Asymptotic equidistribution for partition statistics and topological invariants

joint work with William Craig and Joshua Males

Giulia Cesana
Universität zu Köln

April 6, 2022

Table of Contents

(1) Motivation
(2) Main tools and central theorem

3 Results on partition statistics
(4) Results on topological invariats
(5) Some proofs

Motivation

A partition λ of a positive integer n is a list of non-increasing positive integers, say $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, that satisfies $|\lambda|:=\lambda_{1}+\cdots+\lambda_{m}=n$.

$$
p(n):=\# \text { of partitions of } n
$$

Example

For $n=4$ the possible partitions are given by

$$
(4),(3,1),(2,2),(2,1,1),(1,1,1,1) .
$$

Thus we have $p(4)=5$.

Motivation

Equidistribution properties of certain objects are a central theme studied by many authors in many mathemathical fields.

What do we mean when we say asymptotic equidistribution?

Suppose that $c(n)$ is an arithmetic counting function e.g. $c(n)=p(n)$. Suppose $s(\lambda)$ is an integer valued partition invariant and let

$$
c(a, b ; n):=\#\{\text { partitions of } n: s(\lambda) \equiv a \quad(\bmod b)\}
$$

To say that equidistribution holds is to say that

$$
c(a, b ; n) \sim \frac{1}{b} c(n)
$$

as $n \rightarrow \infty$.

Motivation

Examples for recently studied modular typed objects:
(1) Asymptotic equidistribution of partition ranks (Males).
(2) Asymptotic equidistribution results for partitions into k-th powers (Ciolan).
(3) Asymptotic equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of surfaces (Gillman-Gonzalez-Ono-Rolen-Schoenbauer).
(9) Asymptotic equidistribution of partitions whose parts are values of a given polynomial (Zhou).

Motivation

Each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ has a Ferrers-Young diagram:

The node in row k and column j has hook length

$$
\begin{aligned}
h(k, j) & :=\left(\lambda_{k}-k\right)+\left(\lambda_{j}^{\prime}-j\right)+1 \\
\lambda_{j}^{\prime} & :=\# \text { nodes in column } j
\end{aligned}
$$

Motivation

Let $\mathcal{H}_{t}(\lambda)$ denote the multiset of t-hooks, those hook lengths which are multiples of a fixed positive integer t, of a partition λ. Let

$$
\begin{aligned}
& p_{t}^{e}(n):=\#\left\{\lambda \text { a partition of } n: \# \mathcal{H}_{t}(\lambda) \text { is even }\right\} \\
& p_{t}^{o}(n):=\#\left\{\lambda \text { a partition of } n: \# \mathcal{H}_{t}(\lambda) \text { is odd }\right\}
\end{aligned}
$$

Craig-Pun:
For even t the partitions of n are asymptotically equidistributed between these two subsets, for odd t they are not.

Bringmann-Craig-Males-Ono:
On arithmetic progressions modulo odd primes t-hooks are not asymptotically equdistributed. The Betti numbers of two specific Hilbert schemes are asymptotically equdistributed.

Wright's Circle Method

Hardy-Ramanujan, 1918

$$
p(n) \sim \frac{1}{4 \sqrt{3} n} \cdot e^{\pi \sqrt{\frac{2 n}{3}}}, \quad \text { as } n \rightarrow \infty
$$

The essence of Wright's method is to use Cauchy's theorem. We have

$$
\mathcal{A}(\tau):=\sum_{n \geq 0} a(n) q^{n} \quad \longrightarrow \quad a(n)=\frac{1}{2 \pi i} \int_{C} \frac{\mathcal{A}(q)}{q^{n+1}} d q
$$

where $q=e^{2 \pi i \tau}$.
One then splits the integral into two arcs, the major arc and minor arc.

Following Wright and the work of Ngo-Rhoades, Bringmann-Craig-Males-Ono proved the following variant of Wright's Circle Method.

