,−1,−6) 132888904085878840

(30,−1,−5) 328541317658460288
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(m,n, `) Degeneracy

(30,−1,−4) 782726769159905520

(30,−1,−3) 1786711012854816640

(30,−1,−2) 3873826859341935240

(30,−1,−1) 7877457636088694664

(30,−1, 0) 14774702983837211616

(30, 0,−30) 17280

(30, 0,−29) 225504

(30, 0,−28) 2150400

(30, 0,−27) 16621200

(30, 0,−26) 109983744

(30, 0,−25) 644232000

(30, 0,−24) 3415965696

(30, 0,−23) 16658573400

(30, 0,−22) 75601152000

(30, 0,−21) 322181647200

(30, 0,−20) 1298455142400

(30, 0,−19) 4976928977904

(30, 0,−18) 18225998438400

(m,n, `) Degeneracy

(30, 0,−17) 64008602395200

(30, 0,−16) 216236828000256

(30, 0,−15) 704444493333240

(30, 0,−14) 2217472328601600

(30, 0,−13) 6755213522446272

(30, 0,−12) 19937873507586048

(30, 0,−11) 57052739503386000

(30, 0,−10) 158314644037023360

(30, 0,−9) 425845859881717296

(30, 0,−8) 1109163700842332160

(30, 0,−7) 2791657574839862400

(30, 0,−6) 6767317387211658624

(30, 0,−5) 15722850796882492680

(30, 0,−4) 34777416386698174464

(30, 0,−3) 72630503135639181864

(30, 0,−2) 141950626331053105152

(30, 0,−1) 257636988474238025304
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