# Asymptotic equidistribution for partition statistics and topological invariants

joint work with William Craig and Joshua Males

Giulia Cesana

Universität zu Köln



April 6, 2022

## Table of Contents

- Motivation
- 2 Main tools and central theorem
- Results on partition statistics
- Results on topological invariats
- Some proofs

A partition  $\lambda$  of a positive integer n is a list of non-increasing positive integers, say  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$ , that satisfies  $|\lambda| := \lambda_1 + \dots + \lambda_m = n$ .

p(n) := # of partitions of n

#### Example

For n = 4 the possible partitions are given by

$$(4), (3,1), (2,2), (2,1,1), (1,1,1,1).$$

Thus we have p(4) = 5.



Equidistribution properties of certain objects are a central theme studied by many authors in many mathemathical fields.

What do we mean when we say asymptotic equidistribution?

Suppose that c(n) is an arithmetic counting function e.g. c(n) = p(n). Suppose  $s(\lambda)$  is an integer valued partition invariant and let

$$c(a, b; n) := \#\{\text{partitions of } n : s(\lambda) \equiv a \pmod{b}\}.$$

To say that equidistribution holds is to say that

$$c(a,b;n)\sim \frac{1}{b}c(n)$$

as  $n \to \infty$ .



#### Examples for recently studied modular typed objects:

- Asymptotic equidistribution of partition ranks (Males).
- Asymptotic equidistribution results for partitions into k-th powers (Ciolan).
- Asymptotic equidistribution for Hodge numbers and Betti numbers of certain Hilbert schemes of surfaces (Gillman-Gonzalez-Ono-Rolen-Schoenbauer).
- Asymptotic equidistribution of partitions whose parts are values of a given polynomial (Zhou).

Each partition  $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$  has a Ferrers–Young diagram:

- • ...  $\leftarrow \lambda_1$  many nodes
- • ...  $\leftarrow \lambda_2$  many nodes
- : : :
- ...  $\leftarrow \lambda_m$  many nodes

The node in row k and column j has hook length

$$h(k,j) := (\lambda_k - k) + (\lambda'_j - j) + 1,$$

 $\lambda'_j \coloneqq \# \text{ nodes in column } j.$ 

Let  $\mathcal{H}_t(\lambda)$  denote the multiset of *t-hooks*, those hook lengths which are multiples of a fixed positive integer t, of a partition  $\lambda$ . Let

$$p_t^e(n) := \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is even}\},$$
  
 $p_t^o(n) := \#\{\lambda \text{ a partition of } n : \#\mathcal{H}_t(\lambda) \text{ is odd}\}.$ 

#### Craig—Pun:

For even t the partitions of n are asymptotically equidistributed between these two subsets, for odd t they are not.

#### Bringmann—Craig—Males—Ono:

On arithmetic progressions modulo odd primes *t*-hooks are not asymptotically equdistributed. The Betti numbers of two specific Hilbert schemes are asymptotically equdistributed.

# Wright's Circle Method

# Hardy-Ramanujan, 1918

$$p(n) \sim rac{1}{4\sqrt{3}n} \cdot e^{\pi\sqrt{rac{2n}{3}}}, \qquad ext{ as } n o \infty.$$

The essence of Wright's method is to use Cauchy's theorem. We have

$$\mathcal{A}(\tau) := \sum_{n>0} a(n)q^n \longrightarrow a(n) = \frac{1}{2\pi i} \int_C \frac{\mathcal{A}(q)}{q^{n+1}} dq,$$

where  $q = e^{2\pi i \tau}$ .

One then splits the integral into two arcs, the major arc and minor arc.

Following Wright and the work of Ngo-Rhoades, Bringmann-Craig-Males-Ono proved the following variant of Wright's Circle Method.

# Variant of Wright's Circle Method

Let M>0 be a fixed constant and  $z=x+iy\in\mathbb{C}$ , with x>0 and  $|y|<\pi$ .