Variant of Wright's Circle Method

Let $M>0$ be a fixed constant and $z=x+i y \in \mathbb{C}$, with $x>0$ and $|y|<\pi$.
Consider the following hypotheses:
(i) As $z \rightarrow 0$ in the bounded cone $|y| \leq M x$ (major arc), we have

$$
F\left(e^{-z}\right)=z^{B} e^{\frac{A}{z}}\left(\alpha_{0}+O_{M}(|z|)\right),
$$

where $\alpha_{0} \in \mathbb{C}, A \in \mathbb{R}^{+}$, and $B \in \mathbb{R}$.
(ii) As $z \rightarrow 0$ in the bounded cone $M x \leq|y|<\pi$ (minor arc), we have

$$
\left|F\left(e^{-z}\right)\right| \lll M e^{\frac{1}{\operatorname{Re}(z)}(A-\kappa)},
$$

for some $\kappa \in \mathbb{R}^{+}$.

Variant of Wright's Circle Method

Bringmann-Craig-Males-Ono, 2021

Suppose that $F(q)$ is analytic for $q=e^{-z}$ where $z=x+i y \in \mathbb{C}$ satisfies $x>0$ and $|y|<\pi$, and suppose that $F(q)$ has an expansion $F(q)=\sum_{n=0}^{\infty} c(n) q^{n}$ near 1.
If (i) and (ii) hold, then as $n \rightarrow \infty$ we have

$$
c(n)=n^{\frac{1}{4}(-2 B-3)} e^{2 \sqrt{A n}}\left(p_{0}+O\left(n^{-\frac{1}{2}}\right)\right),
$$

where $p_{0}=\alpha_{0} \frac{\sqrt{A}^{B+\frac{1}{2}}}{2 \sqrt{\pi}}$.

Setting of Central Theorem

Let $q=e^{-z}$, where $z=x+i y \in \mathbb{C}$ with $x>0$ and $|y|<\pi$.
Furthermore let $\zeta=\zeta_{b}^{a}:=e^{\frac{2 \pi i a}{b}}(b \geq 2$ and $0 \leq a<b)$.
Assume that we have a generating function on arithmetic progressions a $(\bmod b)$ given by

$$
H(a, b ; q):=\sum_{n \geq 0} c(a, b ; n) q^{n}
$$

for some coefficients $c(a, b ; n)$ such that

$$
H(a, b ; q)=\frac{1}{b} \sum_{j=0}^{b-1} \zeta_{b}^{-a j} H\left(\zeta_{b}^{j} ; q\right)
$$

for some generating functions $H(\zeta ; q)$, with

$$
H(q):=H(1 ; q)=\sum_{n \geq 0} c(n) q^{n}
$$

Setting of Central Theorem

Let $H(a, b ; q)$ and $H(\zeta ; q)$ be analytic on $|q|<1$ such that the above holds.
Let $C=C_{n}$ be a sequence of circles centered at the origin inside the unit disk with radii $r_{n} \rightarrow 1$ as $n \rightarrow \infty$ that loops around zero exactly once. For $0 \leq \theta<\frac{\pi}{2}$ let

$$
D_{\theta}:=\left\{z=r e^{i \alpha}: r \geq 0 \text { and }|\alpha| \leq \theta\right\}
$$

Setting of Central Theorem

For $\theta>0$, let $\widetilde{C}:=C \cap D_{\theta}$ and $C \backslash \widetilde{C}$ be arcs such that the following hypotheses hold.
(1) As $z \rightarrow 0$ outside of D_{θ}, we have

$$
\sum_{j=1}^{b-1} \zeta_{b}^{-a j} H\left(\zeta_{b}^{j} ; e^{-z}\right)=O\left(H\left(1 ; e^{-z}\right)\right)
$$

(2) As $z \rightarrow 0$ in D_{θ}, we have for each $1 \leq j \leq b-1$ that

$$
H\left(\zeta_{b}^{j} ; e^{-z}\right)=o\left(H\left(1 ; e^{-z}\right)\right)
$$

(3) As $n \rightarrow \infty$, we have

$$
c(n) \sim \frac{1}{2 \pi i} \int_{\widetilde{C}} \frac{H(1 ; q)}{q^{n+1}} d q
$$

Central Theorem

C.-Craig-Males, 2021

As $n \rightarrow \infty$, we have

$$
c(a, b ; n) \sim \frac{1}{b} c(n) .
$$

In particular, if $H(1 ; q)$ and $H(\zeta ; q)$ satisfy the conditions of BCMO we have that

$$
c(a, b ; n) \sim \frac{1}{b} c(n) \sim \frac{1}{b} n^{\frac{1}{4}(-2 B-3)} e^{2 \sqrt{A n}}\left(p_{0}+O\left(n^{-\frac{1}{2}}\right)\right)
$$

as $n \rightarrow \infty$.

