
Dissertation

Automorphic forms in string theory:

From Moonshine to Wall Crossing

Ausgeführt zum Zwecke der Erlangung des Akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von
Prof. Dr. Anton Rebhan & Univ. Asst. Timm Wrase (PhD)

E–136 Institut für Theoretische Physik
Technische Universität Wien, AT

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von
Abhiram Mamandur Kidambi (MSci, MSc)

Matrikelnummer: 01634389

Hernalser Gürtel 2/2/27, 1080 Wien

Wien, am 25.08.2020

Timm Wrase, PhD Prof. Dr. Gabriel Cardoso Prof. Dr. Justin David
(TU Wien & Lehigh) (IST Lisbon) (IISc, Bangalore)
(Betreuer) (Gutachter) (Gutachter)



Automorphic Forms in String Theory:

From Moonshine to Wall Crossing

Abhiram M Kidambi

Institute for Theoretical Physics, Technical University of Vienna
& Stanford Institute for Theoretical Physics, Stanford University

Email address : abhiram.kidambi@tuwien.ac.at





Dedicated to the memory of M. K. Vijayaraghavan





Contents

List of Figures ix

List of Tables xi

Acknowledgements xiii

Abstract of this thesis xv

List of publications xvii

Part 1. Introduction and Preliminaries 1

Chapter 1. Introduction and outlook 3
1.1. Moonshine 3
1.2. Counting BPS states in string theory 4
1.3. How to read this thesis 5

Chapter 2. Automorphic forms on SL(2,Z), Sp(2,Z), and their generalizations 7
Overview of this chapter 7
2.1. Modular forms 7
2.2. Jacobi forms 13
2.3. Siegel modular forms 16
2.4. Mock modular forms 18
2.5. Mock Jacobi forms 19
2.6. Theta functions 20
2.7. Rademacher expansion and Rademacher series 21
2.8. Automorphic forms in this thesis, and in physics 22

Chapter 3. Calabi–Yau manifolds 25
Overview of this chapter 25
3.1. Complex geometry 25
3.2. (Co-)Homology 26
3.3. Kähler manifolds 29
3.4. Homology and cycles 30
3.5. Calabi–Yau manifolds 31
3.6. Moduli space of Calabi–Yau manifolds 33
3.7. K3 surfaces 33
3.8. Invariants, BPS states and Calabi–Yau manifolds 34

Chapter 4. Finite simple sporadic groups and lattices 37
4.1. Overview of this chapter 37
4.2. Group theory basics 37
4.3. Sporadic groups 38

v



vi CONTENTS

4.4. Finite groups and their classification 39
4.5. Sporadic groups 40
4.6. Representations of finite simple groups 41
4.7. Lattices and sporadic groups 42

Part 2. Moonshine and automorphic forms 45

Chapter 5. Introduction to Moonshine 47
Overview of this chapter 47
5.1. Drinking up Moonshine 47
5.2. An overview of monstrous moonshine 50
5.3. Mathieu Moonshine 53

Chapter 6. Moonshine in the moduli space of higher dimensional Calabi–Yau
manifolds: A computational approach 59

Overview of this chapter 59
6.1. Jacobi forms and Elliptic Genera of Calabi–Yau Manifolds 60
6.2. Elliptic genera of Calabi–Yau’s in superconformal character representation 61
6.3. Twined elliptic genera from localization 66
6.4. Analysis for Calabi–Yau 5–folds 68
6.5. A comment on toroidal orbifold and two Gepner models 75
6.6. Conclusions 76

Part 3. Automorphic forms and black holes 77

Chapter 7. Counting BPS black holes in string theory 79
Overview of this chapter 79
7.1. Relevant aspects of N = 4, d = 4 string compactification 79
7.2. BPS states counts from supergravity: Attractors, Localization and Exact

Holography 82
7.3. A comment on localization of supergravity 82
7.4. The attractor mechanism 82
7.5. Black holes and automorphic forms 83
7.6. Comments on wall crossing phenomena 85
7.7. Mock Jacobi forms and single center black holes 86
7.8. (Mock) Jacobi forms and the Rademacher expansion 88

Chapter 8. Reconstructing mock–modular black hole entropy from
1

2
–BPS states 91

Overview of this chapter 91
8.1. Motivation and set up of the problem 91
8.2. The moduli space and the attractor region 95
8.3. Localization of N = 4 supergravity and black hole degeneracy 97
8.4. Negative discriminant states and walls of marginal stability 100
8.5. Negative discriminant states without metamorphosis 104
8.6. Effects of black hole bound state metamorphosis 108
8.7. The exact black hole formula 123
8.8. Conclusions 124

Bibliography 127



CONTENTS vii

Appendix A. Superconformal characters 139
A.1. (Extended) N = 2 characters 139
A.2. N = 4 characters 140

Appendix B. Character table of M12 and M24 141

Appendix C. Check of degeneracies 143

Curriculum Vita 157





List of Figures

1 Depiction of a torus and its lattice construction. For each value of τ in the
UHP, there is a unique torus associated to it, thereby defining the moduli
space of 2-tori. 8

2 The fundamental domain is obtained by considering the mirror image of the
truncated domain about the y–axis which represents Re(τ) = 0. 9

3 Truncated fundamental domains for certain CSG’s of SL(2,Z). As before in
2, the fundamental domain in each of the above cases is the mirror reflection
about the y–axis. 12

5 Sporadic groups 41

6 The above picture describes the relationship that underlies a moonshine
theory. For moonshine to exist, an elaborate structure that relates the sporadic
groups, modular objects and VOA’s is required. 49

7 A histogram of the coefficients of f1a for the 13 642 twined elliptic genera. The
coefficients peak near zero and as can be seen on the zoomed in histogram on
the right this peaking is potentially larger than expected. We also see that
even integer coefficients appear substantially more frequent. 72

8 Wall crossing of the type 1
4
–BPS → 1

2
–BPS ⊕ 1

2
–BPS . 87

9 The region R in the moduli space 96

10 Structure of T–walls (green) and S–walls (red) in the upper half–plane. 101

11 The regions where mγ ≥ 0 and nγ ≥ 0 for rs > 0, denoted in green 105

12 Metamorphosis for
p

r
>
−p`γ + q

−r`γ + s
>
q

s
110

13 Metamorphosis for
p

r
>
q

s
>
−p`γ + q

−r`γ + s
110

14 Metamorphosis for
−p`γ + q

−r`γ + s
>
p

r
>
q

s
111

15 Metamorphosis for
p

r
>
−q`γ + p

−s`γ + r
>
q

s
115

16 Metamorphosis for
−q`γ + p

−s`γ + r
>
p

r
>
q

s
115

17 Metamorphosis for
p

r
>
q

s
>
−q`γ + p

−s`γ + r
116

ix



x LIST OF FIGURES

18 Possible cases of metamorphosis for mγ = −1, nγ = −1. There are an infinite
series of walls to be identified but we have not depicted them here in order to
avoid cluttering of the images. 118



List of Tables

1 Growth of Fourier coefficients of modular forms. 11

2 The number of Calabi–Yau 5–folds constructed as hypersurfaces in weighted
projective spaces. The values in parenthesis give the number of Calabi–Yau
manifolds with different Hodge numbers. 73

3 The character table of M12 where we use the notation e11 = 1
2
(−1 + i

√
11). 141

4 The character table of M24 with shorthand notation en = 1
2
(−1 + i

√
n). 142

5 Table of examples detailing original charge vector, contributing walls,
associated charge breakdowns at walls and index contributions. 146

xi





Acknowledgements

There are many people to whom and situations for which I am grateful. I would like
to thank my advisors Timm Wrase and Anton Rebhan for their support. They always
pushed for me to challenge myself in academic learning and research. I thank Timm
Wrase for countless valuable discussions. I would also like to express my deepest
gratitudes to other senior scientists who have served as mentors, collaborators and
advisors during my PhD: Shamit Kachru, Murat Günaydin and Sameer Murthy. In
particular, I thank Shamit Kachru for all his help, scientific advice and discussions
as I spent a little less than half my PhD at Stanford. I would also like to express
my deepest gratitude to Abhishek Chowdhury, Brandon Rayhaun, Richard Nally and
Valentin Reys. Together with my mentors and advisors, they are they people from
whom I have learned the most.

I have benefited a lot from scientific discussions with many people. While I thank
them all for their insight and discussions, I would like to especially thank Alejandra
Castro, Alejandro Cabo–Bizet, Arnav Tripathy, Atish Dabholkar, Boris Pioline, Daniel
Grumiller, Daniel Persson, Gabriel Cardoso, Harald Skarke, Henrik Gustafsson, Joaõ
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Abstract of this thesis

This thesis is devoted to the study of applications of automorphic forms ((mock) mod-
ular forms and (mock) Jacobi forms on SL(2,Z) and their congruence subgroups, and
Siegel modular forms on Sp(2,Z)) to moonshine phenomena, and to BPS wall crossing
of dyons in N = 4, d = 4 string theory. Moonshine phenomena are deep mathematical
relations between vertex operator algebras, (mock) modular forms and sporadic groups
that manifests as the encoding of the dimension of irreducible representations of a spo-
radic group in the coefficients of the Fourier/character expansion of a (mock) modular
form. This thesis is devoted partly to understand the nature of Mathieu moonshine.
In Mathieu moonshine, the elliptic genus of the K3 surface when expanded in charac-
ters of an N = (4, 4) superconformal algebra has expansion coefficients that capture
the dimensions of the irreducible representations of the largest Mathieu group, M24.
While this phenomenon has been proven to be valid and not just a mere fluke, its
exact nature and origin is still unclear. Is it a property of the Jacobi form that, up
to a multiplicative factor, is the elliptic genus of K3, or is it a property of the moduli
space of K3? We explore the first question by constructing and studying the ellip-
tic genera of higher dimensional Calabi–Yau manifolds whose elliptic genus contains
the very same Jacobi form as in the elliptic genus of K3, emphasizing on Calabi–Yau
5–folds (CY5). The CY5 are constructed in such a way that any connection to M24

should be apparent when expanded in superconformal characters. Extensive analysis
of a large class of CY5 rules out the possibility that M24 is an exact symmetry of
the Calabi–Yau manifolds studied, thereby placing K3 surfaces at the center of the
mathematical mystery that is Mathieu moonshine. The second part of this thesis is
devoted to the exact computation of single center 1

4
–BPS black hole degeneracies in

N = 4, d = 4 string compactification. This theory is an ideal candidate to establish
number theoretic techniques to count the BPS black hole degeneracies since it does
not suffer from extensive wall crossing, nor is it overly constrained by supersymmetry.
1
4
–BPS states in these theories suffer from wall crossing effects i.e., their degeneracies

are not the same everywhere in moduli space due to the formation/dissolution of BPS
bound states. One may use number theoretic tools to remove the effects of wall crossing
and compute the degeneracies for those 1

4
–BPS states that do not form bound states

(i.e., single center states) and determine their degeneracies exactly by computing the
Fourier coefficients of a particular mock Jacobi form. However, the mock Jacobi form
that generates the degeneracies of single center 1

4
–BPS states still requires the presence

of bound states of BPS instantons. These bound states are what control the growth
of the black hole degeneracy in the asymptotic limit and must therefore be carefully
accounted for. This is a subtle problem owing to effects of bound state metamorphosis
where two or more bound states of BPS instantons get identified under the right cir-
cumstances. Therefore, one needs a consistent way in which to count their degeneracies
without over–counting them. This formula is derived in this thesis and is corroborated
with numerical evidence from the indexed partition function of dyonic 1

4
–BPS states.

xv
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Part 1

Introduction and Preliminaries





CHAPTER 1

Introduction and outlook

Almost every piece of pro–string theoretic literature starts with the exact same
plaudits of the theory being a leading candidate to obtain a quantum formulation
of gravity. Almost every piece of literature that criticizes string theory invokes the
same argument i.e., there is a lack of easily falsifiable predictions. While this thesis is
definitely written by a string theorist, the motivation of this thesis lies not in seeing
string theory as being a theory that can work miracles in physics, but rather as a
theory that acts to gracefully marry physics and mathematics. This is evident from
the variety of different problems being currently investigated that require insights from
both mathematics and string theory (or some limit thereof). For example, string
theory (more precisely, quantum fields that arise from string theory in the limit of
gravitational decoupling) has had tremendous implications for the study of 4–manifolds
[SW94a, SW94b, Wit94, DK90], and in the study of the geometrization of the
Langlands program [KW07, Fre07]. Both these questions are cutting edge problems
in geometry and the theory of automorphic forms.

In this thesis, we shall mostly be interested in the role of number theory and ge-
ometry in string theory, and vice versa. More concretely, we will be interested in two
different problems in which geometry, automorphic forms and string theory play a vital
role. Automorphic forms are highly symmetric functions with constrained transforma-
tion properties and these functions are useful in determining symmetric properties of
theories with a large number of parameters or high degeneracy, for example in parti-
tion functions of highly degenerate black holes, computation of invariants of manifolds
whose moduli space has large dimensionality. While there are many different applica-
tions of automorphic forms even within the context of string theory (see concluding
remarks of Chapter 2), we shall primarily be focused on only two applications.

1.1. Moonshine

The first of these applications, moonshine, originated more as a mathematical
enigma in the late 1970’s. The oddity stemmed from the fact that the Fourier expan-
sion coefficients of the modular function J(τ) can be written as linear combinations of
the dimensions of the irreducible representations of the Monster sporadic group, M.
This initial observation eventually grew from an interesting mathematical observation
into a heavy mathematical theory which related sporadic groups, lattices, modular
forms, conformal field theories and even invoking the Goddard–Thorn no–ghost theo-
rem for bosonic string theory in its proof [GT72]. This entire enterprise culminated
in the formulation of a mathematical theory known as monstrous moonshine since it
is a ‘moonshine’ phenomenon for the Monster group.
More surprises from a string theoretic direction arose when the dimensions of irre-
ducible representations of another sporadic group, M24, were discovered to be recov-
erable from expanding the elliptic genus of K3 in terms of characters of an N = (4, 4)

3



4 1. INTRODUCTION AND OUTLOOK

superconformal field theory. This is known as Mathieu moonshine. While this, too,
has been proven, the exact nature and origin of this moonshine is still unresolved. This
will be the key focus of the first half of the research part of this thesis, as presented in
Chapter 5 and Chapter 6. The nature of the question that we shall ask in Chapter 6
is if whether the Mathieu moonshine is a phenomenon associated to K3 surfaces, or
whether it is a property of a Jacobi form that defines the elliptic genus of K3. We
will go over the systematic construction of higher dimensional Calabi–Yau manifolds
and their elliptic genera and search for moonshine phenomena by twining their elliptic
genera. The logic here is that these higher dimensional Calabi–Yau manifolds have
elliptic genera that are proportional to the elliptic genus of K3, and are hence prone
to the same moonshine phenomena if Mathieu moonshine is a property of the Jacobi
form that appears in the K3 elliptic genus. Despite a significant amount of analysis,
the conclusion that we shall arrive at is that Mathieu moonshine is very likely a special
property of K3. The results of this project can be found in [BCK+18]. This naturally
leaves us with more questions, the first of which is

What is the role of K3 in Mathieu moonshine?

The most promising approach to answer this question is a technique known as symme-
try surfing in which the idea is to scan the moduli space of K3 surfaces for all distinct
geometric symmetries of the K3 at special points and this group be the Mathieu group,
M24. However, this approach (as of now) falls short of generating the full M24 group.
There are of course broader questions that one can ask.

Can the linear combinations of dimensions of the irreducible representations of any
other sporadic group be equal to expansion coefficients of some modular object?

The answer to this question is ‘yes’. Many other moonshine phenomena have been
found to exist, but their exact origin is unclear. More so, proposed physical interpre-
tations for various moonshines seem to be philosophically different.

Can moonshine phenomena all be described in the same way i.e., by the same logic
underlying physical theories?

While this is a much more difficult question to answer at this point in time, progress
has been reported in this direction in [BHL+20].

Are these sporadic groups discrete symmetry groups of string theoretic object?

While this question, too, is not exactly easy to answer, there is an element of weight
to this question. In particular, it is possible that these sporadic groups are in some
way related to the symmetries of the BPS states in the string theory. These topics and
questions will be addressed, with key references, in Chapter 5 and Chapter 6.

1.2. Counting BPS states in string theory

The second of the two applications of automorphic forms in this thesis will be in
the study of degeneracies of supersymmetric black holes. The physical motivation of
having to compute black hole degeneracies is to answer the question

What are the microscopic degrees of freedom of a black hole?

Black holes in some sense are both the most and least complicated objects in a gravita-
tional theory that permits black holes. Most complicated since they are highly exotic
objects with high degeneracy, and least complicated in the sense that their dynamics
can be almost exactly computed. To answer the above question requires a robust the-
ory of quantum gravity and string theory has been able to do so mostly for a class
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of supersymmetric black holes known as extremal or BPS black holes. These black
holes do not radiate and therefore understanding their microscopic structure is much
easier than in the non–BPS case. However, computation of the microscopic degrees of
freedom of a black hole is not a simple task due to its high degeneracy. The second ad-
vantage of BPS black holes is that the spectrum of BPS states does not vary with string
coupling. This means that a bound state of branes and strings, which can be described
by a conformal field theory at low string coupling, has the same BPS spectrum even if
the string coupling is tuned high enough that the system collapses into a black hole.
Therefore, for these black holes, computing their BPS partition function can be done
in the weakly coupled conformal field theory limit. There is however a subtlety here
in that while the BPS spectrum is invariant under changes in string coupling, it is not
necessarily invariant under changes to the moduli. Thus the question here would be to
determine a technique for counting BPS states that would in some sense be immune to
changes in the moduli of the theory and/or derive a function that would keep track of
BPS degeneracies at all points in moduli space. Such functions are often automorphic
forms, and their Fourier expansion coefficients which change with moduli encode BPS
black hole degeneracies. Given a function that generates BPS degeneracies, extract-
ing them precisely with as minimal amount of input data is necessary owing to the
computational complexity of the problem. By analyzing subtleties in the wall crossing
phenomena for 1

4
–BPS states in N = 4, d = 4 string theory, we are able to derive an

exact formula that keeps track of this minimal amount of information (i.e., the so called
polar states) that is required to reconstruct the full black hole entropy. Understanding
the above statements and the results of [CKM+19] will the focus of Chapter 7 and
Chapter 8.

1.3. How to read this thesis

This thesis comprises of two different scientific problems, the first one related to
Mathieu moonshine, and the second one related to BPS black hole degeneracies in N =
4, d = 4 string theory. The first part of the thesis comprises of reviewing pre–requisite
material on automorphic forms (Chapter 2), Calabi–Yau geometry (Chapter 3) and
finite group theory (Chapter 4).
The next part of the thesis is devoted to moonshine phenomena for which all the
introductory chapters are invoked as pre–requisites. We provide an introduction to
moonshine phenomena (focusing only on the Monstrous and Mathieu moonshines)
(Chapter 5). Our analysis of studying higher dimensional Calabi–Yau manifolds and
their elliptic genera and relations to sporadic groups follows right after (Chapter 6).
The relevant notation for superconformal characters can be found in Appendix A, while
the character tables for the two important Mathieu groups, M24 and M12, can be found
in Appendix B.
The final part of the thesis is devoted to the study of automorphic forms and black
holes. Chapter 2 and Chapter 3 form the pre–requisites for this part. The first chapter
in this part is devoted to developing the necessary pre–requisites to understand the
number theoretic aspects of BPS black holes in N = 4, d = 4 theories (Chapter 7)
and the final chapter of this thesis will be devoted to deriving an exact formula for the
degeneracies of polar states of certain mock Jacobi forms which determine the entropy
of single center 1

4
–BPS black holes (Chapter 8). Numerical data to provide evidence

for our analysis in this chapter can be found in Appendix C.





CHAPTER 2

Automorphic forms on SL(2,Z), Sp(2,Z), and their
generalizations

Overview of this chapter

In this chapter, we introduce the concepts pertaining to automorphic forms on
SL(2,Z), Sp(2,Z) (modular forms, Jacobi forms and Siegel modular forms) that are
required in the exploration of this thesis. A note to the reader: While dealing with
modular forms, Jacobi forms and Siegel modular forms, often in the mathematical
literature one finds that the exponent of the function is placed before invoking the
modular/elliptic parameters. An example of this is φ2

k,m(τ, z). An equivalent approach

that is used in this thesis is to place the exponent after the parameter as φk,m(τ, z)2.
Both these notations mean the same thing, mathematically speaking.

2.1. Modular forms

In this section we provide an overview of the concepts in number theory required
for a reader to understand this thesis. We begin with the definition of the upper half
plane (UHP), H.

Definition 2.1.1 (UHP). The UHP is the set of all complex numbers whose

imaginary part is greater than zero i.e., H =

{
τ ∈ C

∣∣∣∣ Im (τ) > 0

}
.

The UHP admits an action of the SL(2,R) group via fractional Möbius transfor-
mations of the Riemann sphere as follows

SL(2,R) : τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2,R) .(2.1)

Of importance here is the action of the discrete subgroup SL(2,Z) ⊂ SL(2,R). The
group SL(2,Z) is the modular group of the torus in the sense that each τ defines a
complex torus with τ = τ1 + iτ2.

The moduli space of T 2 tori, which are surfaces of Euler characteristic χ = 0, is
given by H/SL(2,Z). SL(2,Z)1 has a well defined action on certain functions on the
UHP. These functions are modular functions/forms and will the focus of this thesis.

1SL(2,Z) ∼= SO(2, 1).

7



8 2. AUTOMORPHIC FORMS ON SL(2,Z), Sp(2,Z), AND THEIR GENERALIZATIONS

(a) Lattice of T 2,Λτ (b) T 2 ∼= C/Λτ

Figure 1. Depiction of a torus and its lattice construction. For each
value of τ in the UHP, there is a unique torus associated to it, thereby
defining the moduli space of 2-tori.

Definition 2.1.2 (Modular forms). A modular form of weight k is a holomorphic
function f(τ) : H → C defined on the UHP which transforms as follows under
the action of SL(2,Z):

f(τ)→ f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
a b
c d

)
∈ SL(2,Z).(2.2)

A modular form is holomorphic in the limit that τ → i∞. Since a modular

form transforms under the action of

(
1 1
0 1

)
i.e., τ → τ + 1, it is a periodic

function and therefore admits a Fourier expansion on the open unit disc D =
{q ∈ C, |q| < 1} , q = e2πiτ , as follows:

f(τ) =
∑
n

anq
n, q = e2πiτ .(2.3)

Remark 2.1.1. Equivalently, modular forms are also defined as a function from
the set of complex lattices to C satisfying the following properties:

(1) A complex lattice is a lattice that is generates by a pair (A, τ) as Λ = ZA+Zτ .
A modular form, f(Λ) is a function that is analytic on this lattice.

(2) The weight k of the modular form is the scaling factor associated to the analytic
function as f(Λ)→ f(aΛ) = a−kf(Λ).

(3) The norm of the function f(Λ) is bounded from above if and only if the norm
of the smallest element of the lattice Λ is non-zero.

This definition of a modular form helps illuminate the relation between modular func-
tions and lattices that is manifest in the study of moonshine.
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(a) ‘Truncated’ Fundamental domain of
SL(2,Z). (b) Fundamental domain, F , of SL(2,Z).

Figure 2. The fundamental domain is obtained by considering the mir-
ror image of the truncated domain about the y–axis which represents
Re(τ) = 0.

Definition 2.1.3 (Modular functions). Modular functions are meromorphic gen-
eralizations of modular forms of weight zero. These functions are still periodic
and admit a Fourier expansion on the open unit disk D of the form

f(τ) =
∑

n=−|m|

anq
n.