Consider the following hypotheses:

(i) As  $z \to 0$  in the bounded cone  $|y| \le Mx$  (major arc), we have

$$F(e^{-z}) = z^B e^{\frac{A}{z}} \left(\alpha_0 + O_M(|z|)\right),\,$$

where  $\alpha_0 \in \mathbb{C}$ ,  $A \in \mathbb{R}^+$ , and  $B \in \mathbb{R}$ .

(ii) As  $z \to 0$  in the bounded cone  $Mx \le |y| < \pi$  (minor arc), we have

$$|F(e^{-z})| \ll_M e^{\frac{1}{\operatorname{Re}(z)}(A-\kappa)},$$

for some  $\kappa \in \mathbb{R}^+$ .



# Variant of Wright's Circle Method

# Bringmann-Craig-Males-Ono, 2021

Suppose that F(q) is analytic for  $q=e^{-z}$  where  $z=x+iy\in\mathbb{C}$  satisfies x>0 and  $|y|<\pi$ , and suppose that F(q) has an expansion  $F(q)=\sum_{n=0}^{\infty}c(n)q^n$  near 1.

If (i) and (ii) hold, then as  $n \to \infty$  we have

$$c(n) = n^{\frac{1}{4}(-2B-3)}e^{2\sqrt{An}}\left(p_0 + O\left(n^{-\frac{1}{2}}\right)\right),$$

where 
$$p_0 = \alpha_0 \frac{\sqrt{A}^{B+\frac{1}{2}}}{2\sqrt{\pi}}$$
.

# Setting of Central Theorem

Let  $q = e^{-z}$ , where  $z = x + iy \in \mathbb{C}$  with x > 0 and  $|y| < \pi$ .

Furthermore let  $\zeta = \zeta_b^a \coloneqq e^{\frac{2\pi i a}{b}}$   $(b \ge 2 \text{ and } 0 \le a < b)$ .

Assume that we have a generating function on arithmetic progressions  $a \pmod{b}$  given by

$$H(a,b;q) := \sum_{n\geq 0} c(a,b;n)q^n,$$

for some coefficients c(a, b; n) such that

$$H(a, b; q) = \frac{1}{b} \sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; q)$$

for some generating functions  $H(\zeta; q)$ , with

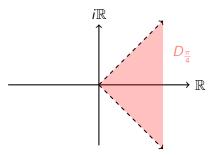
$$H(q) := H(1;q) = \sum_{n \geq 0} c(n)q^n.$$

# Setting of Central Theorem

Let H(a, b; q) and  $H(\zeta; q)$  be analytic on |q| < 1 such that the above holds.

Let  $C=C_n$  be a sequence of circles centered at the origin inside the unit disk with radii  $r_n\to 1$  as  $n\to\infty$  that loops around zero exactly once. For  $0\le \theta<\frac{\pi}{2}$  let

$$D_{\theta} := \left\{ z = r e^{i\alpha} \colon r \geq 0 \text{ and } |\alpha| \leq \theta \right\}.$$



# Setting of Central Theorem

For  $\theta > 0$ , let  $\widetilde{C} := C \cap D_{\theta}$  and  $C \setminus \widetilde{C}$  be arcs such that the following hypotheses hold.

(1) As  $z \to 0$  outside of  $D_{\theta}$ , we have

$$\sum_{j=1}^{b-1} \zeta_b^{-aj} H(\zeta_b^j; e^{-z}) = O(H(1; e^{-z})).$$

(2) As z o 0 in  $D_{ heta}$ , we have for each  $1 \le j \le b-1$  that

$$H(\zeta_b^j; e^{-z}) = o(H(1; e^{-z})).$$

(3) As  $n \to \infty$ , we have

$$c(n) \sim \frac{1}{2\pi i} \int_{\widetilde{C}} \frac{H(1;q)}{q^{n+1}} dq.$$

# Central Theorem

# C.-Craig-Males, 2021

As  $n \to \infty$ , we have

$$c(a, b; n) \sim \frac{1}{b}c(n).$$

In particular, if H(1;q) and  $H(\zeta;q)$  satisfy the conditions of BCMO we have that

$$c(a, b; n) \sim \frac{1}{b}c(n) \sim \frac{1}{b}n^{\frac{1}{4}(-2B-3)}e^{2\sqrt{An}}\left(p_0 + O\left(n^{-\frac{1}{2}}\right)\right)$$

as  $n \to \infty$ .