Idea of the proof

(1) Use Cauchy's theorem and the decomposition of $H(a, b ; q)$ to obtain

$$
c(a, b ; n)=\frac{1}{b}\left[\frac{1}{2 \pi i} \int_{C} \frac{\sum_{j=0}^{b-1} \zeta_{b}^{-a j} H\left(\zeta_{b}^{j} ; q\right)}{q^{n+1}} d q\right]
$$

(2) Break down the integral over C into the components \widetilde{C} and $C \backslash \widetilde{C}$ and look at each of them seperately.
(3) Along $C \backslash \widetilde{C}$ we have by conditions (1) and (3) that as $n \rightarrow \infty$

$$
\frac{1}{2 \pi i} \int_{C \backslash \tilde{C}} \frac{\sum_{j=0}^{b-1} \zeta_{b}^{-a j} H\left(\zeta_{b}^{j} ; q\right)}{q^{n+1}} d q=o\left(\frac{1}{2 \pi i} \int_{\widetilde{C}} \frac{H(1 ; q)}{q^{n+1}} d q\right)
$$

Idea of the proof

(9) On \widetilde{C} we obtain with (2) and as $n \rightarrow \infty$ that

$$
\frac{1}{2 \pi i} \int_{\widetilde{C}} \frac{\sum_{j=0}^{b-1} \zeta_{b}^{-a j} H\left(\zeta_{b}^{j} ; q\right)}{q^{n+1}} d q \sim \frac{1}{2 \pi i} \int_{\widetilde{C}} \frac{H(1 ; q)}{q^{n+1}} d q
$$

(3) The first claim follows by combining the estimates along \widetilde{C} and $C \backslash \widetilde{C}$.
(- If we assume $H(1 ; q)$ and $H\left(\zeta_{b}^{j} ; q\right)$ satisfy the hypotheses of BCMO, then (1) - (3) are satisfied and the result follows by the asymptotic for $c(n)$ in BCMO.

Asymptotic convexity

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Assume that $H(1 ; q)$ and $H(\zeta ; q)$ satisfy the conditions of BCMO. Then for sufficiently large n_{1}, n_{2} we have

$$
c\left(a, b ; n_{1}\right) c\left(a, b ; n_{2}\right)>c\left(a, b ; n_{1}+n_{2}\right) .
$$

Known examples:
(1) partition function (Bessenrodt-Ono)
(2) partition ranks congruent to $a(\bmod b)$ (Hou-Jagadeesan, Males)

Log-concavity

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Assume that $H(1 ; q)$ and $H(\zeta ; q)$ satisfy the conditions of BCMO. For large enough n, we have

$$
c(a, b ; n)^{2} \geq c(a, b ; n-1) c(a, b ; n+1)
$$

Known examples:
(1) partition function (DeSalvo-Pak)
(2) unimodal sequences of size n and rank m
(Bringmann-Jennings-Shaffer-Mahlburg-Rhoades)
(3) spt-function (Dawsey-Masri)

The rank

Ramanujan congruences, 1921

For $n \geq 0$ we have

$$
\begin{aligned}
p(5 n+4) & \equiv 0 \quad(\bmod 5) \\
p(7 n+5) & \equiv 0 \quad(\bmod 7) \\
p(11 n+6) & \equiv 0 \quad(\bmod 11)
\end{aligned}
$$

Example

The rank of a partition λ is the largest part minus the number of parts. partition rank
(4) $3 \equiv 3(\bmod 5)$
$(3,1) \quad 1 \equiv 1(\bmod 5)$
$(2,2) \quad 0 \equiv 0(\bmod 5)$
$(2,1,1) \quad-1 \equiv 4(\bmod 5)$
$(1,1,1,1) \quad-3 \equiv 2(\bmod 5)$

The rank

$N(a, b ; n):=\#$ of partitions of n with rank congruent to $a(\bmod b)$

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Then as $n \rightarrow \infty$ we have that

$$
N(a, b ; n)=\frac{1}{b} p(n)\left(1+O\left(n^{-\frac{1}{2}}\right)\right) .
$$

The equidistribution of $N(a, b ; n)$ was already proven by Males in 2021 using Ingham's Tauberian theorem.