The fact that there are only a finite number of terms with negative powers of q
means that the function is bounded from below in its q–expansion and is therefore
meromorphic at τ = i∞.

Modular forms on SL(2,Z) have the property that their behaviour at τ = 0 is
mapped to their behaviour at τ = i∞. This identification allows the interpretation/def-
inition of a modular form as a function defined on the compact fundamental domain
SL(2,Z)\H to the Riemann sphere C∪{∞}. Shown in Figure 2 is a ‘truncated ’ funda-
mental domain for SL(2,Z). The fundamental domain is obtained by considering the
mirror image of the truncated domain about the y–axis i.e., Re(τ) = 0.2 The modular
forms on SL(2,Z) are even weight forms that are generated by the Eisenstein series.3

2This approach to constructing fundamental domains using Farey arcs was studied in [Kul91].
3Eisenstein series are comprehensive area of study in analytic number theory and we point the

reader to [FGKP18] for a more detailed study.
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The Eisenstein series themselves are modular forms on SL(2,Z). The free action of the
two Eisenstein series on SL(2,Z) as defined below generates a ring of modular forms
on SL(2,Z):

E4(τ) = 1 + 240
∞∑
n=1

n3qn

1− qn
= 1 + 240 q + 2160 q2 + · · · .(2.4a)

E6(τ) = 1 + 504
∞∑
n=1

n5qn

1− qn
= 1 + 504 q + 16632 q2 + · · · .(2.4b)

Other modular forms may be constructed using the Eisenstein series. The space of all
holomorphic modular forms of weight k is denoted by Mk. Any modular form of even
weight k > 2 is expressible as a linear combination of products of Eisenstein series

fk(τ) =
∑

(α,β)

∣∣k=4α+6β

C(α,β) E4(τ)αE6(τ)β,(2.5)

where the C(α,β)’s are real coefficients. For example, the Ramanujan discriminant,
∆(τ), can be defined as

∆(τ) :=
E4(τ)3 + E6(τ)2

1728
= η(τ)24.(2.6)

Here, η(τ) is the Dedekind-eta function and is defined as

η(τ) = q1/24

∞∏
n=1

(1− qn) ,(2.7a)

1

η(τ)24
= q−1

∞∏
n=1

1

(1− qn)24
,(2.7b)

and will play an important role in this thesis. It is therefore useful to state a few re-
marks on the Dedekind-eta function. η(τ) appears in the partition functions of bosons.

Mathematically, the function
1

η(τ)24
appears in the theory of partitions as studied by

Ramanujan and Hardy as the index partition of 24 colours [HR18a]. In physics, the
Dedekind-eta appears in the partition function of various conformal field theories. The
CFT which will be of interest to us is the CFT of 24 free bosons compactified on a torus
T 2 which has precisely (2.7b) as its partition function and is the partition function of
1
2
−BPS states in the four dimensional N = 4 string compactification [DH89]. There

also exists an Eisenstein series of weight 2,

E2(τ) = 1− 24
∞∑
n=1

nqn

1− qn
= q − 24 q2 + 252 q3 + · · · .(2.8)

However, this is a quasi–modular form since it is not modular but can be completed
in a non-holomorphic manner to be modular. This non–holomorphic completion is as
follows

Ê2(τ) = E2(τ)− 3

πIm (τ)
.(2.9)

The above function (2.9) transforms as a weight 2 form. The physical importance of
such forms will become apparent in Chapter 7 and Chapter 8. These forms are used to
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define the Ramanujan-Serre derivative which transform a weight k modular form into
a weight k + 2 modular form

∂RSk : Mk →Mk+2 ,

∂RSk :=
1

2πi
f ′(τ)− k

12
E2(τ)f(τ) .(2.10)

Having introduced the concept of a modular form, we now turn to classification of
modular forms.

2.1.1. Classification of modular forms. Fourier expansions of modular forms
contain a substantial amount of information about them. Therefore, we may use the
properties of the Fourier expansion to classify (in a certain sense) modular forms. We
recall the Fourier expansion of a modular form f(τ) stated in (2.3). The set of all
modular forms may be holomorphic (in Mk, as encountered before), cuspidal or weakly
holomorphic.

Cusp form: A cusp form is a modular form such that a0 = 0. Since the value of the
modular form at zero is related by modular transforms to its value at τ = i∞,
the cusp form vanishes at complex infinity. The set of cusp forms of weight k
are denoted Sk henceforth.

Weakly holomorphic modular forms (WHMF’s): If ap = 0 ∀p < −N , then the
modular form grows as O(qN) at τ = i∞ instead of O(1). Such modular forms
are known as weakly holomorphic modular forms and are denoted by M !

k.

The growth of Fourier coefficients of the different kinds of modular forms are listed in
the Table 1 below.

Growth of Fourier coefficients of modular forms
Modular form Type Growth of an as n→∞
f ∈ Sk Cusp form an = O(nk/2)
f ∈Mk Holomorphic modular form an = O(nk−1)

f ∈M !
k Weakly Homomorphic modular form an = O(e

√
n)

Table 1. Growth of Fourier coefficients of modular forms.

Remark 2.1.2. Since modular forms represent partition functions in physics, the
different kinds of modular forms represent thermodynamic systems with different kinds
of entropy scaling. For example, we shall focus on the case where the modular form
is weakly holomorphic in which case the growth of degeneracies is exponential, as is
required in a Boltzmannian system.

2.1.2. Congruence subgroups (CSG’s) of SL(2,Z). We take a digression into
congruence subgroups of SL(2,Z). CSG’s arise in the modular description when one
takes a quotient or an orbifold of a theory. They make appearances in the constructions
of Hauptmoduln in Chapter 5, the construction of twisted-twined elliptic genera in
Chapter 5 and the CHL orbifolds of black hole partition functions in Chapter 7. The
first CSG that we list here is the principle congruence subgroup Γ(N) ⊂ SL(2,Z).
This principal CSG is a normal subgroup of SL(2,Z) since it is the kernel of the group
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(a) Γ0(2) (b) Γ0(3) (c) Γ0(5)

Figure 3. Truncated fundamental domains for certain CSG’s of
SL(2,Z). As before in 2, the fundamental domain in each of the above
cases is the mirror reflection about the y–axis.

homomorphism from SL(2,Z)→ SL(2,Z/NZ). In other (lack of) words,

Γ(N) ⊂ SL(2,Z) :=

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.(2.11)

The CSG’s that we will encounter in this thesis are

Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ c ≡ 0 mod N

}
,(2.12a)

Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ b ≡ 0 mod N

}
,(2.12b)

Γ1(N) :=

{(
a b
c d

)
∈ Γ0(N)

∣∣∣∣ c ≡ 0 mod N, a ≡ 1 mod N

}
.(2.12c)

An important property of modular (sub)groups that will feature in this thesis is the
genus–0 property. A modular (sub)group is genus–0 if its fundamental domain is
topologically equivalent to a Riemann sphere. Many but not all of these modular groups
withhold the same genus-0 property as SL(2,Z) [CLY04].4 Congruence subgroups,
too, have modular forms/functions defined on them in the same manner as for SL(2,Z).
These are still periodic in the sense of τ → τ + b for a fractional transformation(

1 b
0 1

)
∈ Γ0(N), τ → τ + Nb for a fractional transformation

(
1 Nb
0 1

)
∈ Γ0(N).

Therefore, they admit Fourier expansions. The modular forms on Γ ⊂ SL(2,Z) may
also be defined as a mapping from an appropriate fundamental domain (see Figure 3)
to the Riemann sphere. Modular forms on these arithmetic subgroups admit Eisenstein
series and theta functions. We shall discuss theta series and functions in Section 2.6
mostly for SL(2,Z), but the other topics pertaining to arithmetic subgroups are beyond
the scope of pedagogy for this thesis and we refer the curious reader to [Els85] for more
details.

4As we shall later see, this is precisely the reason why the overarching use of genus–0 properties
for moonshine phenomena on arithmetic subgroups has been replaced with Rademacher summability.
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2.1.3. Atkin–Lehner involution. For modular forms on SL(2,Z), we have seen
that their behaviour at τ = 0 is related to their behaviour at τ = i∞. With modular
forms on Γ0(N), there is a subtlety. While the periodicity property can be maintained,

there is however no element in Γ0(N) analogous to the transformation S : τ → −1

τ
in

SL(2,Z). This involution is brought forward by the action of a Fricke involution of

the form S ′ : τ → −1

Nτ
, which can be generalized to Atkin–Lehner involutions[PV15].5

The physical importance of such transformations is the S–duality. To account for such
identifications, one uses the following technique. Let N be the level of the CSG. We
consider all Hall divisors of N which are those divisors x such that N/x and x are
coprime. For each Hall divisor, we define

Wx =

(
ax b
cN dx

)
, detWx = x .

These divisor matrices act as normalizers for any element in Γ0(N) and can be chosen in
a way in which they act as an involution i.e., W 2

x = I2. The group Γ0(N) together with
the involution Wx comprise the group Γ0(N)+ which affords correct cusp identification
properties.

2.2. Jacobi forms

Another class of automorphic forms are Jacobi forms. These forms were first studied
in detail in [EZ85] and we refer the reader to this piece of literature for more details
as only the rudiments are invoked in this thesis.

Definition 2.2.1 (Jacobi form). A Jacobi form (JF) on SL(2,Z) of weight k
and index m is a holomorphic function fk,m = φ(τ, z) : H × C → C that has
modular and elliptic properties. The variable τ is the modular variable, and the
variable z is the elliptic variable. These properties are defined as follows:

Modularity:

φ(τ, z)→ φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2

cτ+d φ(τ, z) ∀
(
a b
c d

)
∈ SL(2,Z) .

Ellipticity:

φ(τ, z)→ φ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z), ∀ λ, µ ∈ Z .
The index of a Jacobi form on SL(2,Z) is always a positive integer, while the
weight is an integer.

From the above definition, it is clear that the modular and elliptic properties of
a JF imply periodicity in both the elliptic and modular variables. Therefore, Jacobi
forms admit a Fourier expansion of the form

φ(τ, z) =
∑
n,`

c(n, `)qny`, y = e2πiz.(2.13)

5It is this Fricke involution that plays the role of S-duality in orbifolded models.
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The periodicity in the elliptic variable ensures that the Fourier coefficient c(n, `) ≡
C(∆ = 4mn− `2, `)6 is fixed in terms of ` mod 2m [EZ85, DMZ12].

2.2.1. Classification of Jacobi forms. Similar to the case of the theory of mod-
ular forms as studied in Section 2.1.1, Jacobi forms, too, can be classified in terms of
their Fourier expansion coefficients.

Holomorphic Jacobi form: A holomorphic JF (HJF) of weight k and index m is a
JF with C(∆ < 0, `) = 0. The set of HJF’s of weight k, index m is denoted
by Jk,m.

Jacobi cusp form: A Jacobi cusp form (JCF) of weight k and index m is a JF with
C(∆ ≤ 0, `) = 0. The set of JCF’s of weight k, index m is denoted by J0

k,m.
Weak Jacobi form: A weak Jacobi form (WJF) of weight k and index m is a JF

with C(∆ = 4mn − `2, `) = c(n, `) = 0 if n < 0. The set of WJF’s of weight
k, index m is denoted by J̃k,m.

Weakly holomorphic Jacobi form: A weakly holomorphic Jacobi form (WHJF) of
weight k and index m is a JF with C(∆ = 4mn − `2, `) = c(n, `) = 0 if
n < n0, n0 < 0. The set of WHJF’s of weight k, index m is denoted by J̃ !

k,m.

2.2.2. Theta expansion of Jacobi forms. A crucial property of Jacobi forms is
their representation in terms of a theta expansion. Let φ(τ, z) be a Jacobi form. The
Fourier expansion of the Jacobi form with respect to z can be expressed as

φ(τ, z) =
∑
`∈Z

q
`2

4mh`(τ)y`,(2.14)

where h`(τ) =
∑

∆

C(∆, `)q∆/4m, ` ∈ Z/2mZ and h`(τ) is itself periodic in terms of

` ≡ 2mn. This implies that (2.14) can be expressed as

φ(τ, z) =
∑

`∈Z/2mZ

h`(τ) q(`+2mn)2/4my`+2mn

ϑm,`(τ,z)

,(2.15)

where ϑm,`(τ, z) is the standard theta function with index m and weight 1/2.7 The
above equation (2.15) is the theta decomposition of a Jacobi form. Naturally, if
ϑm,`(τ, z) is a Jacobi form of weight 1/2, then h`(τ) is a Jacobi form of weight k− 1/2.
The nature of h`(τ) i.e., whether it is weakly holomorphic, holomorphic or cuspidal is
fixed by the nature of the Jacobi form being weak, holomorphic or cuspidal, respec-
tively. However it is important to state that h`(τ) transforms not as a scalar function
on SL(2,Z) but rather as a vector–valued modular form h = (h1, h2, · · · , h2m) of weight
k− 1/2 on SL(2,Z). Using the expression (2.15), we can define a differential operator
that acts on Jacobi forms that preserves their ellipticity properties. This operator is a
heat kernel operator of index m and is expressed as follows

Lm =
4m

2πi

∂

∂τ
− 1

(2πi)2

∂2

∂z2
.(2.16)

6The ∆ = 4mn−`2 here is known as the discriminant. It is not to be confused with the Ramanujan
discriminant ∆(τ) = η(τ)24.

7This is a Jacobi form on a subgroup of SL(2,Z).
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The action of this heat kernel operator is Lm : J̃k,m → J̃k,m and it acts on a Jacobi
form in the following way:

Lm : φ(τ, z) =
∑
n,`

c(n, `)qny` 7→ φ′(τ, z) =
∑
n,`

(4mn− `2)c(n, `)qny` .(2.17)

Since the Fourier coefficients for both φ(τ, z), φ′(τ, z) are the same, their elliptic trans-
formation properties are preserved under this mapping. However, since

Lm
(∑

h` ϑm,`

)
= 4m

∑
h′` ϑm,l ,(2.18)

we may now construct another operator which is the modified heat kernel operator

Lk,m = Lm −
m
(
k − 1

2

)
3

E2(τ) :
∑
`

h`(τ)ϑm,`(τ, z) 7→ 4m
∑
`

∂RS
k− 1

2
h`(τ)ϑm,l(τ, z),

(2.19)

where ∂RS∗ is the Ramanujan-Serre derivative as defined in (2.10). The action of this
modified heat kernel operator (2.19) is to send Jk,m/J̃k,m/J

!
k,m → Jk+2,m/J̃k+2,m/J

!
k+2,m.

The theta expansion of a Jacobi form will be of use in constructing the Rademacher
expansion which will be discussed in Section 2.7.

2.2.3. Examples of Jacobi forms. As for the case of modular forms where the
two Eisenstein series (2.4) generated the ring of modular forms Mk = 〈E4(τ), E6(τ)〉 on
SL(2,Z), we may analogously construct a bigraded ring of Jacobi forms on SL(2,Z).
The starting point for this is the construction of all index 1 Jacobi forms. Since the
product of a modular form and a Jacobi form still has elliptic properties, non–trivial
weight Jacobi forms can also generated by the action of the two Eisenstein series. The
full construction of index 1 Jacobi forms is given in [DMZ12]. There are four Jacobi
form’s of the form φk,1(τ, z), k = −2, 0, 10, 12 which are defined as follows:

φ−2,1(τ, z) =
ϑ1(τ, z)2

η(τ)6
=
φ10,1(τ, z)

∆(τ)
.(2.20a)

φ0,1(τ, z) = 4

(
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

)
.(2.20b)

φ10,1(τ, z) = η(τ)18ϑ1(τ, z)2 .(2.20c)

φ12,1(τ, z) = ∆(τ)φ0,1(τ, z) .(2.20d)

Here ϑi(τ, z) are the standard Jacobi theta functions defined in (2.44). Since the
Eisenstein series (2.4) and the Jacobi forms (2.20) are all even weight functions, they
can only generate a ring of even weight Jacobi forms.8 Of the Jacobi forms defined in
(2.20), φ10,1(τ, z) and φ12,1(τ, z) are cuspidal Jacobi forms while φ0,1(τ, z) and φ−2,1(τ, z)
freely generate the ring of weak Jacobi forms.

8Odd weight Jacobi forms cannot have index 1 but can be constructed using isomorphisms between
(weak) Jacobi forms of weight k and index 2 and (holomorphic) cuspidal modular forms of weight
k + 1 [DMZ12].
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(a) Depiction of a genus-2 surface on
which a Siegel modular form is defined.

(b) H2 lies in the positive light cone of
R2,1 whose conformal group is SO(3, 2) ∼=
Sp(2,Z).

Theorem 2.2.1 (Eichler–Zagier–Feingold–Frenkel). The bigraded ring of all
weak Jacobi forms of even weight k and positive index m is a polynomial algebra
in E4(τ), E6(τ) and is generated by φ0,1(τ, z) and φ−2,1(τ, z) [EZ85, FF83]. In
other words,

J̃k,m = 〈E4(τ), E6(τ), φ0,1(τ, z), φ−2,1(τ, z)〉 ,(2.21)

where the k ∈ 2Z.

We do not prove this theorem here and we leave it to the reader to consult [EZ85]
for details of the proof.

2.3. Siegel modular forms

We now discuss the theory of Siegel modular forms. While we have thus far en-
countered functions defined on T 2 with the modular group SL(2,Z), there are natural
extensions to this. In generalizing the space of surfaces of Euler characteristics χ = 0
to surfaces of χ = −2, we end up genus 2 surfaces for which the modular group extends
as

T 2 ∼= Σg=1 → Σg=2 ,

SO(2, 1) ∼= SL(2,Z)→ SO(3, 2) ∼= Sp(2,Z) .(2.22)
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Definition 2.3.1 (Siegel Upper Half Plane, H2). The Siegel upper half plane
(SUHP), H2, is the genus two generalization of the UHP which is defined to be
the set of 2× 2 symmetric matrices with complex entries

H2 =

{
Ω =

(
τ z
z σ

)
∈ Mat2×2(C)

∣∣∣∣ Im(τ) > 0, Im(σ) > 0, det(Im(Ω)) > 0

}
.

(2.23)

Definition 2.3.2 (Sp(2,Z)). Sp(2,Z) is defined as the group of 4× 4 matrices

g that preserve the symplectic form i.e., gJgT = J , where J =

(
0 −I2

I2 0

)
is the

symplectic form. Sp(2,Z) is the group g of the form

(
A B
C D

)
with entries 2× 2

matrices that admit a natural action on H2 as

Ω→ (AΩ +B) (CΩ +D)−1 , ∀
(
A B
C D

)
∈ Sp(2,Z).(2.24)

Remark 2.3.1. Analogous to how τ defines the period of the 2-torus, Ω can be
interpreted as the period matrix of a genus 2 Riemann surface.

Definition 2.3.3 (Siegel Modular form). A Siegel modular form (SMF) of weight
k is a holomorphic function Φ : H2 → C that transforms under Sp(2,Z) such
that

Φ(Ω)→ Φ
(
(AΩ +B) (CΩ +D)−1) = det(CΩ +D)kΦ(Ω), ∀

(
A B
C D

)
∈ Sp(2,Z).

(2.25)

A SMF admits a Fourier expansion of the form

Φ(Ω) =
∑

m,n,`∈Z
4mn−`2>0

c(m,n, `)qnpmy`, p = e2πiσ,(2.26)

where Ω is a short hand for (τ, σ, z). In the above equation (2.26), the sum can be
re-written by expressing qny` terms as a Jacobi form (since Jacobi forms have the
expansion with qny` as seen in (2.13)). This gives us the Fourier-Jacobi expansion of
a SMF as

Φk(Ω) =
∑

m,n,`∈Z
4mn−`2>0

c(m,n, `)qny`

φk,m(τ,z)

pm =
∞∑
m=0

φk,m(τ, z)pm,(2.27)

where φk,m(τ, z) is a Jacobi form of weight k and index m. The most prominent
example of the SMF that we will encounter in this thesis is the Igusa cusp form which
is the unique weight 10 SMF on Sp(2,Z). The Igusa cusp form is defined as

Φ10(Ω) = qyp
∏

(`∈Z,m≥0,n>0)
(`∈Z−,n=m=0)

(
1− qny`pm

)2C(4mn−`2)
,(2.28)
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where the coefficients C in the exponent, as will be expanded upon in Chapter 7, are
related to the coefficients of the Fourier expansion of the elliptic genus of K3 , which is
in fact given in terms of φ0,1(τ, z) as defined in(2.20b). We shall expand upon this at a
later stage. A final remark we wish to add on SMF’s is regarding their constructions.
We will not focus on the explicit construction of SMF’s in this thesis. However, we do
wish to remark on the construction of (2.28). There are two ways in which this can be
constructed viz., the additive or Saito–Kurokawa lift [Zag79], or by the multiplicative
or Borcherds lift [GN96c, GN96a, GN96b]. The Igusa cusp form as defined in (2.28)
is in the product representation i.e., is constructed via the multiplicative lift. This is
the representation that we shall employ for the remainder of this thesis.

2.4. Mock modular forms

We now turn to the concept of mock modular forms (MMF’s). Mock modular forms
are a relatively nascent field of mathematics first studied in detail in [Zwe08]. MMF’s
were first discovered by Srinivasa Ramanujan [Ram88, Zag07]. The nature of mock-
modularity is that a holomorphic function transforms under the action of SL(2,Z)
almost, but not exactly, like a modular form. We shall broadly deal with two different
kinds of mock modular forms: pure and mixed.

Definition 2.4.1 (Pure mock modular form and its shadow). A (weakly
holomorphic) pure mock modular form h(τ) is a form of weight k ∈ Z/2 that is
holomorphic on the UHP with at most exponential growth at cusps. To this form
h(τ), we associate a function g(τ) which is the shadow of h(τ). This shadow
is a holomorphic modular form g(τ) of weight 2 − k that ‘completes’ the mock
modular form as follows.

The non-holomorphic Eichler integral of g(τ), denoted by g?(τ) is the so-
lution to the differential equation

22k−1πk−1iτ k2
∂g?(τ)

∂τ̄
= g(τ),(2.29)

such that the sum ĥ(τ) := h(τ) + g?(τ) (the completion of h(τ)) transforms like
a holomorphic modular form of weight k. Since h(τ) is a holomorphic function
on the UHP, it is also related to the shadow similar to (2.29) as

22k−1πk−1iτ k2
∂ĥ(τ)

∂τ̄
= g(τ) .(2.30)

Since g(τ) is a holomorphic modular form, it admits a Fourier expansion of the form

g(τ) =
∑
n

b(n)qn. Note that the shadow should be optimally chosen. By this we mean

that the nature of the form g(τ) depends on the nature of the mock modular form. The
shadow has to be chosen in such a way that it satisfies the overall growth properties
of the modular form following completion. In other words, the growth property of the
shadow has to be optimally chosen so as for the completed form to have the correct
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growth [DMZ12]. The choice of the shadow can be chosen by setting

g?(τ) =



b̄0
(4πτ2)−k+1

k − 1
+
∑
n>0

nk−1b̄nq
−n

∫ ∞
4πnτ2

t−ke−tdt

incomplete Γ−function

, k 6= 1

−b̄0 log(4πτ2) +
∑
n>0

nk−1b̄nq
−n

∫ ∞
4πnτ2

t−ke−tdt

incomplete Γ−function

, k = 1
.(2.31)

When the shadow g(τ) is a unary theta series of the form

fu=̃


∑
n∈Z

ε(n)qβn
2

for some β ∈ Q+, ε is an even periodic function∑
n∈Z

nε(n)qβn
2

for some β ∈ Q+, ε is an odd periodic function
,(2.32)

the mock modular form is a mock theta function, as was first described in [Ram88].
We shall also define the notion of a mixed mock modular form as a mock modular form
for which the completion of h(τ), ĥ(τ), is expressible as

ĥ(τ) = h(τ) +
∑
i

fi(τ)g?i (τ),(2.33)

where fi(τ)’s are modular forms of weight l and g(τ)’s are modular forms of weight
2 − k + l. In other words, the shadow can be further broken down into product
of modular forms. Mock modular forms make a wide appearance in physics. They
appear as the partition function of the topologically twisted super Yang-Mills theory
on CP2 [VW94, DPW20, Ale20]. One class of mock modular forms that will appear
in this thesis is related to the Mathieu moonshine as in Chapter 5. We define

F
(2)
2 (τ) :=

∑
r>s>0

r−s∈2Z+1

(−1)rsq
rs
2 = q + q2 − q3 + q4 − q5 + · · · .(2.34)

The function

H(τ) := 2

(
24F

(2)
2 (τ)− E2(τ)

η(τ)3

)
= 2q−1/8

(
−1 + 45 q + 231 q2 + 770 q3 + 2277 q4 + · · ·

)
,(2.35)

has Fourier expansion coefficients which are precisely the dimensions of the irreducible
representations of the M24 group. The function (2.35) can also be related to the elliptic
genus of K3 and this will become apparent and significant in Chapter 5.