# Idea of the proof

• Use Cauchy's theorem and the decomposition of H(a, b; q) to obtain

$$c(a,b;n) = \frac{1}{b} \left[ \frac{1}{2\pi i} \int_C \frac{\sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j;q)}{q^{n+1}} dq \right].$$

- ② Break down the integral over C into the components  $\widetilde{C}$  and  $C \setminus \widetilde{C}$  and look at each of them seperately.
- **3** Along  $C \setminus \widetilde{C}$  we have by conditions (1) and (3) that as  $n \to \infty$

$$\frac{1}{2\pi i} \int_{C\setminus\widetilde{C}} \frac{\sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j;q)}{q^{n+1}} dq = o\left(\frac{1}{2\pi i} \int_{\widetilde{C}} \frac{H(1;q)}{q^{n+1}} dq\right).$$

# Idea of the proof

**4** On  $\widetilde{C}$  we obtain with (2) and as  $n \to \infty$  that

$$\frac{1}{2\pi i} \int_{\widetilde{C}} \frac{\sum_{j=0}^{b-1} \zeta_b^{-aj} H(\zeta_b^j;q)}{q^{n+1}} dq \sim \frac{1}{2\pi i} \int_{\widetilde{C}} \frac{H(1;q)}{q^{n+1}} dq.$$

- **3** The first claim follows by combining the estimates along  $\widetilde{C}$  and  $C \setminus \widetilde{C}$ .
- If we assume H(1;q) and  $H(\zeta_b^j;q)$  satisfy the hypotheses of BCMO, then (1) (3) are satisfied and the result follows by the asymptotic for c(n) in BCMO.

# Asymptotic convexity

# C.-Craig-Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Assume that H(1; q) and  $H(\zeta; q)$  satisfy the conditions of BCMO. Then for sufficiently large  $n_1, n_2$  we have

$$c(a, b; n_1)c(a, b; n_2) > c(a, b; n_1 + n_2).$$

## Known examples:

- partition function (Bessenrodt-Ono)
- 2 partition ranks congruent to a (mod b) (Hou-Jagadeesan, Males)

# Log-concavity

## C.-Craig-Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Assume that H(1; q) and  $H(\zeta; q)$  satisfy the conditions of BCMO. For large enough n, we have

$$c(a, b; n)^2 \ge c(a, b; n-1)c(a, b; n+1).$$

#### Known examples:

- partition function (DeSalvo-Pak)
- unimodal sequences of size n and rank m (Bringmann-Jennings-Shaffer-Mahlburg-Rhoades)
- spt-function (Dawsey—Masri)

#### The rank

# Ramanujan congruences, 1921

For  $n \ge 0$  we have

$$p(5n+4) \equiv 0 \pmod{5},$$
  
 $p(7n+5) \equiv 0 \pmod{7},$   
 $p(11n+6) \equiv 0 \pmod{11}.$ 

# Example

The  $\mathit{rank}$  of a partition  $\lambda$  is the largest part minus the number of parts.

nartition

|                                   | partition      | <u>rank</u>            |
|-----------------------------------|----------------|------------------------|
| The ranks of the partitions of 4: | <del>(4)</del> | $3 \equiv 3 \pmod{5}$  |
|                                   | (3,1)          | $1\equiv 1\pmod 5$     |
|                                   | (2,2)          | $0 \equiv 0 \pmod{5}$  |
|                                   | (2, 1, 1)      | $-1 \equiv 4 \pmod{5}$ |
|                                   | (1, 1, 1, 1)   | $-3 \equiv 2 \pmod{5}$ |

rank

#### The rank

N(a, b; n) := # of partitions of n with rank congruent to  $a \pmod{b}$ 

# C.-Craig-Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Then as  $n \to \infty$  we have that

$$N(a,b;n) = \frac{1}{b}p(n)\left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$

The equidistribution of N(a, b; n) was already proven by Males in 2021 using Ingham's Tauberian theorem.