The crank

$$
\operatorname{crank}(\lambda):= \begin{cases}\text { largest part of } \lambda & \text { if } \omega(\lambda)=0 \\ \mu(\lambda)-\omega(\lambda) & \text { if } \omega(\lambda)>0\end{cases}
$$

$\omega(\lambda):=\#$ of ones in $\lambda, \quad \mu(\lambda):=\#$ of parts greater than $\omega(\lambda)$
$M(a, b ; n):=\#$ of partitions of n with crank congruent to $a(\bmod b)$

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Then as $n \rightarrow \infty$ we have that

$$
M(a, b ; n)=\frac{1}{b} p(n)\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
$$

The first residual crank

An overpartition is a partition where the first occurrence of each distinct number may be overlined.

Example

The overpartitions of 4 are given by

$$
\begin{gathered}
(4),(\overline{4}),(3,1),(\overline{3}, 1),(3, \overline{1}),(\overline{3}, \overline{1}),(2,2),(\overline{2}, 2), \\
(2,1,1),(\overline{2}, 1,1),(2, \overline{1}, 1),(\overline{2}, \overline{1}, 1),(1,1,1,1),(\overline{1}, 1,1,1) .
\end{gathered}
$$

The first residual crank of an overpartition is given by the crank of the subpartition consisting of the non-overlined parts.

The first residual crank

Example

So the first residual crank of $(2, \overline{1}, 1)$ is given by the crank of $(2,1)$ which equals 0 .
$\bar{M}(a, b ; n):=\#$ of overpartitions of n with first residual crank congruent to $a(\bmod b)$

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Then as $n \rightarrow \infty$ we have that

$$
\bar{M}(a, b ; n)=\frac{1}{8 b n} e^{\pi \sqrt{n}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right) .
$$

Plane partitions

A plane partition of n is a two-dimensional array $\pi_{j, k}$ of non-negative integers $j, k \geq 1$, that is non-increasing in both variables, i.e., $\pi_{j, k} \geq \pi_{j+1, k}, \pi_{j, k} \geq \pi_{j, k+1}$ for all j and k, and fulfils $|\Lambda|:=\sum_{j, k} \pi_{j, k}=n$.

$$
\operatorname{pp}(n):=\# \text { plane partitions of } n
$$

Example

For $n=3$ we have the plane partitions:

Thus we have $\mathrm{pp}(3)=6$.

Plane partitions

A plane partition may be represented visually by the placement of a stack of $\pi_{j, k}$ unit cubes above the point (j, k) in the plane, giving a three-dimensional solid.
The sum $|\Lambda|$ then describes the number of cubes of which the plane partition consists.

Plane partitions

Let $\Lambda=\left\{\pi_{j, k}\right\}_{j, k \geq 1}$ and define its trace by $t(\Lambda)=\sum_{j=1}^{\infty} \pi_{j, j}$.

$$
\operatorname{pp}(a, b ; n):=\#\{\Lambda:|\Lambda|=n, t(\Lambda) \equiv a \quad(\bmod b)\}
$$

Example

We have that $\mathrm{pp}(0,2 ; 3)=2$ and $\mathrm{pp}(1,2 ; 3)=4$.

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. Then as $n \rightarrow \infty$ we have that

$$
\operatorname{pp}(a, b ; n) \sim \frac{1}{b} \operatorname{pp}(n) \sim \frac{1}{b} \frac{\zeta(3)^{\frac{7}{56}}}{\sqrt{12 \pi}}\left(\frac{n}{2}\right)^{-\frac{25}{36}} \exp \left(3 \zeta(3)^{\frac{1}{3}}\left(\frac{n}{2}\right)^{\frac{2}{3}}+\zeta^{\prime}(-1)\right)
$$

Betti numbers of Hilbert schemes

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.
For a Hilbert scheme X, let $b_{j}(X):=\operatorname{dim}\left(H_{j}(X, \mathbb{Q})\right)$ be the Betti numbers, where $H_{j}(X, \mathbb{Q})$ denotes the j-th homology group of X with rational coefficients.

$$
B(a, b ; X):=\sum_{j \equiv a}(\bmod b) \operatorname{b}(X)
$$

We define the Hilbert schemes

$$
\begin{array}{ll}
X_{1}:=\operatorname{Hilb}^{n, n+1, n+2}(0), & X_{2}:=\operatorname{Hilb}^{n, n+2}(0), \\
X_{3}:=\operatorname{Hilb}^{n, n+2}\left(\mathbb{C}^{2}\right)_{\mathrm{tr}}, & X_{4}:=\widehat{M}^{m}\left(c_{N}\right)
\end{array}
$$

where $m \in \mathbb{N}$ and c_{N} is some prescribed homological data.