2.5. Mock Jacobi forms

Mock Jacobi forms will be another of the main focal points of this thesis. Mock
Jacobi forms are identical to Jacobi forms (2.2.1) in their ellipticity properties but
their modular transformation properties are not exact on SL(2,Z). They still exhibit
a theta decomposition as in (2.15) but the h`(τ) are mock modular forms of weight
k − 1

2
. Mock Jacobi forms have a completion, similar to mock modular forms. The

completion is manifest again in h`(τ) as

φ̂(τ, z) =
∑

`∈Z/2mZ

ĥ`(τ)ϑm,`(τ, z) ,(2.36)
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where the completion affects the vector–valued (mock) modular forms (h`(τ) is com-

pleted to ĥ`(τ)) in the theta decomposition of a mock Jacobi form. This can be
appreciated by putting together equation (2.15) and Definition 2.4.1. Let g`(τ) be the
shadow of h`(τ). The completion of the mock Jacobi form follows as

φ̂(τ, z) = φ(τ, z) +
∑

`∈Z/2mZ

g?` (τ)ϑm,`(τ, z) ,(2.37)

where g?` (τ) is as defined in (2.31). Mock Jacobi forms appear in a wide range of prob-
lems as studied in this thesis. They first made their appearance (prior to the work done
in [Zwe08]) in the study of N = 2, 4 superconformal characters [EOTY89, ET88b].
These shall be introduced later in Chapter 5. More problem specific machinery con-
cerning mock modular forms shall be introduced later as and when required. They
appear in the counting function of 1

4
–BPS dyons in four dimensional theories with six-

teen supercharges, as we shall see in Section 7.7. Although they do describe legitimate
partition functions in physics, their thermodynamic interpretation in a general situa-
tion remains unclear [DMZ12]. Progress towards the origin of mock modularity in the
context of the counting function for single center 1

4
–BPS black holes in N = 4, d = 4

string theory has been made in [MP18].

2.6. Theta functions

We provide a very conservative introduction to theta functions in this section. We
refer the reader to the classic texts [Mum83, Mum84, MNN07] for more literature

on the theta functions. Consider the function θ3(τ) =
∑
n∈Z

qn
2/2. This counts the

number of ways in which a integer can be expressed as a sum of even squares. It is
therefore the theta function associated to a lattice as the count of vectors of a particular
norm 〈x, x〉 = x2. It can be represented as an infinite product as

θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1− qn)
(

1 + qn−
1
2

)2

.(2.38)

We can also introduce two more theta functions as

θ2(τ) =
∑

n∈Z+ 1
2

qn
2/2 = 2q

1
8

∞∏
n=1

(1− qn) (1 + qn)2 .(2.39a)

θ4(τ) =
∑
n∈Z

(−1)nqn
2/2 = 2q

1
8

∞∏
n=1

(1− qn)
(

1− qn−
1
2

)2

.(2.39b)

These are related to the Dedekind-eta function (2.7a) by

2η(τ)3 = θ4(τ)θ3(τ)θ2(τ).(2.40)

These three functions (2.38)(2.39a)(2.39b) are components of a vector–valued modular
form on SL(2,Z)

Θ(τ) =

θ2(τ)
θ3(τ)
θ4(τ)

 ,(2.41)
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satisfying

Θ(τ) =

√
i

τ
SΘ

(
−1

τ

)
= T Θ(τ + 1) ,(2.42)

with

S =

0 0 1
0 1 0
1 0 0

 , T =

eiπ/4 0 0
0 1 0
0 0 1

 .(2.43)

The theta functions (2.38),(2.39a) and (2.39b) can be ‘generalized’ to the Jacobi theta
functions defined below by demanding elliptic transformation properties. The Jacobi
theta functions are expressible as an infinite sum or product as

ϑ1(τ, z) = −i
∑

n∈Z+ 1
2

(−1)n−
1
2ynqn

2/2

= −iq
1
8

(
y

1
2 − y−

1
2

) ∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) .(2.44a)

ϑ2(τ, z) =
∑

n∈Z+ 1
2

ynqn
2/2

= q
1
8

(
y

1
2 + y−

1
2

) ∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn) .(2.44b)

ϑ3(τ, z) =
∑
n∈Z

ynqn
2/2

=
∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 ) .(2.44c)

ϑ4(τ, z) =
∑
n∈Z

(−1)nynqn
2/2

=
∞∏
n=1

(1− qn)(1− yqn−
1
2 )(1− y−1qn−

1
2 ) .(2.44d)

The theta functions (2.39a), (2.38), (2.39b) are related to the Jacobi theta functions
by

θi(τ) = ϑi(τ, z = 0), i = 2, 3, 4 .(2.45)

2.7. Rademacher expansion and Rademacher series

We have thus far only briefly mentioned the importance of understanding the co-
efficients in the Fourier expansion of an automorphic form in their classification in
Section 2.1.1 and Section 2.2.1. Computing said coefficients is of physical signifi-
cance and as we shall see, in the context of the partition functions of conformal field
theories, the Fourier coefficients capture the degeneracies of the system. However,
precise computation of Fourier expansion coefficients is not a trivial task. While
there are many techniques to compute the coefficients of the Fourier expansion, we
shall focus on the Hardy–Ramanujan–Rademacher method (Rademacher expansion)
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[Rad43, Rad38, Rad12, RZ38, HR18a, HR18b] here. We refer the reader to
[Rad12, DF11, CD14] for more details on the Rademacher expansion that are per-
tinent but not pedagogically required to understand this thesis.
The Rademacher expansion provides a powerful tool to reconstruct the Fourier coeffi-
cients of modular forms. For the case of Jacobi forms, one requires the use of generalized
Rademacher series [DMMV00, FR17]. We shall consider it here for forms of weights
w + 1

2
≤ 0 on the modular group SL(2,Z) and a generic multiplier system ψ(γ). The

Rademacher expansion only requires knowledge of the modular properties of h`(τ) and
values of a finite number of coefficients of negative powers of q in the q–expansion in
order to compute the Fourier coefficients c(n, `) with ∆ ≥ 0. We define the terminol-
ogy of polar coefficients/terms i.e., the terms with negative powers of q in the Fourier
expansion

(2.46) h`(τ) =
∑
∆̃<0

c(ñ, ˜̀) q∆̃/4m +
∑
∆≥0

c(n, `) q∆/4m .

The Rademacher expansion for the Fourier coefficients of h`(τ) is given by
(2.47)

c(n, `) = 2π
∞∑
k=1

∑
˜̀∈Z/2mZ

∆̃<0

c(ñ, ˜̀)
KLS

(
∆
4m
, ∆̃

4m
; k, ψ

)
`˜̀

k

( |∆̃|
∆

) 1−w
2
I1−w

( π

mk

√
|∆̃|∆

)
,

where Iρ(x) is the I-Bessel function of weight ρ. It has the following integral represen-
tation for x ∈ R∗,

(2.48) Iρ(x) =
1

2πi

(x
2

)ρ ∫ ε+i∞

ε−i∞
t−ρ−1 e t+

x2

4t dt ,

and has the asymptotic behaviour

(2.49) Iρ(x) ∼
x→∞

ex√
2πx

(
1−µ− 1

8x
+

(µ− 1)(µ− 32)

2!(8x)3
− (µ− 1)(µ− 32)(µ− 52)

3!(8x)5
+. . .

)
,

with µ = 4ρ2. In (2.47), KLS
(

∆
4m
, ∆̃

4m
; k, ψ)`˜̀ is the generalized Kloosterman sum

[DMMV00]

(2.50) KLS(µ, ν ; k, ψ)`˜̀ :=
∑

0≤h<k
(h,k)=1

e2πi
(
−h
k
µ+

h′

k
ν
)
ψ(γ)`˜̀,

with γ =

(
h′ −hh′+1

k
k −h

)
∈ SL(2,Z) and hh′ ≡ −1 (mod k). While all this deals

with modular and Jacobi forms on SL(2,Z), we shall revisit the case of Rademacher
expansions for mock modular/Jacobi forms in Chapter 7 and Chapter 8.

2.8. Automorphic forms in this thesis, and in physics

Automorphic forms, owing to their high symmetry, appear in many different as-
pects of physics. From the point of view of this thesis, automorphic forms are related
to the count of BPS states and special cycles on Calabi–Yau manifolds (Gromov–
Witten/Donaldson–Thomas invariants). The first part of this thesis is devoted to
moonshine phenomena which is the study of the symmetries of some of these BPS
automorphic forms and their connection to finite simple sporadic groups. The second
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part of this thesis focuses on precision counting and matching of the coefficients in the
Fourier expansion of automorphic forms on SL(2,Z) and Sp(2,Z), where the automor-
phic forms are partition functions in string compactification that count the number of
BPS states/black hole degeneracies. To a large extent, the most prominent application
of automorphic forms to physics is in the study of black hole partition functions.
Another string theoretic application of automorphic forms is in the study of constraints
on string scattering amplitudes where higher genus contributions to the string ampli-
tude can be calculated from studying automorphic forms on a genus–g surface related
to the moduli space of those genus–g surfaces [GRV10, DGV15, Log19].9 Auto-
morphic forms and function appear in a wide range of other fields in physics. The
study of automorphic L−functions appear in the study of dynamical systems and
chaos [Sar93, Sar97a, Sar97b]. Automorphic forms are central in the Langlands
program which is also considered to have far reaching consequences in conformal field
theory and quantum field theory [Fre07, KW07].

9We thank Kimberly Logan for discussions during the workshop on Automorphic structures in
string theory for bringing attention to a more substantial body of mathematical literature relating
automorphic forms to string amplitudes.

http://scgp.stonybrook.edu/archives/25098
http://scgp.stonybrook.edu/archives/25098




CHAPTER 3

Calabi–Yau manifolds

Overview of this chapter

In this chapter, we provide an overview of the required concepts in the study
of Calabi–Yau manifolds. Calabi–Yau (CY) manifolds are an important tool in the
study of compactification of string theory to four spacetime dimensions [CHSW85]
and their geometric properties allow for us to control the structure of the resulting
theory [Gre96]. For more detailed studies of complex manifolds, we refer the reader
to [Huy05]. For Kähler geometry, we refer the reader to [Mor07, Huy16] and for
Calabi–Yau geometry, we refer the reader to [Hub92, GHJ12]. Standard references
on more advanced topics include [HKK+03, CK00, ABC+09]. We shall comment
on the physical importance of CY manifolds later.

3.1. Complex geometry

Consider a real manifold manifolds M2d of dimension 2d. A real manifold of even
dimension allows us to define a complex manifold as follows.

Definition 3.1.1 (Complex manifolds). Let {Ui} be an open covering of the
manifold M2d. Let there be a homeomorphism φi : Ui → Cd on to an open
set on Cd. A manifold (M, {Ui, φi}) is complex (of complex dimension dimC =
dimR

2
) if ∀ Ui ∩ Uj 6= ∅, φij = φi ◦ φ−1

j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is a

holomorphic transition function. The transition functions, being holomorphic,
satisfy the Cauchy–Riemann equation

∂̄k̄φij =
∂

∂z̄k
φij = 0 ∀ k ,(3.1)

where zk = xk + iyk are the complex coordinates.

Henceforth, the derivative ∂k will refer to a derivative with respect to zk, while the
derivative ∂̄k̄ will refer to a derivative with respect to z̄k.
Examples:

(a) The manifold Cd is a d− dimensional complex manifold.
(b) The 2–torus as seen in Chapter 2.
(c) Another complex manifold that we shall encounter is the complex projective

space CPn which is constructed as follows. Consider the set of points up to
a complex identification (z0, z

1, · · · , zn) ∼ λ(z0, z
1, · · · , zn), λ ∈ C. Such an

identification acts on a degree p polynomial which can be expressed as using
homogeneous coordinates

(3.2) f(z0, z
1, · · · , zn) = zpg(z0/z

n, z1/zn, · · · , zn−1/zn) .

25
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Since the transition functions between f and g are holomorphic, a complex
projective space CPn is a complex manifold of dimC = n .

Every complex manifold is a real manifold, while the converse is not true. An even
dimensional real manifold can be complexified iff it admits a complex structure.

Definition 3.1.2 (Almost complex structure). Consider a real manifold M2d.
An almost complex structure J on M is a smooth tensor field J such that

−J b
a J

c
b = δ c

a .(3.3)

AM2d with an almost complex structure is known as an almost complex manifold.

Definition 3.1.3 (Nijenhuis tensor). The Nijenhuis tensor NJ(x, y) of two vec-
tor fields x, y is defined as

NJ(x, y) = [Jx, Jy]− J [x, Jy]− J [Jx, y]− [x, y] ,(3.4)

where [·, ·] is the standard Lie bracket between two vector fields.

Definition 3.1.4 (Complex manifold). An almost complex manifold with an al-
most complex structure J such that the Nijenhuis tensor (3.4) identically vanishes
is known as a complex manifold.

Remark 3.1.1. The definitions Definition 3.1.1 and Definition 3.1.4 are equivalent.
This is the statement of the Newlander–Nirenberg theorem [Voi].

3.2. (Co-)Homology

Consider k−forms on a real manifold M. These forms are given in terms of the
smooth sections of the the exterior power of the cotangent bundle ΛkT ∗M and are
therefore totally anti-symmetric tensors of the type (0, k). The dimension of ΛkT ∗M

is

(
m
k

)
where m is the dimension of the manifold. The space of k–forms is denoted

as Ωk(M). Consider a k− and an l−form on M as

αk = αi1···ik dx
i1 ∧ dxi2 ∧ · · · ∧ dxik ,

βl = βi1···il dx
i1 ∧ dxi2 ∧ · · · ∧ dxil .(3.5)

Then the exterior product (or wedge product) between a k–form and l–form is a k+ l–
form

αk ∧ βl = αi1···ikβik+1
· · · ik+l dx

i1 ∧ dxi2 ∧ · · · ∧ dxik ∧ dxik+1 · · · ∧ dxik+l .(3.6)

The exterior derivative d : Ωk(M)→ Ωk+1(M) and is given by

dα =
∂

∂xi0
αi0,ii,···ik+1

dxi0 ∧ xi1 ∧ dxi2 ∧ · · · ∧ dxik ,(3.7)

such that d2α = 0 for any differential k–form. A k–form is closed if its exterior de-
rivative vanishes i.e., dα = 0. A k–form is exact if it is the exterior derivative of a
k − 1–form i.e., α = dβ, β ∈ Ωk−1(M). Since d2β = 0, then dα = 0 which means that
every exact form is closed.
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Let A0, A1, · · · be Abelian groups connected by homomorphisms dn : An → An+1

such that dn ◦ dn−1 = 0,∀n. A cochain complex is then the sequence

0
d0−→ A1

d1−→ A2
d2−→ · · · .(3.8)

This allows us to define cohomology groups Hn

Hn =
Ker(dn : An → An+1)

Image(dn : An−1 → An)
.(3.9)

An important example of a cohomology on a manifold is the de Rham cohomology. To
define this, we use the action of the exterior derivative to define the de Rham complex
as

0
d−→ Ω0(M)

d−→ Ω1(M)
d−→ · · · d−→ Ωm(M)

d−→ 0 ,(3.10)

and the de Rham cohomology groups Hk
dR(M,R)

Hk
dR(M,R) =

Ker(d : Ωk(M)→ Ωk+1(M))

Image(d : Ωk−1(M)→ Ωk(M))
.(3.11)

Elements of the cohomology may be related to create an equivalency classes within the
cohomology and this is known as the cohomology class. Two elements (α, β) of the
cohomology Hk

dR are in the same cohomology class, [α], if there exists λ ∈ Ωk−1(M)
such that α = β + dλ.

Definition 3.2.1 (Betti number). The dimension of the k−th de Rham coho-
mology group Hk

dR(M,R) is the k−th Betti number, bk, i.e.,

bk = dim
(
Hk
dR(M,R)

)
.(3.12)

The Betti numbers and cohomological data can be used to compute the Euler
characteristic of the manifold.

Definition 3.2.2 (Euler characteristic). The Euler characteristic χ(M) of a
manifold is a topological invariant

χ(M) =
n∑
i=0

(−1)ibi .(3.13)

For compact manifolds, without boundaries, (3.13) is given by χ(M) = 2 − 2g,
where g is the number of “holes” or the genus of the manifold.

For the case of a complex manifold of dimension M of dimension n, there is a
further subtlety that arises from the holomorphic and anti–holomorphic separation
of the cotangent space. In other words, we need to consider the holomorphic and
anti–holomorphic sections which give rise to p, q–forms. The space of k–forms can be
decomposed into a direct sum of spaces of Ω(p,q)(M) forms as

Ωk(M) =
k⊕
i=0

Ωi,k−i(M) ,(3.14)

so the interpretation that we have here is that a p, q–form is a differential form that
a holomorphic p–form and an anti-holomorphic q–form. An exterior derivative on a
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complex manifold of dimension n can also be decomposed into holomorphic and anti-
holomorphic parts as

d = ∂ + ∂̄ ,

∂ : Ωp,q(M)→ Ωp+1,q(M) ,(3.15)

∂̄ : Ωp,q(M)→ Ωp,q+1(M) .

The requirement that d2 = 0 implies that ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0. We can now
begin defining the Dolbeault cohomology by first defining the Dolbeault complex as

0
∂̄−→ Ωp,0(M)

∂̄−→ Ωp,1(M)
∂̄−→ · · · ∂̄−→ Ωp,n(M)

∂̄−→ 0 ,(3.16)

or equivalently using the holomorphic exterior derivative as

0
∂−→ Ω0,q(M)

∂−→ Ω1,q(M)
∂−→ · · · ∂̄−→ Ωn,q(M)

∂−→ 0 .(3.17)

From this, the Dolbeault cohomology group is defined as

Hp,q

∂̄
=

Ker(∂̄ : Ωp,q(M)→ Ωp,q+1(M))

Image(∂̄ : Ωp,q−1(M)→ Ωp,q(M))
,(3.18)

while for the holomorphic exterior derivative, we have

Hp,q
∂ =

Ker(∂ : Ωp,q(M)→ Ωp+1,q(M))

Image(∂ : Ωp−1,q(M)→ Ωp,q(M))
.(3.19)

The Dolbeault cohomology is not universally defined on a complex manifold and de-
pends on the choice of the complex structure. Similar to the Betti numbers (3.12), we
can define the Hodge numbers of a complex manifold.

Definition 3.2.3 (Hodge numbers). The Hodge number hp,q is the complex di-
mension of the Hp,q

∂̄
cohomology group i.e.,

hp,q(M) = dimCH
p,q

∂̄
(M) .(3.20)

The Hodge numbers of a complex manifold can be used to define the (holomorphic)
Euler characteristic as

χp(M) =
∑
q≥0

(−1)qhp,q(M) ,(3.21)

whereM is a complex manifold. The Hodge numbers can be arranged in a rather nice
representation, known as the Hodge diamond, as follows

DMd
=

hd,d

hd,d−1 hd−1,d

...
...

. . .

hd,0 · · · · · · h0,d

. . .
...

...
h1,0 h0,1

h0,0

,(3.22)

where in the above expression d is the complex dimension of the manifold. We now
define the additional metric structure on the manifold. This leads us to the concept of
Hermitian and Kähler manifolds.
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3.3. Kähler manifolds

Definition 3.3.1 (Hermitian metric). Let Md be a complex manifold with com-
plex dimension d with a complex structure J . A hermitian metric g is an inner
product defined at every point p ∈Md such that g : T 1,0Md⊗T 0,1Md → C such
that it is positive definite. The structure of the Hermitian metric implies that g
is a Riemannian metric on Md the metric can be expressed as a 1, 1–form

ω1,1(v, w) = g(v, Jw), v ∈ Γ(T 1,0Md), w ∈ Γ(T 0,1Md) .(3.23)

Definition 3.3.2 (Kähler metric and manifold). Consider a complex manifold
Md with complex structure J and a Hermitian metric g with associated Hermitian
1, 1–form ω. The metric g is Kähler if the Hermitian 1, 1–form is closed i.e.,
dω = 0. In this case, the 1, 1–form ω is called the Kähler form and the manifold
(Md, J, g) is a Kähler manifold.

Remark 3.3.1. The Kähler metric may also be written as

ω = i gµν̄ dz
µ ∧ dz̄ν̄ .(3.24)

The Kähler condition of requiring dω = 0 translates into

∂µgνκ̄ = ∂νgµκ̄, ∂̄ν̄gµκ̄ = ∂̄κ̄gµν̄ .(3.25)

Since the Kähler form is closed, it determines an element in the second de Rham
cohomology known as the Kähler class. The Kähler 1, 1–form ω admits a local function
K such that

ω =
i

2
∂µ∂̄ν̄K ,

gµν̄ = ∂µ∂̄ν̄K .(3.26)

Here, K is the Kähler potential. For a d−dimensional Kähler manifold Md , the
volume form may be defined in terms of the Kähler form as

vol(Md) =
1

d!

∫
M
ωd.(3.27)

One can view this from the view point of the Dolbeault cohomology as well (3.18). Since
there are equivalence classes within a Dolbeault cohomology group, it is therefore not
an obvious statement to say that all elements of a Dolbeault cohomology H1,1

∂̄
give rise

to Kähler forms. The necessary condition for an equivalence class in the Dolbeault
cohomology to give rise to a Kähler form is to demand positivity of the metric. This
results in a ‘conical’ structure endowed on those classes which lift up to Kähler forms.
This is known as the Kähler cone.
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Definition 3.3.3 (Hodge star). Let α, β be complex k–forms on a Kähler man-
ifold Md. Let there be an inner product defined by

(α, β) = αµ1···µk β̄ν̄1···ν̄kg
µ1ν̄1 · · · gµkν̄k .(3.28)

The Hodge star ?H is an isomorphism ?H : ΛkT ∗M→ Λd−kT ∗M such that given
a complex k–form, β, ?Hβ is the unique d− k–form such that

α ∧ ?Hβ = (α, β) dµ,(3.29)

where dµ is the volume form in the corresponding basis for the metric g.

The action of a Hodge star operator is therefore the map ?H : Ωp,q(M)→ Ωd−p,d−q(M).

Definition 3.3.4 (Ricci form). The Ricci tensor (a Ricci 1, 1–form) is a form
R such that

R = iRµν̄ dz
µ ∧ dz̄ν̄ =

i

2
d(∂ − ∂̄) log det g,(3.30)

where d is the exterior derivative operator in this case.