## The crank

$$\operatorname{crank}(\lambda) \coloneqq \begin{cases} \operatorname{largest} \ \operatorname{part} \ \operatorname{of} \ \lambda & \text{ if } \omega(\lambda) = 0, \\ \mu(\lambda) - \omega(\lambda) & \text{ if } \omega(\lambda) > 0 \end{cases}$$

 $\omega(\lambda) \coloneqq \#$  of ones in  $\lambda$ ,  $\mu(\lambda) \coloneqq \#$  of parts greater than  $\omega(\lambda)$ 

M(a, b; n) := # of partitions of n with crank congruent to  $a \pmod{b}$ 

# C.—Craig—Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Then as  $n \to \infty$  we have that

$$M(a,b;n) = \frac{1}{h}p(n)\left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$

## The first residual crank

An *overpartition* is a partition where the first occurrence of each distinct number may be overlined.

# Example

The overpartitions of 4 are given by

The *first residual crank* of an overpartition is given by the crank of the subpartition consisting of the non-overlined parts.

# The first residual crank

# Example

So the first residual crank of  $(2, \overline{1}, 1)$  is given by the crank of (2, 1) which equals 0.

$$\overline{M}(a,b;n) := \#$$
 of overpartitions of  $n$  with first residual crank congruent to  $a \pmod{b}$ 

## C.-Craig-Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Then as  $n \to \infty$  we have that

$$\overline{M}(a,b;n) = \frac{1}{8hn} e^{\pi\sqrt{n}} \left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$



# Plane partitions

A plane partition of n is a two-dimensional array  $\pi_{j,k}$  of non-negative integers  $j, k \geq 1$ , that is non-increasing in both variables, i.e.,  $\pi_{j,k} \geq \pi_{j+1,k}, \ \pi_{j,k} \geq \pi_{j,k+1}$  for all j and k, and fulfils  $|\Lambda| := \sum_{i,k} \pi_{j,k} = n$ .

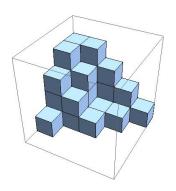
pp(n) := # plane partitions of n

#### Example

For n = 3 we have the plane partitions:

Thus we have pp(3) = 6.

# Plane partitions



A plane partition may be represented visually by the placement of a stack of  $\pi_{j,k}$  unit cubes above the point (j,k) in the plane, giving a three-dimensional solid.

The sum  $|\Lambda|$  then describes the number of cubes of which the plane partition consists.

# Plane partitions

Let 
$$\Lambda = \{\pi_{j,k}\}_{j,k \geq 1}$$
 and define its *trace* by  $t(\Lambda) = \sum_{j=1}^{\infty} \pi_{j,j}$ .

$$pp(a, b; n) := \#\{\Lambda : |\Lambda| = n, t(\Lambda) \equiv a \pmod{b}\}$$

# Example

We have that pp(0,2;3) = 2 and pp(1,2;3) = 4.

# C.-Craig-Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . Then as  $n \to \infty$  we have that

$$\mathsf{pp}(a,b;n) \sim rac{1}{b}\,\mathsf{pp}(n) \sim rac{1}{b}rac{\zeta(3)^{rac{7}{56}}}{\sqrt{12\pi}}\left(rac{n}{2}
ight)^{-rac{25}{36}} \exp\left(3\zeta(3)^{rac{1}{3}}\left(rac{n}{2}
ight)^{rac{2}{3}} + \zeta'(-1)
ight).$$

#### Betti numbers of Hilbert schemes

Betti numbers count the dimension of certain vector spaces of differential forms of a manifold.