Betti numbers of Hilbert schemes

C.-Craig-Males, 2021

Let $0 \leq a<b$ with $b \geq 2$ and

$$
d(a, b):= \begin{cases}\frac{1}{b} & \text { if } b \text { is odd } \\ \frac{2}{b} & \text { if } a \text { and } b \text { are even } \\ 0 & \text { if } a \text { is odd and } b \text { is even. }\end{cases}
$$

Then as $n \rightarrow \infty$ we have that

$$
\frac{1}{2} B\left(a, b ; X_{1}\right) \sim B\left(a, b ; X_{2}\right) \sim B\left(a, b ; X_{3}\right)=\frac{d(a, b) \sqrt{3}}{4 \pi^{2}} e^{\pi \sqrt{\frac{2 n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
$$

and

$$
B\left(a, b ; X_{4}\right)=\frac{d(a, b) n^{\frac{m-2}{2}}}{6^{\frac{1-m}{2}} 2 \sqrt{2} c_{m} \pi^{m}} e^{\pi \sqrt{\frac{2 n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right),
$$

where $\prod_{j=1}^{m} \frac{1}{1-e^{-j z}}=\frac{1}{c_{m} z^{m}}+O\left(z^{-m+1}\right)$.

A particular scheme of Göttsche

Let K be an algebraically closed field.
Let \boldsymbol{m} be the maximal ideal in $K[[x, y]]$, and define

$$
\begin{gathered}
V_{n, K}:=\operatorname{Hilb}_{n}\left(\operatorname{spec}\left(K[[x, y]] / \boldsymbol{m}^{n}\right)\right) \\
v(a, b ; n):=\# \text { of cells of } V_{n, K} \\
\quad \text { whose dimension is congruent to a }(\bmod b)
\end{gathered}
$$

C.-Craig-Males, 2021

Let $0 \leq a<b$ and $b \geq 2$. As $n \rightarrow \infty$ we have that

$$
v(a, b ; n)=\frac{1}{b} p(n)\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
$$

Proof for crank

Using orthogonality of roots of unity we have

$$
\sum_{n \geq 0} M(a, b ; n) q^{n}=\frac{1}{b} \sum_{n \geq 0} p(n) q^{n}+\frac{1}{b} \sum_{j=1}^{b-1} \zeta_{b}^{-a j} C\left(\zeta_{b}^{j} ; q\right)
$$

where

$$
C(\zeta ; q):=\frac{(q ; q)_{\infty}}{F_{1}(\zeta ; q) F_{1}\left(\zeta^{-1} ; q\right)}
$$

with $(q ; q)_{\infty}:=\prod_{\ell=1}^{\infty}\left(1-q^{\ell}\right)$ and $F_{1}(\zeta ; q):=\prod_{n=1}^{\infty}\left(1-\zeta q^{n}\right)$.

Proof for crank

As $z \rightarrow 0$ in D_{θ}, for $q=e^{-z}$ and ζ a primitive b-th root of unity (Bringmann-Craig-Males-Ono)

$$
F_{1}\left(\zeta ; e^{-z}\right)=\frac{1}{\sqrt{1-\zeta}} e^{-\frac{\zeta \phi(\zeta, 2,1)}{z}}(1+O(|z|))
$$

where Φ is the Lerch's transcendent

$$
\Phi(z, s, a):=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} .
$$

On the major arc (Bringmann-Dousse)

$$
\left(e^{-z} ; e^{-z}\right)_{\infty}^{-1}=\sqrt{\frac{z}{2 \pi}} e^{\frac{\pi^{2}}{6 z}}(1+O(|z|))
$$

while on the minor arc, for some $\mathcal{C}>0$

$$
\left|\left(e^{-z} ; e^{-z}\right)_{\infty}^{-1}\right| \leq x^{\frac{1}{2}} e^{\frac{\pi^{2}}{6 x}-\frac{c}{x}} .
$$