3.4. Homology and cycles

Let us define an operator ∂ that maps a compact submanifold B ⊂ M to its
boundary ∂B. If ∂B = 0, we say that B has no boundary. If β = ∂α, then we say
that β is the boundary of some submanifold α ⊂ M . In order to define a homology,
we define a chain complex C(M). The chain complex is a sequence of Abelian groups
Ci that is related by homomorphisms of the boundary operator as

∂n : Cn → Cn−1.(3.31)

This produces a sequence

· · · ∂n+1−−−→ Cn(M)
∂n−→ Cn−1(M)

∂n−1−−−→ · · · ∂2−→ C1(M)
∂1−→ C0(M)

∂0−→ 0.(3.32)

From the above sequence, it is clear that the composition of two consecutive boundary
operators is trivial i.e., ∂n ◦ ∂n+1 = 0. In other words, the boundary of a boundary of
a submanifold is trivial.

Definition 3.4.1 (Homology group). The n−th homology group Hn(M) is given
by

Hn(M) =
Ker (∂n : Cn(M)→ Cn−1(M))

Image (∂n+1 : Cn+1 → Cn)
.(3.33)

Elements of Image (∂n+1 : Cn+1 → Cn) are called boundaries, while elements of
Ker (∂n : Cn(M)→ Cn−1(M)) are known as cycles. Elements of a homology group are
called homology classes and each homology class is an equivalence class over cycles.
Therefore, two cycles in the same homology class are homologous. A homology group
Hn(M) counts essentially how many n−dimensional holes there are in a manifold M .

Theorem 3.4.1 (de Rham). Hk(M), the k−th cohomology group of M and
Hk(M), the k−th homology group of M are isomorphic to each other.
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Remark 3.4.1. Consider a d–dimensional manifold, M . Consider a k–form α ∈
Hk(M) and an d− k–form β ∈ Hd−k(M). Using the wedge product, we get an d–form
α ∧ β as

Hk(M)×Hn−k(M)→ C, (α, β) 7→
∫
M

α ∧ β.(3.34)

Since the inner product of differential forms as above is non-degenerate, Hk(M) ∼=
Hd−k(M). This is known as Poincaré duality.

Before we introduce the notion of Calabi–Yau manifolds, we define two quantities.

Definition 3.4.2 (Chern Class). Consider a complex vector bundle E
π−→ M .

Let A be the connection on E with curvature 2–form F = dA+A∧A. The total
Chern class of E, c(E), is

c(E) = det

(
1 +

i

2π
F

)
.(3.35)

The Chern classes ci(E) are the expansion of the Chern class c(E) of even co-
homology ci(E) ∈ H2i(M,R) as

c(E) = 1 + c1(E) + c2(E) + · · · cd/2(E),(3.36)

where d is the real dimension of the manifold M .

The Chern class ci of a d–dimensional manifold vanishes for i >
m

2
. The zeroth

Chern class of a bundle is always 1. The first Chern class is given by

c1(E) =
i

2π
TrF.(3.37)

Definition 3.4.3 (Holonomy group). Let Md be a d–dimensional Riemannian
manifold with the metric g and a connection ∇. Consider the set of all loops
around a point p ∈ Md. Any vector in the tangent space at p, TpMd, can be
parallel transported along the set of loops using the connection ∇. This defines
a set of linear and invertible transformations from the tangent space at p onto
itself. This set of transformations is endowed with a group structure and this is
known as the ‘Holonomy’ group of the manifold.

3.5. Calabi–Yau manifolds

Calabi–Yau manifolds were first conjectured in [Cal54, Cal57] and proven to exist
in [Yau78] and are one of the key elements in the modern string theorist’s toolkit.
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Definition 3.5.1 (Calabi–Yau manifold). A Calabi–Yau (CY) manifold X (also
denoted CYd) is a 2d–dimensional real manifold that is compact and Kähler whose
first Chern class c1(X) = 0. Instead of demanding the vanishing of the first Chern
class, we may also define a CY manifold equivalently as a compact, Kähler man-
ifold satisfying

(1) Ricci flatness i.e., R(X) = 0, where R is as defined in (3.30).
(2) The holonomy group of X is a subgroup of SU(d).
(3) The canonical bundle is trivial.
(4) ∃ a nowhere vanishing d–form, Ωd,0.

Remark 3.5.1. In the above definition, we have stated that a CY manifold is com-
pact. However, the Calabi conjecture has been generalized to non–compact cases and
the existence of non-compact Calabi–Yau’s was proven in [TY90, TY91].

The simplest example of a CY manifold is the T 2 which is the unique CY1. Its
Hodge diamond (3.22) is

DT 2 =
1

1 1
1

.(3.38)

From the context of string theory, CY3 are of main significance. These manifolds have
a Hodge diamond given by

DCY3 =

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

,(3.39)

where the symmetric structure of the Hodge diamond is due to

(1) Complex conjugation: hp,q = hq,p.
(2) Hodge duality: hp,q = hd−q,d−p.
(3) Mirror symmetry: hp,q = h3−p,q [HKK+03]. This is a generalization of Serre

duality (in a homological sense) which is hp,0 = hd−p,0.

The computation of the full Hodge diamond for a CY3 can be found in any standard
string theory reference such as [BLT13] and we refer the reader to this book for the
basic details of this calculation.

Definition 3.5.2 (Hyper–Kähler manifold). A manifold M4k, k ∈ Z of real
dimension 4k that is Kähler and has a holonomy group that is Sp(2k) ⊂ SU(2k)
is a hyper–Kähler manifold. A hyper–Kähler manifold is also Ricci flat and is
necessarily a Calabi–Yau manifold.

The most relevant example of a hyper–Kähler manifold that we shall discuss in
this thesis is the K3 surface, which shall be discussed in Section 3.7. In addition to
the K3 surface, we shall focus on a variety of CY manifolds from the viewpoint of the
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count of BPS states (or special cycles). Therefore, much of the additional literature
in building up CYd for d > 2 will not be reviewed here. We point the reader towards
other sources such as [Hub92, Haa02, HKK+03, CK00, Gre96, GHJ12] for more
information regarding Calabi–Yau manifolds.

3.6. Moduli space of Calabi–Yau manifolds

The moduli space of CY manifolds is the concept that there exists a space of
parameters that parameterize a given CY manifold, and changing these parameters
smoothly gives rise to different Calabi–Yau geometries.1 To see what this moduli
space for a CY manifold is, recall that R = 0 for a CY manifold which has an endowed
metric g. We can ask as to what the possible deformations of g are, such that the Ricci
form still vanishes [CdlO91]. The allowed deformations are given by the equation

δg = δgijdz
i ∧ dzj + δgīdz

i ∧ dz̄ ̄ + c.c. .(3.40)

Requiring that (3.40) make the Ricci form vanish implies that dz̄ ̄ is a harmonic form
and is an element of the H1,1

∂̄
(M) Dolbeault cohomology. In fact, the Ricci flat defor-

mations are controlled by cohomology classes of the manifold. The two cohomology
groups are the H1,1

∂̄
and H2,1

∂̄
Dolbeault cohomology groups. The deformations with

pure indices in (3.40) do not preserve the Hermitian structure. The Hermitian struc-
ture can be restored using coordinate transformations that are not holomorphic. This
means that these deformations can be made Hermitian with a different choice of com-
plex structure i.e., a new set of coordinates that are not holomorphic functions of the
original coordinate system. These are the deformations associated to the elements of
H2,1

∂̄
and are known as complex structure deformations. The deformations with mixed

indices are deformations of the Kähler class in H1,1

∂̄
. The moduli space of Calabi–Yau

manifolds is therefore controlled by the fact that there are smooth deformations of the
complex structure and Kähler class of the CY manifold.

3.7. K3 surfaces

The most relevant CY manifold from the context of this thesis is the K3 surface.
We refer the reader to [Huy16] for more details on K3 surfaces. From the point of
view of N = (4, 4) superconformal field theory, we refer the reader to [NW01] while
from a string theory point of view, standard references are [Asp96, AM96].
K3 surfaces are the non-trivial examples of CY2, with the trivial example being T 4.

Definition 3.7.1 (K3 surface). A K3 surface is a CY2 (i.e., a 4 real dimensional
manifold) such that h1,0(X) = 0.

The Hodge diamond for K3 is given by

DK3 =

1
0 0

1 20 1
0 0

1

.(3.41)

1From the point of view of algebraic geometry, these moduli spaces are usually varieties and often
Calabi–Yau manifolds are referred to as Calabi–Yau varieties.
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From the above Hodge diamond, we have that b2(K3) = 22 which means that the
homology group G ∼= Z22 and therefore the lattice associated to K3 is a 22–dimensional
lattice. The lattice of K3 has some signature Λm,n with m + n = 22. From the index
of K3, we have that ind(K3) = n−m = −16, where

ind(K3) = −
∫
K3

2

3
c2(K3), c2(K3) = 24 .(3.42)

This gives us a lattice of signature H2(K3,Z) ∼= Λ19,3
K3 . Therefore the choice of complex

structure is the choice of constructing Λ19,3 ⊂ R19,3. The moduli space of Ricci flat
metrics is a symmetric space given by

MK3 = O
(
Λ19,3

)
\O(19, 3;R)/ (O(19,R)×O(3,R)) .(3.43)

As a remark, the moduli space of algebraic K3’s (i.e., a K3 surface which is an embed-
ding into a projective space) in full generality depends on the number of lines (pairs
of fixed points) and the moduli space varies accordingly depending on how the K3
space is parameterized. The generalized moduli space depends on the Picard rank or
Picard number of the K3 surface. The Picard rank is the rank of an Abelian group of
algebraically equivalent divisors, known as the Néron–Severi group. A final comment
that we wish to add is to make a connection with the other CY2, viz., the torus T 4.
There are points in the moduli space of K3 surfaces where K3 ' T 4/Z2.

2

3.8. Invariants, BPS states and Calabi–Yau manifolds

The main reason why we are interested in CY manifolds in this thesis have to
do with their geometric (pseudo-)invariants and their physical interpretations. An
invariant of a manifold M is a function or scalar quantity that does not change with
deformations of the manifold i.e., when one moves to a different point in the moduli
space of the manifold. There are exceptions to this and we shall discuss them at a
later stage when we study wall crossing phenomena.

3.8.1. The elliptic genus of a Calabi–Yau manifold. Let us first go over the
concept of an elliptic genus from the point of view of a complex manifold. The Euler
characteristic of a manifold χ(M) is one of the most elementary indices that we consider
and is defined as the alternating sum of the dimensions of the cohomology groups of a
manifold. For a manifold M , the Euler characteristic

χ(M) =
∑
i

(−1)i dimH i(M) .(3.44)

From the Hirzebruch–Riemann–Roch theorem [Hir88], it is known that the Chern
class of M can be decomposed as

c(M) =
dimM∏
i

(1 + xi) ,(3.45)

2Other orbifolds of T 4 are also possible.
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where xi’s are the eigenvalues of
i

2π
F . In this notation, the Euler characteristic is

simply

χ(M) =

∫
M

dimM∏
i

xi .(3.46)

For complex manifolds, there is a complex phase parameter multiplying xi in (3.46) as

χ(M, y) =

∫
M

dimM∏
i

xi
1− ye−xi
1− e−xi

, y = e2πiz ,(3.47)

and lim
z→0

χ(M, y) = χ(M). The generalization of (3.47) to include modular invariance

is precisely the elliptic genus. The elliptic genus is defined as

EGM(τ, z) =

∫
M

dimM∏
i

(
xi

1− ye−xi
1− e−xi

∞∏
j=1

1− qjye−xi
1− qje−xi

1− qjy−1e−xi

1− qje−xi

)
, q = e2πiτ .

(3.48)

Naturally, we still have lim
z→0

EGM(τ, z) = χ(M). The elliptic genera for CY manifolds

are usually Jacobi forms (as discussed in Section 2.2) since they have a modular and an
elliptic transformation property. Having provided a small introduction to the construc-
tion of elliptic genera, we turn to a few explicit examples that feature in this thesis.
Elliptic genera of Calabi–Yau manifolds of complex dimension d are proportional to
Jacobi forms of weight 0 and index d

2
, as we shall see later.

(1) The elliptic genera of T 2n, n ∈ Z+

EGT 2n(τ, z) = 0 .(3.49)

(2) The elliptic genus of the K3 surface is

EGK3(τ, z) = 2φ0,1(τ, z)

= 8

(
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

)
,(3.50)

where ϑi(τ, z) is the Jacobi theta function (2.44).

The elliptic genus of K3 is an index defined on its sigma model. Since K3 is a hyper-
Kähler manifold, it admits a sigma model description in terms of an N = (4, 4) SCFT.
The elliptic genus can be defined for any SCFT withN = (2, 2) or more supersymmetry
[Wit87, Moo07]. A good physical review of elliptic genera for SCFT’s can be found
in [Moo07]. The physical interpretation of the elliptic genus of K3 is that it is the
index of 1

4
–BPS states in the sigma model description, and reduces to the Witten index

as EGK3(τ, 0), which is precisely the Euler character. The computation of invariants
of Calabi–Yau manifolds is an important problem in enumerative geometry and non–
perturbative phenomena in string theory since these indices in many cases capture
information of the count of supersymmetric states of a sigma model whose target
space is a Calabi–Yau manifold. The appearance of many such enumerative invariants
in string theory is therefore no coincidence. For example, topological invariants such as
Gromov–Witten invariants, Donaldson–Thomas invariants, Joyce–Song invariants etc.
all play a role in understanding the spectra of BPS states in string theory compactified
on various Calabi–Yau manifolds. In fact, Gromov–Witten invariants [Wit91, Vak08]
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can be related [MNOP06, MNOP06] to Donaldson–Thomas [DT98]/ Gopakumar–
Vafa [GV98a, GV98b].3 For more details and references, we refer the reader to
[Kat06, KS08, DK90, JS08].

3Although the author of this thesis has worked on these topics, they will not be discussed here
and the reader is referred to [BCKS20] for more details.



CHAPTER 4

Finite simple sporadic groups and lattices

4.1. Overview of this chapter

In this chapter, we shall provide some of the basics of group theory, finite group
theory, sporadic groups and their representations. Group theory is a core concept in
modern mathematics and theoretical physics with a wide range of applications. For a
more comprehensive exposition, we refer the reader to [Wil09, Gor13].

4.2. Group theory basics

Groups are one the most fundamental concepts in mathematics and are relevant
for the study of symmetry.

Definition 4.2.1 (Groups). A group is a set G that is endowed with an operation
? : G×G→ G satisfying the following conditions:

Closure: a ? b = c ∈ G ∀ a, b ∈ G.
Associativity: (a ? b) ? c = a ? (b ? c) ∀ a, b, c ∈ G.
Identity element: ∃ e ∈ G such that a ? e = e ? a = a.
Inverse element: ∀ a ∈ G, ∃ a−1 ∈ G such that a ? a−1 = a−1 ? a = e.

It is not always the case that a ? b = b ? a for generic group elements a, b. However,
there are groups for which the group action is commutative and such groups are referred
to as Abelian groups.
The number of elements of a group G is called the order of G and is denoted by
ord(G). This is not to be confused with the order of an element of G which is the
number of times the element must act on itself with respect to the group action to give
the identity, e.

Definition 4.2.2 (Subgroups). A subgroup H of a group G is a subset which
maintains a group action i.e., it is itself a group.

Note that the group action of a subgroup H ⊂ G is not necessarily the same as the
group action of G. All subgroups except for the trivial subgroup {e} and G itself are
called proper subgroups. A proper subgroup H of G is denoted as H < G. A normal
subgroup N of G (N C G) is a subgroup that is invariant under conjugation with all
elements in G i.e.,

N C G⇔ N =

{
n ∈ G

∣∣∣∣ gng−1 = n ∀ g ∈ G
}
.(4.1)

37
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The center Z(G) of a group G is the set of all elements that commute with every
other element of the group G i.e.,

Z(G) =

{
a ∈ G

∣∣∣∣ ∀ g ∈ G, g ? a = a ? g

}
.(4.2)

A closely related object is the centralizer of an element, CG(a) which is defined as the
set of all elements in the group with which it commutes i.e.,

CG(a) =

{
g ∈ G

∣∣∣∣ a ? g = g ? a

}
.(4.3)

Definition 4.2.3 (Conjugacy classes). Two elements of the group G, a, b ∈ G
are conjugate to each other (a ∼ b) if ∃ g ∈ G such that gag−1 = b. Conjugation
has the following properties:

(1) a ∼ a.
(2) a ∼ b ⇔ b ∼ a .
(3) If a ∼ b, b ∼ c, then a ∼ c.

This forms an equivalence relation. It allows us to break down G as the disjoint
unions of conjugacy classes [a] for a ∈ G as

G =
⊔

[a], [a] =

{
b ∈ G

∣∣∣∣ gag−1 = b, g ∈ G
}
.(4.4)

Conjugacy classes, due to the equivalence relation, can be represented by any of
its elements. The number of conjugacy classes of a group is its class number, Cl(G).
All elements in the same conjugacy class have the same order. The notation of the
conjugacy classes is of importance: A conjugacy class is always represented as Z∗,
where Z is the integer representing the order of the elements of the conjugacy class
and ∗ = A,B, · · · .

Definition 4.2.4 (Cosets). Let H ⊂ G. The left coset of H in G with respect to
an element g ∈ G is the subset gH = {gh | h ∈ H}. The set of all left cosets of
H in G is denoted by G/H. The right coset of H in G with respect to an element
g ∈ G is the set Hg = {hg | h ∈ H} and is denoted as H\G. The number of left
cosets is equal to the number of right cosets and is defined to be the index of H
in G.

A quotient group of G is the set G/N of right cosets which inherits the group
structure, where N is a normal subgroup.

4.3. Sporadic groups

4.3.1. Motivating Finite Groups. In physics, often the nature of symmetries
of the theory can be explored through the concept of infinite dimensional Lie groups.
While Lie groups are of prime importance in physics, their mathematical structure has
been known for a long time. For example, the classification and study of Lie groups
done over a century ago by Killing [Kil88] Cartan [Car94, Hal15] and resulted in
what is referred to as the Killing–Cartan classification. The classification of finite
simple groups, however, is a highly non trivial task and was completed only relatively
recently [Con85]. Finite groups arise in physics when the symmetry of the theory
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admits only a finite number of morphisms that preserve the structure of the theory.
For example, the Z2 group is a symmetry of certain simple Klein-Gordon models for
real scalar fields φ:

L =
1

2
∂µφ∂

µφ+
1

2
m2φ2 + λφ4, Z2 : φ→ −φ, Z2 : L → L, φ ∈ R,(4.5)

or for example in the unbroken symmetry phase of the Ising/Heisenberg model, in the
classification of crystalline properties of solids etc. In this thesis, we shall consider a
special class of finite groups known as sporadic groups. There is one clear connection
between sporadic finite groups and physics in the study of moonshine phenomena (see
Chapter 5) and its possible connections in being a discrete symmetry group of BPS
spectra in string theory [EOT11, PPV16, GHV12, HPV19] and conjectured to be
related to the symmetry groups of moduli space of Calabi–Yau manifolds, although
this connection is not clear yet [TW15, GHV12, GV12, BCK+18].

4.4. Finite groups and their classification

Definition 4.4.1 (Finite group). A finite group is a group G with finite order
i.e., ord(G) < ∞. A finite simple group is a finite group that is simple i.e., it
has no normal subgroup as defined in (4.1).

If a finite group is not simple, then it can be decomposed into a series of subgroups
by quotienting with respect to a normal subgroup. Therefore, in the study of finite
groups, finite simple groups (FSGs) are ‘atomic’.

Theorem 4.4.1 (Jordan-Hölder). Let G be a finite group. Let G be decomposable
into two chains of subgroups (composition series)

{e} = G0 C G1 C G2 C · · · C Gn = G ,

{e} = H0 C H1 C H2 C · · · C Hm = G ,(4.6)

such that Gi+1/Gi and Hi+1/Hi are simple and e is the identity element of G.
The Jordan-Hölder theorem states that m = n and the two composition series
have the same factors up to permutations.

The Jordan-Hölder theorem 4.4.1 implies that any finite group is made up of the
same finite simple groups regardless of how they are constructed. This allowed math-
ematicians to classify the finite simple groups [Con85] and this classification scheme
is as follows.

Theorem 4.4.2 (Classification of FSGs). A finite simple group is isomorphic to
one of the FSG’s of the following type:

(1) Cyclic Groups (Zp, p prime).
(2) Alternating groups (An, n > 4).
(3) 16 families of Lie type.
(4) Sporadic groups, which are further divided into the Pariahs and the Mon-

ster family.

The sporadic groups are the only type of finite simple groups that do not form an
infinite family.
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4.5. Sporadic groups

Sporadic groups come in four classes [Gri98, Boy13]: Three classes form consecu-
tive levels (i.e., they can be obtained as systematic quotients/subgroups of the Monster
group, M, the largest sporadic group) and a fourth class known as the Pariahs (these
sporadic groups do not arise from M).

4.5.1. Level 1 sporadic groups: The Mathieu groups. The first level of
sporadic groups consist of the five Mathieu groups, M24, M23, M22, M12, M11 with

M24 ⊃M23 ⊃M22 ⊃M12 ⊃M11 .(4.7)

The Mathieu groups will be relevant in this thesis since they are the key ingredients
in the Mathieu moonshine phenomena.

4.5.2. Level 2 sporadic groups: The Conway groups. The second level of
sporadic groups were discovered from the context of sphere packing in that the auto-
morphism group of the Leech lattice is the Conway group, |AutΛ24| ≡ Co0 [Lee67,
CS13]. This Co0 group admits a simple quotient Co0/Z2 ≡ Co1. The other level two
sporadic groups are

Co1, Co2, Co3, HS, McL, HJ, Suz .

4.5.3. Level 3 sporadic groups: The Monster groups. The level three spo-
radic groups were constructed starting with the Monster group, M. The other level 1
sporadic groups are

B, F24, F23, F22, HN, Th, He .

All the level 1, 2, 3 sporadic groups arise as subgroups or quotients of the Monster
[BHL+20].

4.5.4. Level 4 sporadic groups: The Pariah groups. Finally, we have the
Pariah groups which are neither quotients nor subgroups of the Monster group but
they do in certain cases admit mappings into other sporadic groups of level 1, 2, 3
[Gri98, BHL+20]. These groups are

Ru, ON, Ly, J4, J3, J1 .

For many of the above sporadic groups, there are associated moonshine phenomena.
While we will go over moonshine phenomena at a later stage, it suffices to mention
briefly what this is. Sporadic groups in many cases are the automorphism groups of a
vertex operator algebra and the characters of this algebra in a suitable representations
are related to the coefficients of certain (mock) modular objects. Such phenomena
have been discovered and studied for many of the above groups, for example: Monster
moonshine [CN79, Bor92], Conway Moonshine [Dun05, HKP14], Baby Monster
Moonshine [Cara, Carb, Carc], Mathieu moonshine [EOT11, GPRV13], Thompson
moonshine [HR16], O’Nan moonshine [DMO17].
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Figure 5. Relation between sporadic groups. This picture has been
reproduced from [Boy13].