For a Hilbert scheme X, let  $b_j(X) := \dim(H_j(X, \mathbb{Q}))$  be the *Betti* numbers, where  $H_j(X, \mathbb{Q})$  denotes the j-th homology group of X with rational coefficients.

$$B(a,b;X) := \sum_{j \equiv a \pmod{b}} b_j(X)$$

We define the Hilbert schemes

$$\begin{split} X_1 &\coloneqq \mathsf{Hilb}^{n,n+1,n+2}(0), & X_2 &\coloneqq \mathsf{Hilb}^{n,n+2}(0), \\ X_3 &\coloneqq \mathsf{Hilb}^{n,n+2}\left(\mathbb{C}^2\right)_{\mathsf{tr}}, & X_4 &\coloneqq \widehat{M}^m(c_{\mathsf{N}}), \end{split}$$

where  $m \in \mathbb{N}$  and  $c_N$  is some prescribed homological data.



# Betti numbers of Hilbert schemes

# C.—Craig—Males, 2021

Let 0 < a < b with b > 2 and

$$d(a,b) := \begin{cases} \frac{1}{b} & \text{if } b \text{ is odd,} \\ \frac{2}{b} & \text{if } a \text{ and } b \text{ are even,} \\ 0 & \text{if } a \text{ is odd and } b \text{ is even.} \end{cases}$$

Then as  $n \to \infty$  we have that

$$\frac{1}{2}B(a,b;X_1) \sim B(a,b;X_2) \sim B(a,b;X_3) = \frac{d(a,b)\sqrt{3}}{4\pi^2}e^{\pi\sqrt{\frac{2n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right)$$

and

$$B(a,b;X_4) = \frac{d(a,b)n^{\frac{m-2}{2}}}{6^{\frac{1-m}{2}}2\sqrt{2}c^{-m}}e^{\pi\sqrt{\frac{2n}{3}}}\left(1+O\left(n^{-\frac{1}{2}}\right)\right),$$

where 
$$\prod_{i=1}^{m} \frac{1}{1-e^{-iz}} = \frac{1}{C-z^m} + O(z^{-m+1})$$
.

# A particular scheme of Göttsche

Let K be an algebraically closed field. Let m be the maximal ideal in K[[x, y]], and define

$$V_{n,K} := \mathsf{Hilb}_n \left( \mathsf{spec} \left( K[[x,y]] / \boldsymbol{m}^n \right) \right).$$

$$v(a,b;n) \coloneqq \#$$
 of cells of  $V_{n,K}$  whose dimension is congruent to  $a \pmod{b}$ 

## C.—Craig—Males, 2021

Let  $0 \le a < b$  and  $b \ge 2$ . As  $n \to \infty$  we have that

$$v(a,b;n) = \frac{1}{b}p(n)\left(1 + O\left(n^{-\frac{1}{2}}\right)\right).$$

Using orthogonality of roots of unity we have

$$\sum_{n\geq 0} M(a,b;n)q^n = \frac{1}{b} \sum_{n\geq 0} p(n)q^n + \frac{1}{b} \sum_{j=1}^{b-1} \zeta_b^{-aj} C\left(\zeta_b^j;q\right),$$

where

$$C(\zeta;q) := \frac{(q;q)_{\infty}}{F_1(\zeta;q)F_1(\zeta^{-1};q)},$$

with  $(q;q)_\infty\coloneqq\prod_{\ell=1}^\infty(1-q^\ell)$  and  $F_1(\zeta;q)\coloneqq\prod_{n=1}^\infty(1-\zeta q^n)$ .