Proof for crank

Using the definition of $F_{1}(\zeta ; q)$

$$
\begin{aligned}
\left|\log \left(\frac{1}{F_{1}(\zeta ; q)}\right)\right| & =\left|\sum_{k \geq 1} \frac{\zeta^{k}}{k} \frac{q^{k}}{1-q^{k}}\right| \\
& \leq\left|\frac{\zeta q}{1-q}\right|-\frac{|q|}{1-|q|}+\log \left(\frac{1}{(|q| ;|q|)_{\infty}}\right) \\
\Rightarrow & \left|\frac{1}{F_{1}(\zeta ; q)}\right| \ll e^{-\frac{\mathcal{C}^{\prime}}{x}}(|q| ;|q|)_{\infty}^{-1}
\end{aligned}
$$

for some $\mathcal{C}^{\prime}>0$.

Proof for crank

Since an analogous calculation holds for $F_{1}\left(\zeta^{-1} ; q\right)$ one may conclude that

$$
\left|C\left(\zeta_{b}^{j} ; q\right)\right|<\left|(q ; q)_{\infty}^{-1}\right|
$$

on the minor arc.

For the major arc

$$
C(\zeta ; q) \ll e^{-\frac{\pi^{2}}{6} \operatorname{Re}\left(\frac{1}{z}\right)+\operatorname{Re}\left(\frac{\zeta \Phi(\zeta, 2,1)}{z}\right)+\operatorname{Re}\left(\frac{\zeta^{-1} \Phi\left(\zeta{ }^{-1}, 2,1\right)}{z}\right)} .
$$

Proof for crank

Therefore

$$
C\left(\zeta_{b}^{j} ; q\right)=o\left((q ; q)_{\infty}^{-1}\right)
$$

if and only if

$$
\left(\frac{\pi^{2}}{3}-\varepsilon-\phi_{1}-\phi_{1}^{\prime}\right) \frac{x}{|z|^{2}}>\left(\phi_{2}+\phi_{2}^{\prime}\right) \frac{y}{|z|^{2}}
$$

where $\phi_{1}+i \phi_{2}:=\zeta_{b}^{j} \Phi\left(\zeta_{b}^{j}, 2,1\right)$ and $\phi_{1}^{\prime}+i \phi_{2}^{\prime}:=\zeta_{b}^{-j} \Phi\left(\zeta_{b}^{-j}, 2,1\right)$.

Proof for crank

Note that $\phi_{1}=\frac{\pi^{2}}{6}-\frac{\pi^{2} j}{b}\left(1-\frac{j}{b}\right)=\phi_{1}^{\prime}$ and $\phi_{2}=-\phi_{2}^{\prime}$.
Therefore, our assumption reduces to

$$
\left(\frac{2 \pi^{2} j}{b}\left(1-\frac{j}{b}\right)-\varepsilon\right) \frac{x}{|z|^{2}}>0
$$

which holds, since we have $b>0,1 \leq j \leq b-1$ and $x=\operatorname{Re}(z)>0$.

Proof for Betti numbers

Let X be a Hilbert scheme

$$
G_{X}(T ; q):=\sum_{n \geq 0} P(X ; T) q^{n}
$$

with $P(X ; T):=\sum_{j} b_{j}(X) T^{j}$ the Poincaré polynomial.
Using orthogonality of roots of unity

$$
\sum_{n \geq 0} B(a, b ; X) q^{n}=\frac{1}{b} \sum_{r=0}^{b-1} \zeta_{b}^{-a r} G_{X}\left(\zeta_{b}^{r} ; q\right)
$$

Proof for Betti numbers

Boccalini's thesis states that

$$
G_{X_{1}}(\zeta ; q)=\sum_{n \geq 0} P\left(X_{1} ; \zeta\right) q^{n}=\frac{1+\zeta^{2}}{\left(1-\zeta^{2} q\right)\left(1-\zeta^{4} q^{2}\right)} F_{3}\left(\zeta^{2} ; q\right)^{-1}
$$

where $F_{3}(\zeta ; q):=\prod_{n=1}^{\infty}\left(1-\zeta^{-1}(\zeta q)^{n}\right)$.
We obtain

$$
\begin{aligned}
H_{X_{1}}(a, b ; q) & :=\sum_{n \geq 0} B\left(a, b ; X_{1}\right) q^{n} \\
& =\frac{1}{b}\left(1+(-1)^{a} \delta_{2 \mid b}\right) G_{X_{1}}(1 ; q)+\frac{1}{b} \sum_{\substack{0<r \leq b-1 \\
r \neq \frac{b}{2}}} \zeta_{b}^{-a r} G_{X_{1}}\left(\zeta_{b}^{r} ; q\right) .
\end{aligned}
$$