4.6. Representations of finite simple groups

In the previous section, we simply listed what the sporadic groups were. Here, we
write about the representations of sporadic groups which are key in the understanding
of moonshine phenomena. We consider representations over a complex vector space
here. Consider a group homomorphism f : G → GL(V ) to the general linear group
over V . The vector space V together with the map f , (V, f) is known as the representa-
tion of G. The dimension of the representation is obtained from considering the images
of f(g), g ∈ G. On GL(V ), the images will be an invertible matrix m ∈ Matn(C)
of dimension n × n. In this case, we say that the dimension of the representation is
n. The vector space V is called a G–module and admits a G–action. Analogously, for
the case of a Z2 graded vector space V = V0⊕ V1 (as in a supersymmetric theory), the
G−module is a supermodule. The representation is said to be faithful if its kernel is
trivial. We shall focus on the case of irreducible representations here. Consider two
representations of the kind f : G → GL(V ) i.e., (V, f), (V ′, f ′). The tensor prod-
uct and the direct sums of their representations lead to new representations V ⊕ V ′,
V ⊗ V ′. Two representations are said to be equivalent if ∃ m ∈ GL(n,C) such that
mf ′(g) = f(g)m, ∀g ∈ G. A subrepresentation of a representation (V, f) is a rep-
resentation (U, h) where U ⊂ V that carries the group action of G and f |U = h. A
representation is said to be irreducible if it has no subrepresentations. A representation
that be be written as a direct sum of finitely many irreducible representations is said
to be completely reducible.

Theorem 4.6.1 (Maschke). All finite dimensional representations of a finite
group may be completely reduced [Mas98].
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A dual representation f ∗ of f is defined as

f ∗(g) =
(
f(g−1)

)T
, g ∈ G ,(4.8)

which can be considered to be the representation of G in V ∗ = End(V,C).

4.6.1. Character of a representation. A character χf of a representation (V, f)
is the quantity

χf (g) = Tr(f(g)), g ∈ G.(4.9)

In the case that the vector space is Z2 graded, the Tr is replaced by sTr(∗) = TrV0 ∗
−TrV1∗. A character is irreducible if the representation is also irreducible. A character
is a class function i.e., χf (g) remains invariant under conjugation with any element
h ∼ g. Two (complex) representations have the same characters iff they are equivalent.
Two characters f, f ′ of G form a commutative, associative algebra. If we consider two
representations that are unitary then they are equipped with a Hermitian inner product

〈χf , χf ′〉 =
1

|G|
∑
g∈G

χf (g)χf ′(g).(4.10)

In the case that (V, f), (V ′, f ′) are irreducible representations for G then two charac-
ters χf , χf ′ are equivalent if 〈χf , χf ′〉 = 1. The Hermitian product (4.10) vanishes in
the case that the two irreducible representations are not equivalent. The existence of
this inner product allows us to interpret these characters as vectors that are orthonor-
mal and span a space. The dimension of this space i.e., the number of irreducible
characters that span this space is given by the number of conjugacy classes of G. From
(4.10), there exists another orthonormality property for elements in the same conjugacy
class as

1 = 〈χf (g), χf (h)〉 =


1

|CG(g)|
∑
f

χf (g)χf (h), h ∼ g

0, otherwise

.(4.11)

This means that the number of irreducible representations of a finite group G is equal
to the number of conjugacy classes. From (4.11), we can group the |Cl(G)| × |Cl(G)|
characters of G. This is known as the character table. The character tables are usually
read off from [Con85].

4.7. Lattices and sporadic groups

Just as in the case of Lie theory, there are lattices corresponding to the various
sporadic groups. In this section, we review some of the key properties of lattices re-
quired for the study of moonshine.
Let W be a vector space on R such that dimW = n <∞. Let this vector space be en-

dowed with an inner product 〈·, ·〉. A finite subset U ⊂ W, U =

{
w ∈ W

∣∣∣∣ 〈w,w〉 6= 0

}
is called a root system of rank r if

(a) span(W ) = U .
(b) The action of reflections on U is closed i.e.,

b− 2
〈a, b〉
〈a, a〉

a ∈ U ∀ a, b ∈ U.(4.12)

This implies that only a, −a ∈ U ∀ a ∈ U .
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(c) 2
〈a, b〉
〈a, a〉

a ∈ Z ∀ a, b ∈ U .

Elements of a root system are referred to as roots. A root system that cannot be split
into proper, orthogonal subsets are said to be irreducible. A root system where all the
vectors have the same norm is known as a simply laced root system. For a root system

U , the set of roots {ai, i = 1, · · · , n} chosen such that ∀ b ∈ U with b =
n∑
i=1

ciai for

ci ∈ Z is known as the set of simple roots. The set of simple roots is unique for a
root system, up to the action of the group of reflections generated by all roots (i.e., up
to ci → −ci). This group of reflections is called the Weyl group of U and is denoted
by Weyl(U). As in Lie theory, to every irreducible root system, a connected Dynkin
diagram can be associated to it. Each irreducible root system in its set of simple roots
contains a highest root ã such that

ã =
n∑
i=1

ciai(4.13)

is such that
∑
i

ci is maximal. The Coxeter number of U is defined as

Cox(U) = 1 +
n∑
i=1

ci.(4.14)

An even, unimodular, integral, positive lattice Λ of rank n is a free Abelian group
isomorphic to Zn and is endowed with a symmetric inner product 〈·, ·〉Λ such that

Positive definiteness: 〈·, ·〉Λ is positive definite.
Integrality: 〈x, y〉Λ ∈ Z ∀x, y ∈ Λ.
Even: 〈x, x〉Λ ∈ 2Z, ∀x ∈ Λ.
Unimodularity: The dual lattice Λ∗ is isomorphic to Λ.

The elements of the lattice of norm 2 are known as the roots of the lattice. Lattices
play an important role in string compactification and are often used to understand the
degrees of freedom in conformal field theories [GO83, LSW89, Sch89]. From the
point of viewpoint of moonshine, we shall be interested in even, self-dual, unimodular
lattices in 24 dimensions.

Theorem 4.7.1 (Niemeier). There are only 24 even, self-dual, unimodular lat-
tices in d = 24 up to isomorphisms [Nie73].

These lattices consist of the Leech lattice (the only one of the Niemeier lattice with
no root vectors) and 23 Niemeier lattices. For each of these 24 lattices, there is an
associated finite group

GΛ24 = Aut(Λ24)/Weyl(Λ24).

For example, for the case of the Leech lattice, the associated group is the Co0 spo-
radic group of level 2. Other groups can be obtained by considering sections and/or
quotients of these lattices. For a different Niemeier lattice with a different root sys-
tem, one obtains the M24 group which plays a central role in Mathieu moonshine
[CH15, CDA14, CDH13].
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Moonshine and automorphic forms





CHAPTER 5

Introduction to Moonshine

Overview of this chapter

In this chapter of the thesis, we aim to provide an introduction to the Monster and
Mathieu moonshines. The standard references for this subject are [Gan06, AC18,
Kac16]. We shall only consider two cases of moonshine viz., the Monster moonshine
and Mathieu moonshine phenomena. An introduction to other moonshine phenomena
can be found in [AC18].

5.1. Drinking up Moonshine

It is seldom the case that a mere numerical equality would lead to deep connections
between different areas of mathematics and physics. That is precisely the case with the
discovery of moonshine. Often, it is defined as a surprising relation between completely
unrelated branches of mathematics viz., number theory (Fourier coefficients of modular
forms) and representation theory (dimensions of irreducible representations of sporadic
groups). Each of these topics, viz., modular forms and sporadic groups, have been
addressed in Chapter 2 and Chapter 4, respectively. The study of moonshine originates
with the study of the j− function

(5.1) j(τ) =

(
1 + 240

∞∑
i=1

σ3(n)qn

)3

q
∞∏
n=1

(1− qn)24

=
ΘE8(τ)3

η(τ)24
,

where σ3(n) =
∑
d|n

d3, η(τ) is the Dedekind–eta function as defined in (2.7a) and ΘE8

is the theta function of the root lattice of E8.1 The theta function of a unimodular
positive definite, rank n lattice Λ is a modular form of weight n

2
on H defined by

ΘΛ =
∑
a∈Λ

eiπτ ||a||
2

, τ ∈ H ,(5.2)

such that the Fourier expansion coefficients of the the theta function is the number of
vectors of norm ||a||2. Since the E8 root lattice has rank 8, ΘE8(τ) is a modular form
of weight 4. This means that the j(τ)-function (5.1) is a weight zero modular form
on the upper half plane.2 John McKay in 1978 noticed that when one considers the

1E8 is a positive-definite, self-dual, even, unimodular lattice.
2The j(τ) is a modular generator for holomorphic modular functions on H i.e., every holomorphic

modular function is a linear function of j(τ). This means that the j(τ) is a Hauptmodul on a genus
zero Riemann surface.

47
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Fourier expansion of j(τ), the q–series obtained is

j(τ) = q−1 + 744 + 196884 q + 21493760 q2 + 864299970 q3 + · · · ,(5.3)

with the odd coincidence that 196884 = 196883 + 1, where 1 is the dimension of the
trivial irreducible representation of the Monster group, M, and 196883 is the dimension
of the first non-trivial irreducible representation of M. Before we proceed further we
introduce J(τ) by re-writing j(τ) as

J(τ) = j(τ)− 744 = 1

=

c−1

× q−1 +
∞∑
n≥1

cnq
n .(5.4)

Recall from Chapter 2 that topology of the fundamental domain of SL(2,Z) is that
of a Riemann sphere. This is the genus-0 property and is also the characteristic of
Fuchsian subgroups of SL(2,Z) [Har10]. Since j(τ) as defined in (5.3) has a Fourier
expansion of the form q−1 + C + O(q), with C constant, j(τ) is a genus–0 function
[Cara].3 The observation by McKay was initially checked for more coefficients by
Thompson [Tho79], and was generalized subsequently by Conway and Norton [CN79]
where it was demonstrated that the coefficient of the nth term of Fourier expansion
of J(τ)−function is a positive linear combination of the dimensions of the irreducible
representations of the first n irreducible representations of M,

1 = 1

196884 = 1 + 198883

21493760 = 1 + 196883 + 21296876(5.5)

864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326,

...

where the numbers in bold are the dimensions of the irreducible representations of M.
This relation (5.5) was coined moonshine [CN79]. This particular case of moonshine
concerns a modular form of weight zero and is hence a weight zero moonshine. Other
weight zero moonshines exist, e.g., the Conway moonshine, while moonshines for half
integer weights have also been discovered for the Mathieu, O’Nan, and Thompson
groups (c.f. [AC18] and references therein). For the course of this thesis, we will
be interested in weight 1

2
moonshine associated with the Mathieu group. However, it

serves beneficial to understand the workings of moonshine and we shall hence give an
overview of the Monster moonshine before we proceed to the Mathieu moonshine. Over
the years, the definition of moonshine, too, has changed from a surprising connection
between unrelated fields of mathematics, to a relation between representation theory
of finite simple sporadic groups, lattices and vertex operator algebras (VOA’s)4, with
the underlying relation stemming from a physical theory (string theory). The nature
of the relations is as follows (c.f. Figure 6):

Lattices: There exists a lattice on which a string theory can be studied (Ex: Leech,
E8).

3A modular function is said to be genus–0 if it has only one transcendental function as a generator
up to SL(2, Z) transforms. Such functions are also called Hauptmoduln.

4As far as the scope of this thesis is concerned, a VOA can be thought of as being equivalent to
a conformal field theory.
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Figure 6. The above picture describes the relationship that underlies
a moonshine theory. For moonshine to exist, an elaborate structure that
relates the sporadic groups, modular objects and VOA’s is required.

(Mock) Modular forms: The theta function for this lattice determines the partition
function for the string world sheet theory. This partition function is a modular
form.

Automorphism groups: An automorphism group of the lattice is a sporadic group
(or rather of an algebra defined on the vector space composed of the vectors
that span the lattice). For the case of the Monster group, this algebra is a
196883 dimensional algebra, known as the Griess algebra [Gri82].

Remark 5.1.1. For example, for the case of the monstrous moonshine: The (orb-
ifolded) Leech lattice, the J(τ), and the Monster group are related by the VOA which is
the holomorphic CFT for 24 free bosons on the Leech lattice with the action of an asym-
metric orbifold [DGH88]. For the case of Umbral moonshines, the Niemeier lattices,
certain vector valued mock-modular forms and the other sporadic groups (of which the
M24 is one) get related to each other [CD12, CDA14, CDH13].

Such relations have been found for many other sporadic groups and their quotients
with the relation being manifest due to a physical theory with discrete symmetries
(the world sheet theory of a string theory). While it is not entirely obvious if all
sporadic groups admit a moonshine type relation, nor if there is a string theory setting
for moonshines, there is work in this direction which is promising [BHL+20]. This
chapter is an exposition on two moonshine phenomena pertaining to M and M24.
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5.2. An overview of monstrous moonshine

We now continue to provide a self-sustained explanation to (5.5).5 This observation
hints at the existence of a graded representation for the Monster group, V \ i.e., these
numbers on the L.H.S of (5.5) can be interpreted as the dimensions of vector spaces.
This means that

V \ = V−1 ⊕ V1 ⊕ V2 ⊕ · · · = V =
∞⊕

i=−1,i≥1

Vi,(5.6)

with

dim(V−1) = χ0

dim(V1) = χ0 ⊕ χ1(5.7)

dim(V2) = χ0 ⊕ χ1 ⊕ χ3

· · · ,
where χi are the dimensions of the irreducible representations of M. This implies that
(5.1) has the form

J(τ) = dimq(V
\) = dim(V−1) q−1 +

∞∑
n=1

dim(Vn)qn .(5.8)

Proving the existence of a graded representation satisfying (5.8) is of course trivially
possible if one considers multiple copies of the trivial representation of M. A non-trivial
proof of requires the so called McKay–Thompson series.

Definition 5.2.1 (McKay–Thompson series). For each element g in M, there

exists a series Tg(τ) :=
∑

n=−1,n>1

TrVn(g)qn with Te(τ) = J(τ).

Conjecture 5.2.1 (Conway–Norton conjecture on monstrous moonshine). For
each g ∈M, Tg is the unique Hauptmodul for a genus-0 subgroup, Γg < SL(2,R),
and this genus-0 subgroup Γg contains the congruent subgroup Γ0(N) as a normal
subgroup where ord(g)× gcd(24, ord(g)) is a divisor of N .

Remark 5.2.1. These McKay–Thompson series also satisfy the genus–0 property.
Furthermore, these functions are defined with respect to the conjugacy class of the
element g i.e., Tg = Th−1gh. This means that up to conjugation, there are only a finite
number of McKay–Thompson series.6 Furthermore, these functions are defined on a
genus–0 subgroup that is not necessarily a subgroup of SL(2,Z) and in general include
the Atkin–Lehner involutions which are involutions which identify equivalent cusps but
do not constitute an element of a discrete subgroup of SL(2,Z).

It is not always true that the fundamental domain of a subgroup of SL(2,Z) is
topologically genus–0. This makes it non-trivial to provide an interpretation for the
modular properties of the McKay–Thompson series. We therefore make a stronger

5It is worth noting that while the relation as in (5.5) was observed, it was then not yet certain if
the Monster group actually existed.

6The Monster has 194 conjugacy classes, and only 171 distinct McKay–Thompson series.
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statement on the genus–0 property. The modular properties of the McKay–Thompson
series originate from the Rademacher sum from the polar term under a subgroup of
SL(2,R). The reinterpretation of the genus–0 property as a statement on Rademacher
summability will in fact be crucial in the study of Mathieu moonshine. We refer the
reader to [CD14, DF11] for details regarding Rademacher summability.

5.2.1. Towards a proof of the Conway–Norton conjecture. While we will
not prove the Conway–Norton conjecture here, we shall simply give an overview of the
proof which will be essential in understanding the proofs of various moonshine conjec-
tures for other sporadic groups. The first step of the proof involves the construction
of the Monster module which was constructed in [FLM89]. This module, V \, is a
holomorphic VOA/CFT. This in fact is the CFT of 24 chiral bosons compactified on
the Leech lattice. This is a CFT with central charge c = 24. Since the eigenvalue of
the L0 Virasoro operator is 0, the lowest term in the q–series of this partition function
is indeed q−1, as is required for the genus–0 property/Rademacher summability. The
partition function of this physical set up is in fact related to the J(τ) function (5.4) as

ZV \(τ) = J(τ) + 24 =
Θ(ΛLeech)

η(τ)24
.(5.9)

The additional 24 fields which form weight 1 primaries can be removed by performing
an asymmetric Z2 orbifold which gives the partition function as being precisely J(τ) as
in (5.4).7 Under this orbifold, the automorphism group reduces to a discrete subgroup
of the Monster group, Co0, up to a multiplicative factor. Since the orbifold removes
the weight 1 states, in looking at the weight 2 states, the interpretation from the q–
series (5.3) is that the weight 2 states form a 196883 dimensional space. The algebra
over this space is a commutative, non-associative algebra known as the Griess algebra
[Gri82]. This Griess algebra has an automorphism group which is the Monster group.
Therefore, we may conclude that M is indeed the automorphism group of V \.

5.2.2. Borcherds’ proof of the Conway–Norton conjecture. The remaining
part of understanding the proof of the monstrous moonshine conjecture is to show that
the modules constructed in [FLM89] are precisely the Hauptmoduln of subgroups of
the Monster. In other words,

T V
\

g (τ) = TrV \

(
g q

L0−
c

24

)
(5.10)

are the Hauptmoduln for Γg. Simply put, this means that the coefficients of the Fourier

expansion of T V
\

g (τ) using the Rademacher technique should agree with the coefficients
of the dimensions of the Hauptmoduln. For the latter, one may use the Koike–Norton–
Zagier [GZ84] identity which is the product identity that takes the J(τ) function and
allows for the exact computation of the Fourier expansion coefficients, c,

p−1
∏
m>0
n∈Z

(1− pmqn)c(mn) = J(σ)− J(τ),(5.11)

7This is in fact the first construction of an asymmetric orbifold, historically speaking.
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where c(mn) is the mnth coefficient in the Fourier expansion of J(τ).8 This product
identity is sufficient to constrain the all coefficients from a few (five) low lying coeffi-
cients i.e., c(1), · · · , c(5). Using this formula, a generalized Kac–Moody algebra which
is a Kac–Moody algebra with imaginary roots was constructed [Bor92] . It was proven
that the algebra is precisely the Monster Lie algebra, m. Using the denominator iden-
tities from the Weyl–Kac character formula for a Lie algebra, a Weyl denominator
formula which is related to the coefficients of J(τ) was constructed [Bor92]. Subse-
quently, by considering the action of g ∈M on this denominator identity, it was shows
that the twisted/twined denominator identities are related to the product identity of
the J−invariants defined on Γg, i.e., the Hauptmoduln [Bor92]. In doing so, it was
shown that the construction of the VOA in [FLM89] is indeed the VOA required to
prove the Conway–Norton moonshine conjecture.

5.2.3. Generalized Monstrous Moonshine. We now turn to the concept of
generalized monstrous moonshine as was first proposed in [Nor87] and subsequently
studied in [Cara, Carb] and proven in [Carc]. The idea behind generalized moonshine
is to assign to each element g ∈M a graded projective representation of the centralizer
group of M, CM(g)

V (g) =
⊕
n∈Q

V (g)n ,(5.12)

and to each commuting pair of elements (g, h) ∈ M, ∃ T(g,h) that is a holomorphic
function on H. T(g,h) satisfies the following conditions

(a) Tgahc,gbhd(τ) = γ T(g,h)

(
aτ + b

cτ + d

)
with

(
a b
c d

)
∈ SL(2,Z) and γ is a 24th root

of unity.
(b) T(g,h)(τ) = Tk−1gk,k−1hk(τ), k ∈M.

(c) T(g,h)(τ) =
∑
n∈Q

TrV (g)n

(
h̃qn−1

)
, where h̃ is a lift of h.

(d) T(g,h)(τ) is one of either a constant or a Hauptmodul for some genus zero CSG
Γ ⊂ SL(2,Z).

(e) T(g=e,h)(τ) reduces to the McKay–Thompson series for some element h ∈M.

These functions T(g,h) can be interpreted as twisted–twined characters of V \ defined in
(5.6) [DGH88].

5.2.4. String theory and monstrous moonshine. While it is a remarkable
relation, the true interpretation of the monstrous moonshine in physics is still a matter
needing resolution. One of the first possible interpretations of the moonshine phenom-
enon was studied in [Wit07] where a suggestion was that the Monster group could
be the symmetry of an infinite family of two dimensional conformal field theories with
central charge c = 24k dual to AdS3 gravity at different values of cosmological con-
stants. A good review on partition functions of AdS3 gravity is [Kra08]. For most
of these central charges, such a relation has been ruled out [Höh08, Gai12, Gab07].
Subsequent work in [MW10] suggested that some of the number theoretic properties
required for the construction of such monstrous functions are not favourable from AdS3

8This product formula is also manifest in BPS algebras and hence, moonshine phenomena have
been linked to the study of BPS algebras [HM96, HM98, Gov11, GS19, GGK10, GHP11,
PPV17].
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gravity. However, it has been suggested that chiral gravity theories [Man07, LSS08]
could be dual to the holomorphic part of the Monster CFT. This suggestion has also
been studied in [DF11] where the 2 + 1 dimensional partition function of AdS3 is
constructed by computations of the McKay–Thompson series using the Rademacher
summation techniques.
Another relation, motivated by the fact that the moonshine module can also have a
Z2 grading [DGH88], is to study the partition function as a partition function of BPS
states. This was done in [PPV16, PPV17] in considering heterotic quantum me-
chanics i.e., certain compactifications of all the spatial dimensions of heterotic string
theory down to 0 + 1 dimensions. The vector space decomposition as in (5.6) is en-
dowed with the interpretation of being the decomposition of the BPS Fock space into
subspaces, and the generalized McKay–Thompson series T(g,h) as being twisted–twined
BPS partition functions.

5.3. Mathieu Moonshine

While in the previous section we introduced the theory of moonshine and how
one would go about proving a necessary moonshine phenomenon, we shall now begin
with the study of the Mathieu moonshine associated with the M24 group. Unlike the
monstrous moonshine, the Mathieu moonshine is a moonshine associated to weight a 1

2
mock modular form. Mathieu moonshine is of considerable interest to string theorists
due to its relation with the moduli space of K3 surfaces. In this section, we shall go
over the fundamentals of Mathieu moonshine and connections to mock modular forms.

5.3.1. Mathieu moonshine and the elliptic genus of K3. The central object
in the study of Mathieu moonshine is the elliptic genus of the K3 surface that was
introduced in Chapter 2 and Chapter 3. The elliptic genus in this case is an index
that counts BPS states in the sigma model of K3 and is independent of moduli of all
the theory.9 The non–linear sigma model (NLSM) associated to a K3 surface is an
N = (4, 4) SCFT with central charge c = c̄ = 6. The elliptic genus is expressed as

EGK3(τ, z) = TrRR

(
(−1)F qL0− c

24 q̄L̄0− c̄
24yJ0

)
,(5.13)

where L0, L̄0 are the holomorphic and anti–holomorphic Virasoro generators and J0

is the third component of the SU(2) R−symmetry generator that rotates the super-
charges into each other, and −(1)F = (−1)FL+FR is the fermion number operator. The
trace is taken over the Ramond–Ramond Hilbert space although this may also defined
over the NS–NS Hilbert space due to spectral flow symmetry. The elliptic genus is
in fact (up to a numerical factor) a weakly holomorphic Jacobi form of weight 0 and
index 1 on SL(2,Z) (see Section 2.2),

EGK3(τ, z) = 2 φ0,1(τ, z) = 8
4∑
i=2

(
ϑi(τ, z)2

ϑi(τ, 0)2

)
,(5.14)

where ϑi(τ, z)’s are the Jacobi theta functions defined in (2.44). The elliptic genus
(5.14) is a topological invariant over theK3 moduli space. Due to the hyper–Kähler struc-
ture of K3, the holonomy allows us to extend the supersymmetry of the worldsheet

9For a continuous spectrum, holomorphicity is not necessarily guaranteed. In fact the elliptic
genus behaves like a mock modular form [Tro10]. In many cases certain BPS indices exhibit wall
crossing, i.e., the value of the indices jump as one moves around in the moduli/parameter space of
the theory [Cec10, KS08].
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from N = 2 → N = 4 and therefore the Hilbert space of the RR sector may be
expressed in terms of representations of the N = (4, 4) SCFT at c = c̄ = 6. This
decomposition is as follows:

EGK3(τ, z) = 24 chN=4
6,0,0 (τ, z) +

∞∑
n=0

A(1)
n chN=4

6,n, 1
2
(τ, z),(5.15)

where the chN=4
∗ (τ, z) are the characters of the N = 4 superconformal algebra de-

scribed in Appendix A. The observation in [EOT11] is that in the N = 4 decom-
position of (5.15), the coefficients are related to the dimensions of the irreducible

representations of the M24 group as 24 = 23 + 1 and other coefficients A
(1)
n given by10

A
(1)
0 = −2 = −1− 1,

A
(1)
1 = 90 = 45 + 45,(5.16)

A
(1)
2 = 462 = 231 + 231,

A
(1)
3 = 1540 = 770 + 770, · · · ,

where 45, 231, 770, · · · are the dimensions of the irreducible representations of M24.
This relationship between the elliptic genus of K3 represented using characters of the
N = (4, 4) sigma model SCFT, and the dimensions of irreducible representations of
M24 is known as Mathieu moonshine.