As  $z \to 0$  in  $D_{\theta}$ , for  $q = e^{-z}$  and  $\zeta$  a primitive b-th root of unity (Bringmann-Craig-Males-Ono)

$$F_{1}\left(\zeta;e^{-z}\right)=\frac{1}{\sqrt{1-\zeta}}\,e^{-\frac{\zeta\Phi\left(\zeta,2,1\right)}{z}}\left(1+\mathit{O}\left(\left|z\right|\right)\right),$$

where  $\Phi$  is the Lerch's transcendent

$$\Phi(z,s,a) := \sum_{n=0}^{\infty} \frac{z^n}{(n+a)^s}.$$

On the major arc (Bringmann-Dousse)

$$(e^{-z}; e^{-z})_{\infty}^{-1} = \sqrt{\frac{z}{2\pi}} e^{\frac{\pi^2}{6z}} (1 + O(|z|)),$$

while on the minor arc, for some C > 0

$$\left|\left(e^{-z};e^{-z}\right)_{\infty}^{-1}\right| \leq x^{\frac{1}{2}}e^{\frac{\pi^2}{6x}-\frac{\mathcal{C}}{x}}.$$

(ロト 4团 > 4분 > 4분 > 분 9QC

Using the definition of  $F_1(\zeta; q)$ 

$$\left| \operatorname{Log} \left( \frac{1}{F_1(\zeta; q)} \right) \right| = \left| \sum_{k \ge 1} \frac{\zeta^k}{k} \frac{q^k}{1 - q^k} \right|$$

$$\leq \left| \frac{\zeta q}{1 - q} \right| - \frac{|q|}{1 - |q|} + \operatorname{log} \left( \frac{1}{(|q|; |q|)_{\infty}} \right).$$

$$\Rightarrow \qquad \left| \frac{1}{F_1(\zeta; q)} \right| \ll e^{-\frac{c'}{x}} (|q|; |q|)_{\infty}^{-1},$$

for some C' > 0.

Since an analogous calculation holds for  $F_1(\zeta^{-1};q)$  one may conclude that

$$\left| C \left( \zeta_b^j; q \right) \right| < \left| (q; q)_\infty^{-1} \right|$$

on the minor arc.

For the major arc

$$C\left(\zeta;q
ight)\ll e^{-rac{\pi^2}{6}\operatorname{Re}\left(rac{1}{z}
ight)+\operatorname{Re}\left(rac{\zeta\Phi(\zeta,2,1)}{z}
ight)+\operatorname{Re}\left(rac{\zeta^{-1}\Phi(\zeta^{-1},2,1)}{z}
ight)}$$

Therefore

$$C\left(\zeta_b^j;q\right)=o\left((q;q)_\infty^{-1}\right)$$

if and only if

$$\left(\frac{\pi^2}{3} - \varepsilon - \phi_1 - \phi_1'\right) \frac{x}{|z|^2} > \left(\phi_2 + \phi_2'\right) \frac{y}{|z|^2},$$

where  $\phi_1 + i\phi_2 \coloneqq \zeta_b^j \Phi(\zeta_b^j, 2, 1)$  and  $\phi_1' + i\phi_2' \coloneqq \zeta_b^{-j} \Phi(\zeta_b^{-j}, 2, 1)$ .

Note that 
$$\phi_1 = \frac{\pi^2}{6} - \frac{\pi^2 j}{b} \left( 1 - \frac{j}{b} \right) = \phi_1'$$
 and  $\phi_2 = -\phi_2'$ .

Therefore, our assumption reduces to

$$\left(\frac{2\pi^2 j}{b}\left(1-\frac{j}{b}\right)-\varepsilon\right)\frac{x}{|z|^2}>0,$$

which holds, since we have b > 0,  $1 \le j \le b - 1$  and x = Re(z) > 0.



Let X be a Hilbert scheme

$$G_X(T;q) := \sum_{n\geq 0} P(X;T)q^n,$$

with  $P(X; T) := \sum_{j} b_{j}(X) T^{j}$  the Poincaré polynomial.