Proof for Betti numbers

Since

$$
\begin{aligned}
G_{X_{1}}\left(1 ; e^{-z}\right) & =\frac{2}{\left(1-e^{-z}\right)\left(1-e^{-2 z}\right)}\left(e^{-z} ; e^{-z}\right)_{\infty}^{-1} \\
& =\left(\frac{1}{z^{2}}+\frac{3}{2 z}+\frac{11}{12}+O(z)\right)\left(e^{-z} ; e^{-z}\right)_{\infty}^{-1}
\end{aligned}
$$

the asymptotic behaviour is essentially controlled by the Pochhammer symbol.
Using the asymptotic behaviour of $(q ; q)_{\infty}$ we see that

$$
G_{X_{1}}\left(1 ; e^{-z}\right)=\frac{1}{\sqrt{2 \pi} z^{\frac{3}{2}}} e^{\frac{\pi^{2}}{6 z}}(1+O(|z|))
$$

For $\zeta_{b}^{r} \neq 1$ it is enough to show that on the major and minor arcs,

$$
G_{X_{1}}\left(\zeta_{b}^{r} ; q\right)=o\left(G_{X_{1}}(1 ; q)\right)
$$

Proof for Betti numbers

On the major arc (Bringmann-Craig-Males-Ono)

$$
F_{3}\left(\zeta_{b}^{2 r} ; e^{-z}\right)^{-1} \ll e^{\frac{\pi^{2}}{6 z}}|z|^{-N}
$$

for any $N \in \mathbb{N}$ and therefore we see that $G_{X_{1}}\left(\zeta_{b}^{r} ; q\right)=o\left(G_{X_{1}}(1 ; q)\right)$.
On the minor arc we obtain that

$$
\left|F_{3}\left(\zeta_{b}^{2 r} ; q\right)^{-1}\right|<\left|(q ; q)_{\infty}^{-1}\right|
$$

and therefore again $G_{X_{1}}\left(\zeta_{b}^{r} ; q\right)=o\left(G_{X_{1}}(1 ; q)\right)$.

Proof for Betti numbers

Thus toward $z=0$ on the major arc we have

$$
H_{X_{1}}\left(a, b ; e^{-z}\right)=\frac{d(a, b)}{\sqrt{2 \pi} z^{\frac{3}{2}}} e^{\frac{\pi^{2}}{6 z}}(1+O(|z|))
$$

We are left to apply BCMO with $A=\frac{\pi^{2}}{6}, B=-\frac{3}{2}$, and $\alpha_{0}=\frac{d(a, b)}{\sqrt{2 \pi}}$ which yields that

$$
B\left(a, b ; X_{1}\right)=\frac{\sqrt{3} d(a, b)}{2 \pi^{2}} e^{\pi \sqrt{\frac{2 n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right)
$$

from which one may also conclude asymptotic equidistribution.

Proof for Betti numbers

Similarly, it is known that

$$
\begin{aligned}
& G_{X_{2}}(\zeta ; q):=\frac{1+\zeta^{2}-\zeta^{2} q}{\left(1-\zeta^{2} q\right)\left(1-\zeta^{4} q^{2}\right)} F_{3}\left(\zeta^{2} ; q\right)^{-1} \\
& G_{X_{3}}(\zeta ; q):=\frac{1}{\left(1-\zeta^{2} q\right)\left(1-\zeta^{4} q^{2}\right)} F_{3}\left(\zeta^{2} ; q\right)^{-1} \\
& G_{X_{4}}(\zeta ; q):=F_{3}\left(\zeta^{2} ; q\right)^{-1} \prod_{j=1}^{m} \frac{1}{1-\zeta^{2 j} q^{j}} .
\end{aligned}
$$

An analogous argument to the case of X_{1} holds.

Thank you for your attention!