5.3.2. Mock-modularity and Mathieu moonshine. Unlike the case of the
monstrous moonshine discussed in Section 5.2, the Mathieu moonshine is a moonshine
phenomenon associated to a mock–modular form that has been discussed in (2.35) in
Section 2.4. The elliptic genus of K3 can be re-written as

EGK3(τ, z) =
ϑ1(τ, z)2

η(τ)3
(24µ(τ, z) +H(τ)) ,(5.17)

where

µ(τ, z) =
−i√y
ϑ1(τ, z)

∞∑
n=−∞

(−1)nynqn(n+1)/2

1− yqn
,(5.18)

and the mock modular form H(τ) as studied in (2.35) has the Fourier decomposition
in terms of

H(τ) = 2q−1/8
(
−1 + 45 q + 231 q2 + 770 q3 + · · ·

)
.(5.19)

The mathematical interpretation of such a split of EGK3(τ, z) is surplus to the scope
of this thesis but can be found in §8.1 of [AC18]. Analogous to the case of the Monster

moonshine, there is an infinite dimensional Z–graded module W =
∞⊕
n=1

Wn for H(τ)

10Note that the character ch6,0, 12
(q, y) here is in a massive representation which can be written

as a sum of two massless representations, limh↘ 1
4
chN=4

6,h− 1
4 ,l

(q, y) = chN=4
6,0, 12

(q, y) + 2chN=4
6,0,0 (q, y). Fur-

thermore, the correct decomposition of the higher coefficients can be fixed by requiring the twined
elliptic genera to behave appropriately, see (5.22) and the following discussion.
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such that

H(τ) = q−1/8

(
−2 +

∞∑
n=1

dim(Wn) qn

)
.(5.20)

The existence of such a module W has been studied and proven to exist [Gan16].

5.3.3. On symplectomorphisms of K3, and symmetry surfing. Although
the algebraic structure of Mathieu moonshine has been studied well [Gan16], its re-
lation to the K3 elliptic genus is still unclear. The first hint of a relation between the
K3 surface and the Mathieu sporadic group is the following theorem [Muk88, Kon98].

Theorem 5.3.1 (Kondo). Any finite group whose action acts as an automor-
phism that preserves the symplectic form of a K3 surface can be embedded into
M23 ⊂M24.a

aAn automorphism that preserves the symplectic form is a symplectomorphism, for lack of a
shorter term.

The question is as to what mathematical object related to the K3 surface has the
M24 as a symmetry group.11 The natural candidate is to consider the world sheet
NLSM with K3 as target space. An excellent exposition on the study of K3 NLSM’s
is [NW01].

Theorem 5.3.2 (Gaberdiel–Hohenegger–Volpato). The group of symplectomor-
phisms of any K3 surface is never M24, but is rather necessarily a subgroup of
Co1 [GHV12].

To circumvent this theorem, we turn to the idea of symmetry surfing [TW13a,
TW15]. The idea of symmetry surfing is that since the elliptic genus of K3 surfaces
is a count of 1

4
–BPS states, M24 is necessarily a symmetry of only such BPS states

in the N = (4, 4) NLSM of K3 surfaces. At any point in the moduli space of the
N = (4, 4) sigma model of K3 , the elliptic genus in the N = (4, 4) representations
is expected to correspond to the graded dimensions of some subspace of BPS states
of the theory.12 The idea of symmetry surfing is therefore that the combined set of
generators of the symmetries of sigma models of the K3 results in the full M24 group.
A study by [GTVW14] shows a K3 NLSM with symmetry Z8

2 : M20, which is one of
the largest subgroups of M24.

Remark 5.3.1. It also remained unclear if whether the M24 is a symmetry of
some object related to K3 surfaces, or if it is simply a property of the Jacobi form
φ0,1(τ, z) that appears in the elliptic genus of K3. This question has been addressed in
[BCK+18], and will be the focus of Chapter 6.

Progress towards a complete understanding of Mathieu moonshine has been made
in [GHV12, CH15, DMC15, CHVZ16, PVZ17], through the concept of symmetry
surfing [TW13b, TW15, GKP17] and other directions [KPV17].

11We also refer the reader to [Muk20] for more on the relation between K3 and M24
12The symmetry of the K3 sigma model is usually trivial at generic points in the moduli space.
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5.3.4. Generalized Mathieu Moonshine. Similar to the case of generalized
Monster moonshine [Cara, Carb, Carc] there exists an infinite dimensional graded
module [Gan16]

HBPS =
∞⊕
n=0

Hn ⊗HN=4
n ,(5.21)

where the sum runs over the contributing irreducible N = (4, 4) representations HN=4
n

and Hn are M24 representations (in general not irreducible) with dim(Hn) = |A(1)
n | as

in (5.20) [GHV10a]. This implies that the twined elliptic genera of K3 obtained by
inserting an element g ∈M24 in (5.13), i.e.,

EGK3,g(τ, z) = TrRR

(
g (−1)F qL0− c

24 q̄L̄0− c̄
24yJ0

)
,(5.22)

form an analogue of the McKay–Thompson series, i.e., they admit an expansion similar
to (5.15) but now with coefficients Ãn = TrHn(g) and these twined elliptic genera
(5.22) transform as a Jacobi form of weight 0 and index 1 under the subgroup Γ0(N)
of SL(2,Z). Since not all these subgroups are Fuchsian, the analogues of the McKay–
Thompson series are not genus–0 functions, but are Rademacher summable instead
[CD14]. Based on these facts, in [Che10, GHV10b, GHV10a, EH11] explicit
expressions for all the twined genera have been found. For some cases where g ∈M23

admits an interpretation as a symplectic automorphism of K3 the corresponding twined
genera have been calculated directly in [DJS06]. The symmetries of NLSM on K3
have been classified in [GHV12, CHVZ16]. Furthermore, all possible twining genera
of NLSM on K3 have been conjectured in [CHVZ16] based on works of [CH15,
DMC15]. This conjecture has been proven in a “physical” way by demanding absence
of unphysical wall–crossings in [PVZ17].

Analogous to generalized moonshine, in [GPRV13] all the twisted (by g), twined
(by h) elliptic genera EGK3,g,h have been calculated. For every commuting pair of
(g, h) ∈ M24, the twisted–twined elliptic genera are defined as

EGK3,g,h(τ, z) = TrRR,g

(
h (−1)F qL0− c

24 q̄L0− c̄
24yJ0

)
,(5.23)

where the trace is now taken over the g–twisted Ramond–Ramond sector. The twisted–
twined elliptic genera (5.23) are expected to fulfill certain properties. They have the
following modular and elliptic transformation properties:

EGK3,g,h(τ, z + `τ + p) = e−2πim(`2τ+2`z)EGK3,g,h(τ, z), `, p ∈ Z

(5.24)

EGK3,g,h

(
aτ + b

cτ + d
,

z

cτ + d

)
= χg,h

(
a b
c d

)
e2πi cz

2

cτ+dEGK3,hcga,hdgb(τ, z),

(
a b
c d

)
∈ SL2(Z),

for a certain multiplier χg,h : SL(2,Z) → U(1). In the above equation (5.24), m is
the index of the elliptic genus. The multipliers are assumed to be constant under
conjugation of the pair (g, h) by an element of k ∈ M24up to a phase ξg.h(k) (that
depend on certain 2–cocycles cg) and to have a well defined expansion in terms of N =
4 superconformal characters. In particular, EGK3,e,g agrees with the corresponding
twined character (5.22). It was postulated in [GPRV13] that these properties (in
particular χg,h, ξg,h and cg) are all controlled by a 3–cocycle α representing a class in
H3(M24, U(1)). Moreover, the twisted, twined and twisted–twined genera transform
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among each other following modular transformations as in (5.24). The set of twisted–
twined elliptic genera modulo modular transformations is in one to one correspondence
with conjugacy classes of Abelian subgroups of M24 generated by two elements (g, h).13

While calculating these genera using the properties mentioned above, many of them
vanish identically owing to obstructions, i.e., situations where the properties only allow
for vanishing characters. Using the shorthand EGK3,g,h := φg,h, the only un-obstructed
twisted–twined elliptic genera (excluding twined genera) are

φ2B,4A2 , φ4B,4A3 , φ4B,4A4 , φ2B,8A1,2 , φ3A,3A3

=0

, φ3A,3B1

=0

,(5.25)

where we use the short hand that g is an element of the first conjugacy class in the
subscript and h is an element of the second conjugacy class in the subscript. For
example, EGK3,g,h = φ2B,4A2 implies that g ∈ 2B and h ∈ 4A2. The conjugacy classes
are listed in Appendix B.

5.3.5. String theory and Mathieu moonshine. In this final section, we wish
to emphasize more on the connections between string theory and Mathieu moon-
shine. While there are generalizations of the Mathieu moonshine (Umbral moonshine)
[CDA14, CDH13, DGO15, CH15, KPV17] which have connections to string the-
ory, we shall not review them here for not having reviewed umbral moonshine. The
string theoretic origin of Mathieu moonshine has been studied from various points
of view. In the previous sections, we have reviewed the K3 string theory aspects of
Mathieu moonshine. Mathieu moonshine has also been studied in the context of N = 2
supersymmetric compactifications [CD17a, CD18, CD17b, BCKS20, BCK+20].
Mathieu moonshine has also been studied from the point of view of NS5 branes in type
IIB string theory [HM14, HMN15]. Mathieu moonshine, in particular the NSLM
studied in [GTVW14] has also been studied from the point of view of quantum error
correction codes [HM20].

The author of this thesis has extensively worked on the following two key questions:

(a) Is the Mathieu moonshine really a property of K3 surfaces or is it a property
of the Jacobi form φ0,1(τ, z)? This will be reviewed in Chapter 6.

(b) If the Mathieu moonshine is a property of the BPS states in the sigma model,
does this moonshine property also show up in other BPS counting functions,
such as Gromov–Witten invariants [BCKS20]? The results of this publication
will not be reviewed in this thesis.

13There are 55 such subgroups, 21 of which correspond to cyclic subgroups generated by ele-
ments of the form (e, g) and are associated to twining genera EGK3,g [GHV10b]. This includes the
twisted and twisted–twined genera obtained from the twined genera by modular transformations. The
remaining 34 have been calculated in [GPRV13] using the properties discussed above.





CHAPTER 6

Moonshine in the moduli space of higher dimensional
Calabi–Yau manifolds: A computational approach

Overview of this chapter

This chapter is based on results published in [BCK+18].

In the previous chapter, we introduced the concept of moonshine and in particular
afforded a short introduction to Mathieu moonshine in Section 5.3. Some of the clos-
ing arguments from the previous chapter 5 were that

(a) The exact nature of the relation between theK3 surface elliptic genus, EGK3(τ, z)
as defined in (5.14) and the M24 group is unclear. This stems from the work
of [GHV12, TW13a, TW15, GKP17, GTVW14].

(b) Even more basic, it is still unclear if whether the Mathieu moonshine phenom-
enon is associated to the Jacobi form that represents the elliptic genus of K3,
or rather something deep associated to K3 surfaces.

In this chapter, we analyze the second question. The way we do so is by studying the
elliptic genus of a CY5. The reasons for this are as follows:

(a) When the elliptic genus of CY5 is expanded in the characters of the N = (2, 2)
NLSM, it exhibits almost the exact same expansion coefficients as the case with
the EGK3(τ, z) expanded in N = 4 characters.

(b) The elliptic genus of CY5 can be computed in a straightforward way since it
is a Jacobi form of weight 0 and index 5

2
[KYY94].1 As we shall see later, the

elliptic genus of a CY5 is related to the elliptic genus of K3. This poses a nice
setting to therefore investigate the role of φ0,1(τ, z) in Mathieu moonshine.

The key idea here is to compute the elliptic genus for a large number of CY5 and study
their expansion in terms of the N = 2 characters. These characters have been detailed
in Appendix A. The key question here is, “What is the interpretation if one finds
interesting expansion coefficients (moonshine phenomena) in higher dimensional man-
ifolds?” If the expansion coefficients are given in terms of irreducible representations
of a particular sporadic group, does this imply that all manifolds with such elliptic
genera are connected to the particular sporadic group, or only a few, or none? How
would such a connection manifest itself? As a geometric symmetry of the manifold or
as a symmetry of the non-linear sigma model with the manifold as target space or via
something else like symmetry surfing?

In this chapter, we aim to see if whether the elliptic genus of CY5 carries the
action of M24.2 By calculating twined elliptic genera for more than ten thousand

1The Eichler–Zagier theory of Jacobi forms deals only with Jacobi forms of integer index ≥ 1.
However, this can been extended to weakly holomorphic Jacobi forms of half–integer index (cf. Lemma
1 in [Gri99]).

2The case of d = 4 is still work in progress [Kid].
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explicit examples, we investigate the possibility of these CY5 manifolds being related
to Mathieu or Enriques moonshine. There is no systematic construction of CYd>5;
we therefore refrain from a detailed investigation thereof. The chapter is organized as
follows: In Section 6.1 we review some properties of Jacobi forms used to construct
the elliptic genera of various Calabi–Yau manifolds, and their decomposition in terms
of N = 2 superconformal characters. We discuss the elliptic genus of Calabi–Yau
manifolds with different dimensions as well as its expansion in N = 2 characters. In
Section 6.3 we calculate twined elliptic genera for a large number of CY5 manifolds.
We comment on a simple toroidal orbifold and two Gepner models in Section 6.5. We
summarize our findings in Section 6.6.

6.1. Jacobi forms and Elliptic Genera of Calabi–Yau Manifolds

We have already encountered the theory of Jacobi forms in Section 6.1 and the
construction of elliptic genera in Chapter 3, and the fact that the elliptic genera of
CYd manifolds are weakly holomorphic Jacobi forms of weight 0 and index d

2
[KYY94,

Gri99]. A useful fact to recall here is that the bigraded ring of weakly holomorphic Ja-
cobi forms is generated by only a few elements viz., φ0,1(τ, z), φ−2,1(τ, z), E4(τ), E6(τ).
This means that the elliptic genera of Calabi–Yau manifolds too are linear functionals
of these modular and Jacobi forms.

EGCY2

Generated by−−−−−−−→ J̃ !
0,1 = 〈φ0,1〉,

EGCY4

Generated by−−−−−−−→ J̃ !
0,2 = 〈φ2

0,1, E4 φ
2
−2,1〉,

EGCY6

Generated by−−−−−−−→ J̃ !
0,3 = 〈φ3

0,1, E4 φ
2
−2,1 φ0,1, E6 φ

3
−2,1〉,

(6.1)

EGCY8

Generated by−−−−−−−→ J̃ !
0,4 = 〈φ4

0,1, E4 φ
2
−2,1 φ

2
0,1, E6 φ

3
−2,1 φ0,1, E

2
4 φ

4
−2,1〉,

EGCY10

Generated by−−−−−−−→ J̃ !
0,5 = 〈φ5

0,1, E4 φ
2
−2,1 φ

3
0,1, E6 φ

3
−2,1 φ

2
0,1, E

2
4 φ

4
−2,1 φ0,1, E4E6 φ

5
−2,1〉.

The functions above appear in the elliptic genus of Calabi–Yau d = 2, 4, 6, 8, 10 man-
ifolds and their coefficients can be fixed in terms of a few topological numbers of the
CYd manifold viz., their Hodge numbers.

For weight zero Jacobi forms with half integer index one may use the map between
Jacobi forms of even weight and integer index to relate them to Jacobi forms of even
weight and half–integer index [Gri99] as follows

J2k,m+ 1
2

= φ0, 3
2
J2k,m−1 , m ∈ Z ,(6.2)

where

φ0, 3
2
(τ, z) = 8

ϑ2(τ, z)

ϑ2(τ, 0)

ϑ3(τ, z)

ϑ3(τ, 0)

ϑ4(τ, z)

ϑ4(τ, 0)
,

φ0, 5
2
(τ, z) = φ0,1(τ, z)φ0, 3

2
(τ, z) ,(6.3)

with the Jacobi theta functions as defined in (2.44). In particular φ0, 3
2

and φ0, 3
2
φ0,1 are,

up to re–scaling, the unique Jacobi forms of weight 0 and index 3
2

and 5
2
, respectively.

More generally, the space J0,m+ 3
2

is spanned by m functions for m = 1, 2, 3, 4, 5 and

these functions are the ones given in equation (6.1) multiplied by φ0, 3
2
.3 We therefore

3Note that we have the identity 432φ2
0, 32

= φ30,1 − 3E4 φ
2
−2,1 φ0,1 − 2E6 φ

3
−2,1.
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see that the space of Jacobi forms J0, d
2

is generated by a small bigraded ring for small

d. This decomposition (6.2) extends to weakly holomorphic Jacobi forms too and
therefore the elliptic genera for CYd, d ∈ 2Z + 1 may also be easily determined. This
means that the elliptic genus of a higher dimensional Calabi–Yau manifold can be fixed
in terms of the elliptic genus of a lower dimensional one.

6.2. Elliptic genera of Calabi–Yau’s in superconformal character
representation

6.2.1. Calabi–Yau 1–folds. For the torus T 2, the elliptic genus vanishes i.e.,

EGT 2(τ, z) = 0 .(6.4)

The same holds true for any even dimensional torus EGT 2n(τ, z) = 0, ∀n ∈ N. This is
due to the fermionic zero modes in the right moving Ramond sector:

Tr
(

(−1)FR q̄L̄0− c̄
24

)
= 0 .(6.5)

It must however be pointed that there are constructions for BPS indices in string
compactifications of T 6 which are calculable despite the vanishing of the EGT 6(τ, z)
[MMS99].

6.2.2. Calabi–Yau 2–folds. At complex dimension 2, there are two distinct
Calabi–Yau manifolds viz., T 4 and K3. We have already seen in Section 6.2.1 that the
elliptic genus of T 4 should vanish. We therefore omit that case here. We shall also
categorically ignore Calabi–Yau manifolds that are tori for this reason. The elliptic
genus for a K3 surface is the Jacobi form that appears in Mathieu moonshine. Its
expansion in terms of N = 4 characters [EOTY89] is4

(6.6) EGK3(τ, z) = 2φ0,1(τ, z) = 20 chN=4
2,0,0 (τ, z)− 2 chN=4

2,0, 1
2
(τ, z) +

∞∑
n=1

AnchN=4
2,n, 1

2
(τ, z) ,

where all coefficients An are related to the dimensions of irreducible representations of
M24. The above expansion of the elliptic genus is in terms ofN = 4 characters following
the original work [EOT11]. This can be done since K3 is a hyper-Kähler manifold
and the superconformal worldsheet theory has N = (4, 4) supersymmetry. However,
we can also expand the elliptic genus of K3 in terms of the N = 2 characters given in
[EH10a] 5

(6.7)

EGK3(τ, z) = 2φ0,1(τ, z) = −20 chN=2
2,0,0 (τ, z) + 2 chN=2

2,0,1 (τ, z)−
∞∑
n=1

AnchN=2
2,n,1(τ, z) ,

where An are still the coefficients of the irreducible representations of M24. The overall
negative sign is a choice of convention as in [EH10a].

There is also a moonshine phenomenon that connects Enriques surfaces (an invo-
lution of the K3 surface) to M12 [EH13]. The elliptic genus for an Enriques surface

4See Appendix A for the explicit formulas for the N = 2 and N = 4 characters. The subscripts
on the characters chd,h−c/24,` are the complex dimension d of the Calabi–Yau that determines the

central charge to be c = 3d, the eigenvalue h− c/24 of L0 − c/24 and the eigenvalue ` of J0.
5For the particular case of c = 6, i.e. for d = 2, the N = 2 superconformal algebra extended by

spectral flow generators is the same as the N = 4 superconformal algebra. This means that in this
case the N = 2 and the N = 4 algebras are the same (up to an overall sign in our conventions).
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is EGEnr(τ, z) = 1
2
EGK3(τ, z), since χEnr = 12 = EGEnr(τ, 0) = φ0,1(τ, 0). This leads

to the following expansion in terms of N = 4 characters

(6.8) EGEnr(τ, z) = φ0,1(τ, z) = 10 chN=4
2,0,0 (τ, z)− 1 chN=4

2,0, 1
2
(τ, z) +

∞∑
n=1

An
2

chN=4
2,n, 1

2
(τ, z) .

Note that all the An are even so that also in this case the expansion coefficients are
always integers and one can again decompose the coefficients into irreducible represen-
tations of M12:

10 = 11− 1 ,

−1 = −1 ,

A1 = 45 ,

A2 = 55 + 176 ,

A3 = 66 + 2 · 120 + 2 · 144 + 176 ,

. . . .(6.9)

We can of course again expand the elliptic genus EGEnr(τ, z) in N = 2 characters,
which leads to the same expansion coefficients but with an overall minus sign.

6.2.3. Calabi–Yau 3–folds. Expanding the elliptic genus of Calabi–Yau 3–folds
in terms of N = 2 characters does not prove a fruitful exercise in moonshine. The
elliptic genus is given as

(6.10) EGCY3(τ, z) =
χCY3

2
φ0, 3

2
=
χCY3

2

(
chN=2

3,0, 1
2
(τ, z) + chN=2

3,0,− 1
2
(τ, z)

)
,

where the overall normalization is fixed in terms of (6.3) and (3.47). Most expansion
coefficients are zero, for the case of the CY3. We wish to point out that while we study
CY 3–folds only very briefly in this thesis, the simplicity of the elliptic genus does not
mean that they are of reduced interest. Contrary to this, the study of enumerative
invariants of CY3 is a challenging problem in mathematical physics [KS08, DM11,
CK00]. For example, it was shown in [CDD+13] that the Gromov–Witten invariants
of certain CY3 manifolds are connected to Mathieu moonshine. This was further
explored and studied in [Wra14, PW14, DDL16, CD17b, CD17a, BCKS20] and
explicit CY3 models obeying such relations were constructed in [BCKS20].

6.2.4. Calabi–Yau 4–folds. For Calabi–Yau 4–folds the corresponding space J0,2

of Jacobi forms is generated by two basis elements and one can fix the coefficients in
terms of the Euler number χCY4 and χ0 =

∑
r(−1)rh0,r using (3.47). One then finds

(6.11) EGCY4(τ, z) =
χCY4

144

(
φ2

0,1 − E4 φ
2
−2,1

)
+ χ0E4 φ

2
−2,1 .