Using orthogonality of roots of unity

$$\sum_{n\geq 0} B(a,b;X)q^n = \frac{1}{b} \sum_{r=0}^{b-1} \zeta_b^{-ar} G_X(\zeta_b^r;q).$$

Boccalini's thesis states that

$$G_{X_1}(\zeta;q) = \sum_{n\geq 0} P(X_1;\zeta) q^n = \frac{1+\zeta^2}{(1-\zeta^2q)(1-\zeta^4q^2)} F_3(\zeta^2;q)^{-1},$$

where  $F_3(\zeta; q) := \prod_{n=1}^{\infty} (1 - \zeta^{-1}(\zeta q)^n)$ . We obtain

$$egin{aligned} H_{X_1}(a,b;q) &\coloneqq \sum_{n \geq 0} B(a,b;X_1) q^n \ &= rac{1}{b} \left( 1 + (-1)^a \delta_{2|b} 
ight) \, G_{X_1}(1;q) + rac{1}{b} \sum_{\substack{0 < r \leq b-1 \ r \neq b}} \zeta_b^{-ar} \, G_{X_1}\left(\zeta_b^r;q
ight). \end{aligned}$$

Since

$$G_{X_1}(1; e^{-z}) = \frac{2}{(1 - e^{-z})(1 - e^{-2z})} (e^{-z}; e^{-z})_{\infty}^{-1}$$
$$= \left(\frac{1}{z^2} + \frac{3}{2z} + \frac{11}{12} + O(z)\right) (e^{-z}; e^{-z})_{\infty}^{-1},$$

the asymptotic behaviour is essentially controlled by the Pochhammer symbol.

Using the asymptotic behaviour of  $(q;q)_{\infty}$  we see that

$$G_{X_1}(1;e^{-z}) = \frac{1}{\sqrt{2\pi}z^{\frac{3}{2}}}e^{\frac{\pi^2}{6z}}(1+O(|z|)).$$

For  $\zeta_b^r \neq 1$  it is enough to show that on the major and minor arcs,

$$G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q)).$$



On the major arc (Bringmann-Craig-Males-Ono)

$$F_3(\zeta_b^{2r}; e^{-z})^{-1} \ll e^{\frac{\pi^2}{6z}} |z|^{-N},$$

for any  $N \in \mathbb{N}$  and therefore we see that  $G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q))$ .

On the minor arc we obtain that

$$\left|F_3\left(\zeta_b^{2r};q\right)^{-1}\right|<\left|(q;q)_\infty^{-1}\right|$$

and therefore again  $G_{X_1}(\zeta_b^r;q) = o(G_{X_1}(1;q)).$ 

Thus toward z = 0 on the major arc we have

$$H_{X_1}(a,b;e^{-z}) = \frac{d(a,b)}{\sqrt{2\pi}z^{\frac{3}{2}}}e^{\frac{\pi^2}{6z}}(1+O(|z|)).$$

We are left to apply BCMO with  $A=\frac{\pi^2}{6}, B=-\frac{3}{2}$ , and  $\alpha_0=\frac{d(a,b)}{\sqrt{2\pi}}$  which yields that

$$B(a,b;X_1) = \frac{\sqrt{3}d(a,b)}{2\pi^2}e^{\pi\sqrt{\frac{2n}{3}}}\left(1 + O\left(n^{-\frac{1}{2}}\right)\right),$$

from which one may also conclude asymptotic equidistribution.

Similarly, it is known that

$$G_{X_2}(\zeta;q) := \frac{1 + \zeta^2 - \zeta^2 q}{(1 - \zeta^2 q)(1 - \zeta^4 q^2)} F_3(\zeta^2;q)^{-1},$$

$$G_{X_3}(\zeta;q) := \frac{1}{(1 - \zeta^2 q)(1 - \zeta^4 q^2)} F_3(\zeta^2;q)^{-1},$$

$$G_{X_4}(\zeta;q) := F_3(\zeta^2;q)^{-1} \prod_{i=1}^m \frac{1}{1 - \zeta^{2j} q^j}.$$

An analogous argument to the case of  $X_1$  holds.



Thank you for your attention!