χ0 = h0,0 + h0,4 = 2 for genuine CY 4–folds.6

There are a variety of interesting connections to sporadic groups that have already
appeared in literature. The first and somewhat trivial case is the product of two
K3 manifolds whose elliptic genus is given by EGK3×K3(τ, z) = 4φ2

0,1. This function
exhibits an M24×M24 symmetry and one could ask if whether such a symmetry (or an
M12×M24 symmetry for 2φ2

0,1) is realized by certain genuine Calabi–Yau 4–folds. The

Jacobi form 1
24

(
φ2

0,1 − E4 φ
2
−2,1

)
appears in the context of Umbral moonshine [CDA14]

6A genuine Calabi–Yau d–manifold is one for which the holonomy group is SU(d). A non-genuine
Calabi–Yau d–manifold is one for which the holonomy group is a subgroup of SU(d).
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and exhibits a 2.M12 moonshine when expanded in N = 4 characters, In [EH12], an
L2(11) moonshine was established upon expanding this function in terms of N = 2
characters. In [CDD+14], it was shown that the function 1

6
(φ2

0,1 + 5E4 φ
2
−2,1) exhibits

M22 moonshine when expanded in N = 4 characters and M23 moonshine when ex-
panded inN = 2 characters.7 All of these and further potential connections to sporadic
groups will be discussed in future work [Kid] where twinings will also be studied in
great detail.

6.2.5. Calabi–Yau 5–folds. As discussed in Section 6.1 and (6.2), the elliptic
genus for a Calabi–Yau manifold with odd complex dimensions d can be expressed in
terms of the same functions as those occurring in the expression for the elliptic genus
of a Calabi–Yau manifold with complex dimension d − 3, since Jacobi forms of half-
integral index can be written as the product of φ0, 3

2
times an integral index Jacobi

form J0, d
2

= φ0, 3
2
J0, d−3

2
[Gri99]. This means that the elliptic genus for CY 5–folds is

proportional to φ0, 3
2
φ0,1 and we can fix the prefactor in terms of the Euler characteristic

χCY5 . We also recall that the N = 4 characters for central charge c = 3d, multiplied
by φ0, 3

2
, can be expressed in terms of N = 2 characters for central charge c = 3(d+ 3)

(see appendix A). We find the following relations

φ0, 3
2
chN=4

2,0,0 = −chN=2
5,0, 1

2
− chN=2

5,0,− 1
2
,

φ0, 3
2
chN=4

2,0, 1
2

= −chN=2
5,0, 3

2
− chN=2

5,0,− 3
2

+ chN=2
5,0, 1

2
+ chN=2

5,0,− 1
2
,

φ0, 3
2
chN=4

2,n, 1
2

= −chN=2
5,n, 3

2
− chN=2

5,n,− 3
2
, ∀n = 1, 2, . . . .(6.12)

This means that CY 5–folds have the following expansion of the elliptic genus in terms
of N = 2 characters:

EGCY5(τ, z) =
χCY5

24
φ0, 3

2
φ0,1

= −χCY5

48

[
22
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+
∞∑
n=1

An

(
chN=2

5,n, 3
2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)]
.(6.13)

For CY 5–folds with χCY5 = −48 we find the same expansion coefficients as in Mathieu
moonshine, while for χCY5 = −24 we find the same coefficients as for Enriques moon-
shine. Since the overall sign in the definition of the N = 2 characters is a choice, we
can conclude the same for CY 5–folds with χCY5 = 48 and χCY5 = 24. The decomposi-
tion of all the coefficients into the dimensions of irreducible representations is identical
to the ones given above in equations (5.16) and (6.9) except for the first coefficient
for which we have 22 = 23 − 1 for M24 and 11 = 11 for M12. This follows from the
relations between N = 4 and N = 2 characters given above in (6.12).

A trivial class of examples where the elliptic genus will exhibit Mathieu or Enriques
moonshine is given by manifolds that are products of K3 or Enriques surfaces with

7This function also exhibits M24 moonshine when expanded in extended N = 1 characters
[CHKW15]. There are also other groups that can arise instead of the Mathieu groups but the
later are somewhat special [CDD+14, CHKW15]. When evaluated at torsion points y = −1 and
y = ±√q, the same function gives rise to Conway moonshine [FLM85, Dun05], the moonshine

phenomenon associated with the Conway group.
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CY 3–folds. While these cases are rather trivial, we see from the above that any CY
5-fold could in principle exhibit a connection to a Mathieu group. This is therefore the
reason we choose to analyze CY 5–folds.

6.2.6. Calabi–Yau 6–folds. The elliptic genus for Calabi–Yau 6–folds is deter-
mined uniquely in terms of three topological numbers which are the Euler number
χCY6 and χp =

∑6
r=0(−1)rhp,r for p = 0, 1. The elliptic genus for CY6 is given by the

expression

EGCY6(τ, z) =
χCY6

1728
φ3

0,1 −
1

576
(χCY6 − 48(χ1 + 6χ0))E4 φ

2
−2,1 φ0,1

− 1

864
(χCY6 − 72(χ1 − 6χ0))E6 φ

3
−2,1 .(6.14)

One can again find many interesting but simple cases by taking triple products of
K3 or Enriques surfaces or by considering K3 × CY4. These cases trivially exhibit a
variety of potential connections to sporadic groups like L2(11), M12, M22, M23 and
M24 (c.f. Section 6.2.4). A potential connection between CY 6–folds and sporadic
groups therefore seems plausible, but is yet to be understood.

For a special case of CY6, when χ0 = χ1 = 0, we find that

EGCY6(τ, z) =
χCY6

1728

(
φ3

0,1 − 3E4 φ
2
−2,1 φ0,1 − 2E6 φ

3
−2,1

)
=
χCY6

4
φ2

0, 3
2

= χCY6

ϑ2(τ, z)2

ϑ2(τ, 0)2

ϑ3(τ, z)2

ϑ3(τ, 0)2

ϑ4(τ, z)2

ϑ4(τ, 0)2

=
χCY6

8

[
4chN=4

6,0,0 +
(
−2chN=4

6,0, 1
2

+ 14chN=4
6,1, 1

2
+ 42chN=4

6,2, 1
2

+ 86chN=4
6,3, 1

2
+ . . .

)
−
(
16chN=4

6,1,1 + 48chN=4
6,2,1 + 112chN=4

6,3,1 + . . .
)

+
(

6chN=4
6,1, 3

2
+ 28chN=4

6,2, 3
2

+ 56chN=4
6,3, 3

2
+ . . .

) ]
.(6.15)

For χCY6 = 8 and the corresponding expansion in terms of N = 4 characters, the above
Jacobi form is related to 2.AGL3(2) [CDA14] via the Umbral moonshine conjecture
which was later proven in [DGO15]. This is similar to the case of CY 4–folds that
seem to be related to Umbral moonshine for χ0(CY4) = 0. Here, however, we can easily
find spaces that have the above elliptic genus (6.15). Since the product of two CY 3–
folds gives a complex six dimensional manifold with χ0 = χ1 = 0, the resulting elliptic
genus is as above i.e., χCY6 = χ

CY
(1)
3
· χ

CY
(2)
3

. For Umbral moonshine, the requirement

is an elliptic genus given in (6.15) for the case of χCY6 = 8. Therefore, the product of
a CY 3-fold with Euler number ±2 with another CY 3-fold with Euler number ±4 is
an excellent candidate to study Umbral moonshine in CY 6–folds.

6.2.7. Comments on Calabi–Yau manifolds of dimension d > 6. In the
study of higher dimensional CY manifolds, there exists the possibility of making con-
nections to Umbral moonshine [CDA14]. Since we focus on the case of Mathieu moon-
shine in the description of this thesis, we shall not go further into Umbral moonshine.
We however present a short comment.

Due to the relationship between elliptic genera of lower dimensional CY manifolds
and higher dimensional ones, and the increasing number of CY manifolds with dimen-
sion, it therefore is clear that the possibility of having connections to sporadic groups
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grows as we increase the complex dimension of the CY manifold. There is however no
simple way of studying these cases since a systematic construction of CYd>6 manifolds
is lacking, in the spirit and sense of there being a construction for lower dimensional CY
manifold. Nevertheless we can check under what conditions the extremal Jacobi forms
that appear in Umbral moonshine [CDA14, CDH13] can arise as elliptic genera of
Calabi–Yau manifolds or products thereof.8

Recall that the elliptic genus of K3, i.e., a Jacobi form of weight 0 and index 1,
provides the first example of Umbral moonshine. As we mentioned above, the index 2
Jacobi form that arises in Umbral moonshine would correspond to the elliptic genus of
a CY 4–fold with χ0(CY4) = 0. However, any genuine CY d-fold satisfies

(6.16) χ0(CYd) =

{
0 if d is odd,
2 if d is even.

We cannot therefore recover the Jacobi form of weight 0 and index 2 form from a
genuine CY 4–fold, nor from K3 ×K3 since χ0(K3 ×K3) = χ0(K3)2 = 4. Likewise,
T 4 ×K3 has vanishing χ0 since χ0(T 4) · χ0(K3) = 0 · 2 = 0 but also vanishing elliptic
genus. Above we have seen, however, that six complex dimensional Calabi–Yau spaces
with χ0 = χ1 = 0 have as elliptic genus the Jacobi form of weight 0 and index 3
that appears in Umbral moonshine. In particular the product of any two CY 3–folds
has χ0 = χ1 = 0.9 The other interesting Jacobi forms in [CDA14] have weight zero
and index 4, 6 and 12. We first look at the case of d = 8 that leads to a Jacobi
form with index 4. The relevant form in Umbral moonshine arises for χ0 = χ1 =
χ2 = 0. We can again ask whether we can get this from a product of CY manifolds.
This is however not the case. For the case of CY5×CY3 we find χ0 = χ1 = 0 but
χ2(CY3 × CY5) ∝ χ(CY3) · χ(CY5). So only if either χ(CY3) = 0 or χ(CY5) = 0, do
we satisfy the required property. However, in this case we have EGCY3×CY5(τ, z) ∝
χ(CY3) · χ(CY5) = 0. Similarly for the case K3×CY3 ×CY ′3 we find χ0 = χ1 = 0 but
χ2(K3× CY3 × CY ′3) ∝ χ(CY3) · χ(CY ′3) and EGK3×CY3×CY ′3 (τ, z) ∝ χ(CY3) · χ(CY ′3)
and there is again no non-trivial solution.

The same holds true for d = 12 in which case the Umbral moonshine Jacobi form
arises as elliptic genus for spaces with χ0 = χ1 = χ2 = χ3 = χ4 = χ6 = 0 which is very
restrictive and cannot be realized by taking products of Calabi–Yau manifolds. The
most promising case, which is the product of four CY 3–folds, has χ0 = χ1 = χ2 =
χ3 = 0 but χ4 6= 0 6= χ6 unless the Euler number of one of CY 3–folds vanishes in
which case the entire elliptic genus is zero as well.

The original Umbral moonshine was extended in [CDH13] and there are many
further Jacobi forms that could in principle arise from products of CY manifolds.
However, again this does not seem possible for the cases analysed here. For example,
there is an extremal Jacobi form that could arise from the elliptic genus of a CY 10-fold
with χ0 = χ1 = χ2 = χ3 = 0, but again this cannot be realized by taking products
of, for example, two K3 surfaces and two CY 3–folds. Similarly the index 9 extremal
Jacobi form in Umbral moonshine would correspond to a Calabi–Yau manifold with
χp = 0, ∀p ≤ 7, but the product of six CY 3–folds has χp = 0, ∀p ≤ 5, and χ6 6= 0, if
we require the elliptic genus of this product to be non-vanishing. So it seems that only

8Extremal Jacobi forms are those Jacobi forms that can be decomposed intoN = 4 superconformal
characters [CDA14].

9Recall the useful formula χi(CY × CY ′) =
∑i
j=0 χj(CY ) · χi−j(CY ′).
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the extremal Jacobi forms of index 1 and 3 can arise as elliptic genera of Calabi–Yau
manifolds or their products.

6.3. Twined elliptic genera from localization

We now turn to the key idea of the calculation. We have seen before that the
analogues of the McKay–Thompson series for Mathieu moonshine are related to the
(twined)–elliptic genera of the Calabi–Yau manifold. In this section, we present an
overview of how the elliptic genera (with twining) can be constructed for generic CY
5–folds. We can speculate by analogy with K3 we expect not all Calabi–Yau 5–folds
with χCY5 = −48 to have an M24symmetry at every, or any, point in their moduli space.
However, the elliptic genus could see some combined symmetry group that arises, for
example, from different points in moduli space via symmetry surfing, again in analogy
with K3 [TW15, TW13a, GKP17]. On the other hand it is not impossible that
some CY 5–folds have a genuine M24 symmetry at some point in the moduli space and
that this could then explain the corresponding expansion of the elliptic genus. It would
then provide a higher dimensional origin for Mathieu moonshine. Something similar
could happen for the other cases that involve Calabi–Yau 4–folds and 6–folds but we
shall not discuss them here. We proceed by explicitly calculating twined elliptic genera
for many different Calabi–Yau manifolds that are hypersurfaces in weighted projective
spaces. The construction of CY manifolds that are hypersurfaces in weighted projective
space can be studied in Chapter 14.5 in [BLT13] and in [KS92].

6.3.1. Calculating the twined elliptic genus. To calculate the twined ellip-
tic genus, we use the localization techniques developed in [BEHT14] (first applied
to moonshine in [HKP14]) to calculate elliptic genera twined by a symmetry of the
Calabi–Yau manifold. The Calabi–Yau manifolds we are interested in are hypersur-
faces in weighted projective ambient spaces. A particular Calabi–Yau d-fold that is a
hypersurface in the weighted projective space CPd+1

w1...wd+2
is determined by a solution of

p(Φ1, . . . ,Φd+2) = 0, where the Φi denote the homogeneous coordinates of the weighted
projective space and p is a transverse polynomial of degree m =

∑
iwi.

Following the techniques in [BEHT14], we consider a two-dimensional gauged
linear sigma model with N = (2, 2) supersymmetry. We have a U(1) gauge field
under which the chiral multiplets Φi have charge wi. Additionally we have one extra
chiral multiplet X with U(1) charge −m. The superpotential that is invariant under
U(1) gauge transformations is given by W = Xp(Φ1, . . . ,Φd+2). Then the F-term
equation ∂W/∂X = p = 0 restricts us to the Calabi–Yau hypersurface above. We can
assign R-charge zero to the Φi and 2 to the chiral multiplet X which ensures that the
superpotential has always the correct R-charge 2.

One can define a refined elliptic genus, depending on the extra chemical potential
x = e2πiu, as

(6.17) EGref(τ, z, u) = TrRR

(
(−1)FLyJ0qL0− d8xQ(−1)FR q̄L̄0− d8

)
.

This refined elliptic genus also keeps track of the U(1) charges Q of the states in the
theory. Each chiral multiplet of U(1) charge Q and R-charge R gives a multiplicative
contribution to this refined elliptic genus that is

(6.18) EGΦ
ref(τ, z, u) =

ϑ1

(
τ,
(
R
2
− 1
)
z +Qu

)
ϑ1

(
τ, R

2
z +Qu

) .
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The Abelian vector field gives rise to a (u independent) factor

(6.19) EGvec
ref (τ, z) =

iη(τ)3

ϑ1(τ,−z)
.

Combining these we find for for the case of our interests with

(1) d+ 2 chiral multiplets Φi with U(1) charge wi and zero R-charge,
(2) one chiral multiplet X with U(1) charge −m and R-charge 2
(3) and one Abelian vector multiplet,

we obtain the following refined elliptic genus

(6.20) EGref(τ, z, u) =
iη(τ)3

ϑ1(τ,−z)

ϑ1 (τ,−mu)

ϑ1 (τ, z −mu)

d+2∏
i=1

ϑ1 (τ,−z + wiu)

ϑ1 (τ, wiu)
.

The standard elliptic genus is obtained by integrating over u. This integral localizes
to a sum of contour integrals [BEHT14] so that we have

EGCYd(τ, z) =
iη(τ)3

ϑ1(τ,−z)

∑
uj∈M−sing

∮
u=uj

du
ϑ1 (τ,−mu)

ϑ1 (τ, z −mu)

d+2∏
i=1

ϑ1 (τ,−z + wiu)

ϑ1 (τ, wiu)
,(6.21)

where M−
sing is the space of poles of the integrand where the chiral multiplets become

massless. For a chiral multiplet with U(1) charge Q and R-charge R these singularities
are located at

Qu+
R

2
z = 0 , mod Z + τZ .(6.22)

In the above formula one can restrict to the singularities for chiral multiplets with
Q < 0, hence the superscript M−

sing. In our particular setup only the chiral multiplet
X has negative U(1) charge so the singularities are solutions to

(6.23) −mu+ z = −k − `τ , k, ` ∈ Z .
The integrand above is periodic under the identification u ∼ u + 1 ∼ u + τ and the
solutions within one fundamental domain of u are

(6.24) u = (z + k + `τ)/m , 0 ≤ k, ` < m .

We can rewrite the above expression as

EGCYd(τ, z) =
iη(τ)3

ϑ1(τ,−z)

m−1∑
k,`=0

∮
u=(k+`τ+z)/m

du
ϑ1 (τ,−mu)

ϑ1 (τ, z −mu)

d+2∏
i=1

ϑ1 (τ,−z + wiu)

ϑ1 (τ, wiu)
.

(6.25)

The above can be further simplified by using properties of the ϑ-function [BEHT14]
and this leads to the following simple formula for the elliptic genus of a Calabi–Yau
d–fold that is a hypersurface in a weighted projective space and that can be described
by a transverse polynomial:

EGCYd(τ, z) =
m−1∑
k,`=0

e−2πi`z

m

d+2∏
i=1

ϑ1

(
τ, wi

m
(k + `τ + z)− z

)
ϑ1

(
τ, wi

m
(k + `τ + z)

)
=

m−1∑
k,`=0

y−`

m

d+2∏
i=1

ϑ1

(
q, e

2πiwik

m q
wi`

m y
wi
m
−1
)

ϑ1

(
q, e

2πiwik

m q
wi`

m y
wi
m

) .(6.26)
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If we want to twine the elliptic genus by an Abelian symmetry that is generated by an
element g acting via

(6.27) g : Φi → e2πiαiΦi , i = 1, 2, . . . , d+ 2 ,

then this leads to a shift of the original z coordinate (i.e. the second argument) of the
ϑ1-functions for each Φi by αi. The resulting twined elliptic genus is therefore given
by

EG
(g)
CYd

(τ, z) = TrRR

(
g (−1)FLyJ0qL0− d8 (−1)FR q̄L̄0− d8

)
=

m−1∑
k,`=0

e−2πi`z

m

d+2∏
i=1

ϑ1

(
τ, αi + wi

m
(k + `τ + z)− z

)
ϑ1

(
τ, αi + wi

m
(k + `τ + z)

)
=

m−1∑
k,`=0

y−`

m

d+2∏
i=1

ϑ1

(
q, e2πi(αi+wik

m )q
wi`

m y
wi
m
−1
)

ϑ1

(
q, e2πi(αi+wik

m )q
wi`

m y
wi
m

) .(6.28)

The method of [BEHT14] can also be used for non-Abelian permutation symmetries.
In this case one can perform a coordinate transformation that diagonalizes the permu-
tation matrix that acts on the Φi. In this new basis the action is then again Abelian
and the phase factors are the eigenvalues of the permutation matrix.

6.4. Analysis for Calabi–Yau 5–folds

From the previous sections, we have seen that, up to an overall constant, all CY
5–folds allow for a character expansion that is essentially the same as the expansion of
the elliptic genus of K3 in the discovery of Mathieu moonshine. We now understand
the implications of Mathieu moonshine for the construction of CY 5–folds by using the
techniques of symmetry surfing i.e., by explicitly computing the twined elliptic genus
for many CY 5–folds and studying their N = 2 character expansions.

6.4.1. Description of computational algorithm. The starting point is to ob-
tain a database of CY 5–folds. This can be obtained from [KS]. In total, we start with
a list of 5 757 727 CY 5–folds that can be described by reflexive polytopes. However,
out of these 5 757 727 CY 5–folds only 19 353 are described by transverse polynomials
in weighted projective spaces. We recall that the construction of CY5 as hypersur-
faces in weighted projective space is a requirement to compute the elliptic genus using
localization techniques.

We may now calculate the twined elliptic genus as a power series in q for these
examples to get a better understanding of a potential connection to a sporadic group.
Based on the elliptic genus in equation (6.13)

EGCY5(τ, z) = −χCY5

48

[
22
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+
∞∑
n=1

An

(
chN=2

5,n, 3
2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

)]
,(6.29)

we look for a genuine CY 5-fold whose elliptic genus transforms covariantly (up to a
constant) like a function related to Mathieu moonshine. This happens in particular for
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the product manifold CY3×K3 , where the elliptic genus is the product of a prefactor
χCY3 and φ0,1(τ, z) which is a function that exhibits Mathieu moonshine.

For genuine CY 5–folds we find this behaviour. For the hypersurface in the weighted
projective space CP6

1,1,1,3,5,9,10 we have

EGCY5(τ, z) = 3556 ·

[
22
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+90

(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+ . . .

]
,(6.30)

corresponding to an Euler number of χ = −170 688. Under the Z2 symmetry

(6.31) Z2 :

{
Φ1 → −Φ1 ,
Φ2 → −Φ2 ,

we find the twined elliptic genus

EGtw,2A
CY5

(τ, z) = 14 ·

[
2
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+6
(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+ . . .

]
,(6.32)

which is a constant, 14, multiplied by the 2A series of M24. The constant contribution
of 14 can be obtained by decomposing the constant appearing in front of the untwined
elliptic genus (3556) in such a way that one gets 14 upon twining by the 2A element.
It therefore seems plausible that there is an action of M24 acting on the elliptic genus
of this particular CY 5-fold. Since the elliptic genus is an index, this symmetry could
arise at certain points in moduli space or everywhere in moduli space or via symmetry
surfing. This possibility extends to other CY 5–folds, where simple low order twinings
agree with the expectation. Here we list a few interesting examples:

Applying the same order two twining as the one given in equation (6.31) to the
Calabi–Yau hypersurface in the weighted projective space CP6

1,2,2,3,4,4,8 results again in
the 2A element of M24, but now with a half integral prefactor of 69/2. This might
seem concerning at first i.e., to have a non–integer prefactor but we could remedy this
by restricting ourselves to M12 instead.

We can likewise study order four twinings by the Z4 symmetry that acts as

(6.33) Z4 :

{
Φ1 → iΦ1 ,
Φ2 → −iΦ2 .

For the Calabi–Yau hypersurface in CP6
1,1,1,1,4,4,4 under Z4 twining, we find the 4B series

with prefactor 42 [BCK+18]. Similarly, one can find more specific examples where
particular symmetries for particular CY 5–folds give the expected twining function of
Mathieu moonshine up to an overall prefactor.

We now perform a more systematic study of twinings of small order for CY 5–folds
that are hypersurfaces in weighted projective spaces for the list of CY 5–folds that can
be described as such as in [KS]:

(1) We start with the 19 353 CY 5–folds that can be described by a transverse
polynomial in the homogeneous coordinates of the ambient weighted projective
space.
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(2) We then solve for a single transverse polynomial computationally. Due to
the difficulty in constructing the transverse polynomials, we find a transverse
polynomial for only 18 880 CY 5–folds.

(3) For each of these 18 880 CY 5–folds, we check if whether there is an Abelian
Z2 symmetry acting on them and found that 16 727 of the manifolds have at
least one such symmetry.

(4) For these 16 727 manifolds, we calculate the twined elliptic genus for a sin-
gle Z2 symmetry to zeroth order in q. Restrictions on the code to prevent
processor overclocking led to analyzing a set of 13 642 twined elliptic genera.
The computational complexity of the problem allows us to suspect that these
CY 5–folds could likely be hypersurfaces in weighted projective spaces of low
degree.

6.4.2. Results of analysis for Calabi–Yau 5–folds. We find that the order two
twining by the Z2 symmetry always leads to a function that is a linear combination
of the 1A and 2A series of M24 with prefactors that are integer or half integer. For
example, when twining the the Calabi–Yau hypersurface in the weighted projective
space CP6

1,1,1,1,1,1,3 by the symmetry in equation (6.31), we find the following twined
elliptic genus

EGtw
CY5

(τ, z) =
9

2
·

[
22
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+90

(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+O(q2)

]

+ 43 ·

[
6
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
−6
(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+O(q2)

]
.(6.34)

It follows from standard CFT arguments [Che10, GHV10b] that any elliptic genus
twined by a group element g has to be a Jacobi form φg0,m with a potentially non-trivial

multiplier under Γ0(|g|) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ c = 0 mod |g|
}

, where |g| denotes

the order of g. This means that φg0,m transforms like

φg0,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= e

2πicd
|g|hg e

2πimcz2

cτ+d φg0,m(τ, z) ,

(
a b
c d

)
∈ Γ0(|g|) ,

φg0,m(τ, z + λτ + µ) = (−1)2m(λ+µ)e−2πim(λ2τ+2λz)φg0,m(τ, z) , λ, µ ∈ Z .(6.35)

Since c/|g| and d are integers we find that the above transformation can only lead
to a non-trivial multiplier, i.e., a non-trivial phase in the first transformation law, if
hg 6= 1. A list of the hg for Mathieu moonshine, which is the relevant case for us, is
given for example in table 2 in [Gan16]. In particular we see that for 1A and 2A we
have h1A = h2A = 1, while for 2B one has h2B = 2. This means that the 2B twined
elliptic genus has a non-trivial multiplier.

For low order twinings, the twined elliptic genera of CY 5–folds are generated by
very few basis elements. This follows from the fact that this is the case for Mathieu
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moonshine and K3 manifolds, as discussed for example in [CHVZ16]. The functions
that appear in the study of CY 5–folds are simply the product of φ0, 3

2
and the func-

tions that appear for K3 [Gri99]. We are particularly interested in order two twinings
and would like to know whether they match the expectation of Mathieu moonshine,
i.e., whether the expansion coefficients agree with the 2A or 2B expectation. Generi-
cally, twined elliptic genera of order two transform under Γ0(2) often with a non-trivial
multiplier. If there is no non-trivial multiplier, then the twined elliptic genus is a linear
combination of the 1A element and the 2A element since these are the generators of all
modular functions of Γ0(2) without multiplier and with weight zero and index m = 5

2
.

If there is a non-trivial multiplier then we expect the answer to be proportional to the
2B element. However, this is never the case from our analysis [BCK+18]. The 2B case
at the lowest order in the character expansion is in fact an artifact of the twined elliptic
genus being a combination of the 1A and 2A elements. This was expected since we only
consider geometric symmetries that cannot lead to a non-trivial multiplier, since the a
non-trivial multiplier arises from the failure of level matching in the g-twisted sector.
This failure to level match can only occur for symmetries that act asymmetrically on
left- and right-movers i.e., non-geometric symmetries, which is not the case for our
geometric symmetries. This means all the twined elliptic genera computed are linear
combinations of the 1A and 2A elements of M24. Since each coefficient in the expan-
sion of the elliptic genus counts states with a given mass and charge, all the expansion
coefficients of the basis functions have to have integer coefficients. This means that
for our geometric order two twinings, we expect the answer to be a linear combination
with integer coefficients of the following basis functions

f1a(τ, z) = 11
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
−
(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+45

(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+ . . . ,(6.36)

f2a(τ, z) = 3
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
−
(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
−3
(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+ . . . .(6.37)

These two basis function are 1/2 times the expected 1A and 2A series from Mathieu
moonshine, respectively and this arises because in Mathieu moonshine all coefficients
in the character expansion are even integers.

Out of the 13 642 twined elliptic genera we find in 927 cases where the twined
elliptic genus is proportional to f2a. For 811 of these, the overall coefficient is an even
integer and the twined elliptic genera are consistent with a possible M24 symmetry.
Figure 7 shows two histograms of the coefficients of the f1a function for the 13 642
twined elliptic genera. Most cases are of when the coefficients of f1a are zero. Since a
zero coefficient for f1a is about twice as likely as a non–zero even integer coefficient, it
still remains unclear if whether there is an action of M24.

We therefore analyze these 927 cases further:

(1) We generate a large number of Z2 symmetries for each of these 927 examples
and calculate their elliptic genera for these different Z2.

(2) For almost all cases with multiple Z2 symmetries, there is only a single instance
of an elliptic genus that is proportional to 2A. Several other order two twined
elliptic genera are linear combinations of f1a and f2a. This excludes an action
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Figure 7. A histogram of the coefficients of f1a for the 13 642 twined
elliptic genera. The coefficients peak near zero and as can be seen on the
zoomed in histogram on the right this peaking is potentially larger than
expected. We also see that even integer coefficients appear substantially
more frequent.

of only M24 and supports the explanation that interesting twining genera for
most of these 927 cases is indeed a fluke.

(3) For cases with only a single Z2 symmetry, we twine by a higher order element.
For all cases we find at least one symmetry that leads to a twined elliptic
genus that is not consistent with the M24 (or M12) expectation.

By twining the elliptic genus of CY 5–folds by order two and higher symmetries,
we may exclude the possibility that any of the 13 642 CY 5–folds admit a strict M24

symmetry. These results are consistent with the expectation that CY 5–folds have
symmetries that correspond to small discrete symmetry groups at certain points in
moduli space but no large sporadic symmetry. However, we cannot exclude the more
exotic possibility of symmetry groups that are even larger than M24.

Another possibility is that generic CY 5–folds have multiple copies of M24 as sym-
metry groups of their worldsheet sigma model superconformal field theories. So instead

of interpreting the prefactor −χCY5

48
as a particular sum of irreducible representations

of a single M24, we could have potentially up to
∣∣∣χCY5

48

∣∣∣ distinct M24 symmetries.10

A geometric Z2 symmetry could then correspond to the 1A element in some of the
M24’s and to the 2A element in other M24 groups and the prefactor could be a sum of
non-trivial irreducible representations for some of the M24 symmetries. This would be
consistent with all the results above (except for cases with half integral coefficients that
would require us to replace M24 by M12). However, we do not entertain this possibility
here due to its unlikelihood. The only cases where a check is rather straightforward are
provided by the most interesting examples of CY 5–folds, namely the ones with Euler
numbers χ(CY5) = ±24 and χ(CY5) = ±48. Based on the expansion of their elliptic
genus, they could have a single M24 symmetry group for χ(CY5) = ±48 or a single
M12 symmetry group for χ(CY5) = ±24, but these CY 5–folds become rare beyond a
weight system of weight m ∼ 200. The search for more such CY 5–folds using PALP

10Or analogously up to
∣∣∣χCY5

24

∣∣∣ distinct M12 symmetries.
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Euler number number of examples cases with Z2 symmetries reflexive cases
χ = −48 72 (67) 64 (59) 6 (6)
χ = +48 68 (59) 51 (43) 4 (4)
χ = −24 32 (29) 26 (23) 4 (4)
χ = +24 27 (24) 25 (22) 4 (4)

Table 2. The number of Calabi–Yau 5–folds constructed as hypersur-
faces in weighted projective spaces. The values in parenthesis give the
number of Calabi–Yau manifolds with different Hodge numbers.

[BKS+12] to go to larger weights m does not add much more to the list of relevant
CY 5–folds.

6.4.3. Generating relevant CY 5–folds. In order to generate a few dozens of
examples of CY 5–folds with Euler number ±24 and ±48 we first partition an integer
m into seven integer weights wi. We then check whether the Poincaré polynomial

(6.38) P (x) =
7∏
i=1

1− xm−wi
1− xwi

evaluated at x = 1 is an integer and we consider only the ones for which this is true.
Next, we apply the formula

(6.39) χ =
1

m

m∑
k=1

m∑
l=1

∏
gcd(l,k)·wi

m
∈Z

wi −m
wi

for the Euler number (see [KS92] for a derivation based on [Vaf89]) to the remaining
cases and proceed only if the Euler numbers equal ±24 or ±48. Then the weights wi
may or may not correspond to a weighted projective space that admits a CY5 hyper-
surface that is described by a transverse polynomial. For 7 ≤ m ≤ 600, we generate all
such weight systems and then determine explicitly using PALP [BKS+12] if whether
these are indeed CY hypersurfaces. In this way, we can generate dozens of examples
with small Euler numbers. In order to check whether these examples correspond to dis-
tinct manifolds we calculate all their Hodge numbers. The computation of the Hodge
numbers demonstrates that there do exist manifolds with the same Hodge data but
are described by hypersurfaces in different weighted projective spaces. For all the con-
structed CY 5–folds, we calculate all possible geometric Z2 symmetries using PALP.
In Table 2 we list the number of manifolds using the technique described above, the
number of examples with a Z2 symmetry and the number of those manifolds that can
be described by reflexive polytopes.

We twine all of the above examples listen in Table 2 by their geometric Z2 symme-
tries.

6.4.4. Analysis on twined elliptic genera for constructed CY 5–folds. For
the cases of χ = +48 and χ = −48 we find twined elliptic genera that are proportional
to the 2A of M24 in 3.4% and 5.2% of the cases, respectively. We find that the
coefficients f1A demonstrate no particular peaking c.f. Figure 7b. Furthermore, there
is no preference for even coefficients. It is worth noting that the cases for which the
twined elliptic genus is proportional to the 2A expectation have prefactors with absolute
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values larger than one. Recall that these manifolds have an elliptic genus whose form
is given by

EGχ=±48
CY5

(τ, z) = ∓
[
22
(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 2

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
+
∞∑
n=1

An

(
chN=2

5,n, 3
2
(τ, z) + chN=2

5,n,− 3
2
(τ, z)

) ]
= ∓2f1a(τ, z) ,(6.40)

i.e., a function whose coefficients are all sums of irreducible representations of M24

without an overall prefactor. One would therefore have expected that the twined func-
tions, regardless of whether they correspond to 2A of M24, have no additional prefactor
either, i.e., we would have expected to find ±2f2a. However, these twined elliptic genera
are instead given by {−42f2a,−38f2a,−22f2a,−6f2a, 50f2a}, i.e. we never recover the
2A series of M24 exactly. This is an interesting result for another reason: The states
counted with sign by the elliptic genus arise from a cancellation only if at a special
point in moduli space there exist states with the same mass and charge but different
statistics. In the absence of such cancellations the twined elliptic genus should never
result in a larger number of states with a given mass and charge than the untwined case,
since the twined case is a restriction of a count of states that are invariant under the
twining action. However this is exactly what is observed in some cases. For example,
consider the Calabi–Yau 5-fold described as a hypersurface in the weighted projective
space CP6

16,17,17,34,58,62,102 whose elliptic genus is given by the equation (6.40)(with a
plus sign). Upon twining by a Z2 symmetry that acts as

(6.41) Z2 :

{
Φ2 → −Φ2

Φ6 → −Φ6
,

we find the following twined elliptic genus

ZtwCY5
(τ, z) = 150

(
chN=2

5,0, 1
2
(τ, z) + chN=2

5,0,− 1
2
(τ, z)

)
− 50

(
chN=2

5,0, 3
2
(τ, z) + chN=2

5,0,− 3
2
(τ, z)

)
−150

(
chN=2

5,1, 3
2
(τ, z) + chN=2

5,1,− 3
2
(τ, z)

)
+O(q2)

= 50f2a(τ, z) .(6.42)

This means that the 22 states that multiply chN=2
5,0, 1

2
(τ, z) + chN=2

5,0,− 1
2
(τ, z) in equation

(6.40) now have a multiplicity of 150 under a Z2 twining as described above. The
interpretation that we give here is that the 22 untwined states must likely arise from a
cancellation between n+22 bosonic states and n fermionic states. Upon twining we have
m+150 bosonic states and m fermionic states with the condition that n+22 > m+150
since in the twined case we do not count all states but just the ones invariant under
the twining. By comparing equations (6.40) and (6.42) we see that in this example
there must have been such a cancellation of states at each level since the twined elliptic
genus has larger expansion coefficients. This occurrence has also been observed for CY
5–folds with larger Euler characteristic [BCK+18]. This can probably be understood
as follows: Generic CY 5–folds have several Hodge numbers that are large compared
to 48. Therefore, in order to obtain a CY 5-fold with a small Euler number, these large
numbers have to cancel rather precisely. In the case above we have the non–trivial
Hodge numbers

(6.43) h1,1 = 25, h1,2 = 0, h1,3 = 232, h1,4 = 259, h2,2 = 1692, h2,3 = 1946.
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For any Calabi–Yau 5-fold one has [Gri99]

(6.44) χ0 = χ5 = 0, χ1 = χ4 = − 1

24
χCY5 , χ2 = χ3 =

11

24
χCY5 ,

which is consistent with the Hodge numbers above and χCY5 = −48. Upon twining,
there is a removal states of that do not preserve the twining symmetry. This results
in a less precise cancellation between the large Hodge numbers which accounts for the
larger multiplicities of the twining genera.

Remark 6.4.1. Ambient weighted projective spaces with six complex dimensions are
generically singular and the Calabi–Yau 5–folds that are hypersurfaces in these spaces
are also singular. Therefore, a large number of Calabi–Yau hypersurfaces in weighted
projective spaces that we studied consists of CY 5–folds that are generically singular.
However, this by itself does not explain why there is no connection to the Mathieu group
for any of these cases. For example, the case of T 4/Z2 is a singular limit of K3 and it
nevertheless gives rise to many twined series that one expects from Mathieu moonshine.

Lastly, we discuss the twining by order two elements for the Calabi–Yau manifolds
with χ = ±24 that we constructed and studied with up to fourteen Z2 twinings each.
However, none of the explicit cases of twined elliptic genus are proportional to f2a, but
rather linear combinations of f1a and f2a with non-zero coefficients for both functions.
Therefore, as a final result of this analysis: We may exclude the existence of a strict
M24 or M12 symmetry for the relevant CY 5–folds χ = ±48 and χ = ±24 that we
constructed [BCK+18].

6.5. A comment on toroidal orbifold and two Gepner models

In the previous section, we studied the elliptic genus of twined CY 5–folds with
the hope of finding an explicitly CY 5-fold whose elliptic genus has an exact M24

symmetry. Despite in–depth analysis, no evidence that relates M24 whose irreducible
representations appear in the expansion of the elliptic genus of the CY 5-fold has
been found. These results suggest that the elliptic genus of generic CY 5–folds do
not have symmetries that correspond to the M24 group. However, it is still possible
that one or several special CY 5–folds have M24 as their symmetry group or that
the appearance of the Mathieu moonshine is described in another setting [BHL+20].
This is something that is as of yet not falsifiable since there is no exhaustive list of
CY 5–folds. We may however check special models that have large symmetry groups,
such as toroidal orbifolds or Gepner models. The advantage here is that it is not only
possible to compute the elliptic genus, but one can also calculate the Hodge-elliptic
genus [KT17, Wen17] or the fully flavoured partition function. If these models have
an actual M24 symmetry, then coefficients in the elliptic genus, the Hodge-elliptic genus
and the full partition function should be sums of irreducible representations of M24.
However, in the examples that are studied in [BCK+18], it is difficult to discern the
exact connection to the M24 group due to these models having large coefficients in their
expansions. An investigation of the study of sporadic group symmetries in toroidal
orbifolds T 10/G and Gepner models (1)6, (2)4, and the relation between the Umbral
groups and the elliptic genus of CY 6–folds has also been carried out in [BCK+18] by
the author of this thesis, however, this final report does not expand upon it and we
refer the reader to [BCK+18] for more details.
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6.6. Conclusions

In this chapter, we investigated some of the properties of the Mathieu moonshine
viz., if it is a property of the K3 sigma model or a Jacobi form that also appears in the
elliptic genera of higher dimensional Calabi–Yau manifolds. The idea of this chapter
was to study the symmetries of the twined elliptic genera of Calabi–Yau 5–folds which
are hypersurfaces in weighted projective space. The reason for choosing the case of
CY 5–folds is that their elliptic genus contains the function φ0,1 and could therefore
be used to study the question if whether this function is serves as the key element in
the study of Mathieu moonshine. These manifolds have the advantage that their BPS
spectra localizes at special points/cycles in such a way that they can be computed
using localization techniques as studied in [BEHT14]. By constructing a large class
of CY 5–folds and studying their twined genera, we make interesting observations that
most of the cases of twined elliptic genera do not exhibit any relation to M24. A
small number of these manifolds however, despite being related to the twined elliptic
genera of linear combinations of the 1A and 2A elements of the M24 group, fail to
demonstrate a smoking gun relation to M24, which would mean that all twining genera
of all orders would be related to only one conjugacy class of M24 that is determined by
the twining element. While this does not falsify the possibility of a Mathieu moonshine
in the moduli space of CY 5–folds, it does however lend more support to the idea that
Mathieu moonshine is likely not a feature of the elliptic genus of K3 per se, but
rather of the whole moduli space of K3 surfaces, with the most promising evidence
in this direction coming from [GTVW14]. This only deepens the mystery of Mathieu
moonshine and lends more support to the statement that K3 surfaces are central in
understanding the Mathieu moonshine phenomenon.

As a concluding remark, moonshine phenomena are special and rare mathematical
phenomena between (possibly) physical partition functions and sporadic groups. Their
study, thus far having led to advancements in conformal field theory [Bor92], also could
serve as a window into understanding some of the discrete symmetries of string theory.
It remains to be seen what physical theory or object really admits an action of such
sporadic groups.
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Automorphic forms and black holes





CHAPTER 7

Counting BPS black holes in string theory

Overview of this chapter

The study of thermodynamics of black holes in gravitational theories [Bek73,
BCH73, Wal95] is of prime importance as it is one of the most important elements
in constructing a quantum theory of gravity. The black hole entropy, also known as
Bekenstein–Hawking entropy, is of the form (in natural units of ~ = c = `p = 1)

SBH =
A

4G
(d)
N

+ c1 logA+ c2
1

A
+ · · ·+ cne

−A ,(7.1)

where A is the codimension–1 area of the black hole, G
(d)
N is the d–dimensional Newton’s

constant. The leading contribution term
A

4G
(d)
N

, resulting in what is known as the area

law, is a universal term regardless of the black hole. Black hole thermodynamics and the
computation of entropy is of importance, in particular, to address the issue of unitarity
of the gravitational S–matrix. The nature of considering a quantum field theory on
a black hole geometry in the semi–classical limit leads to a phenomenon known as
Hawking radiation which, in the semi–classical limit, leads to a loss of unitarity in the
aforementioned quantum field theory [Haw75, Haw76]. While there have been many
ways to remedy this (see [Har16] and references therein), there is still the issue of
counting the number of microstates of a black hole i.e., formulate a quantum theory
which counts the microscopic degrees of freedom of a black hole. Progress towards this
in string theory/supergravity was initiated by the work of [SV96] where the leading
order term to (7.1) was derived from D–brane/conformal field theoretic techniques.
However, the key goal has always been to compute (7.1) exactly. This is known as
precision counting of black hole microstates [DDMP05, Sen08]. The aim of this
chapter is provide sufficient background to understand the idea of precision counting
and exact holography [DGM13] (which can be thought of as precision counting from
both the supergravity and SCFT sides of the holographic duality). The key goal is to
connect to the work presented in Chapter 8 where a crucial aspect of exact microstate
counting in N = 4, d = 4 theories is explained.
For more pedagogical reviews, we refer the reader to a vast array of literature found in
[DN12, Sen08, DDMP05] and references therein. We in particular refer the reader
to these references since a the notation used in this thesis follows from there. For an
introduction into the number theoretic aspects of black holes, we refer the reader to
[DMZ12, Moo07, Moo98, DM11, Bel08]. Regarding black holes in supergravity,
we refer the reader to [Moh00, BFM06, Bel08].

7.1. Relevant aspects of N = 4, d = 4 string compactification

7.1.1. Moduli spaces and charge vectors. The starting point to construct
N = 4, d = 4 black holes in string theory is to consider a compactification to a

79
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theory with 16 supercharges. Such a compactification is feasible by studying Type II
string theory on K3 × T 2, which is dual to Heterotic string theory on T 4 × T 2 ∼= T 6

[Wit95, HT95]. For details of compactification on K3 surfaces, we refer the reader
to [Asp96, AM96]. The compactification of string theory on K3× T 2 results in the
supergravity multiplet, 22 vector massless multiplets. The massless fields parametrize
and S– and T–moduli spaces of the theory. The S–moduli space is

MS = SL(2,Z)\SL(2,R)/U(1) ,(7.2)

while the T–moduli space (also known as the Narain moduli space) is

MT = O(22, 6,Z)\O(22, 6,R)/ (O(22,R)×O(6,R)) .(7.3)

The SL(2,Z) forms the S–duality group while the group of discrete identifications
O(22, 6,Z) forms the T–duality group. The full U–duality group is SL(2,Z)×O(22, 6,Z).
What will be of relevance in this thesis is the study of the rest frame supersymmetric
representations of these fields. The spectrum of the theory is as follows:

(a) The non–BPS multiplet (256 dimensional).
(b) The long–BPS multiplet (64 dimensional) which preserves only a quarter of

the supersymmetry and is therefore a 1
4
–BPS multiplet.

(c) The short–BPS multiplet (16 dimensional) which preserved only half the su-
persymmetry and is therefore a 1

2
–BPS multiplet.

These BPS states can be specified by their charges alone and these charges are specified
by the vector representation of the O(22, 6,Z) T–duality group and in the fundamental
representation of the SL(2,Z) S–duality group. In other words, the BPS states can
be thought of as vectors in a Λ22,6 self–dual, integer, even charge lattice of signature
(22, 6). These charge vectors Γ ∈ Λ22,6 are dyonic i.e., they carry electric and magnetic

charges as Γ =

(
P
Q

)
where P is the magnetic and Q is the electric vector, each of

length 28 that transform as previously mentioned under the S– and T–duality groups.

A charge vector Γ =

(
P
Q

)
is said to be primitive if it cannot be identified (up to

integer multiplication) with another vector in the charge lattice. A purely electric
charge vector is one in which P = 0, while a purely magnetic vector is one in which
Q = 0. An important distinction between 1

4
–BPS and 1

2
–BPS vectors is that for a

1
4
–BPS vector

(
P
Q

)
, P ∦ Q while for a 1

2
–BPS vector, P ‖ Q. The action of the

S–duality group on a charge vector is(
P
Q

)
SL(2,Z)−−−−→

(
aP + bQ
cP + dQ

)
, ∀

(
a b
c d

)
∈ SL(2,Z).(7.4)

Naturally, the action of the S–duality group also changes the S–modulus of the theory.
The case of the T–duality transforms are a bit more complicated. We know that the
T–moduli can be written in terms of 28× 28 matrices, owing to the structure of their
moduli space (7.3). Let L ∈ Mat(22, 6,Z) be given by

L =

CE8×E8 0 0
0 0 I6

0 I6 0

 ,(7.5)
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where CE8×E8 is the Cartan matrix of E8 × E8 and I6 is the 6 dimensional identity
matrix. A T–duality transform is a given by

P → TP, Q→ TQ ,(7.6)

where T := T tLT = L. Naturally, the action of the T–duality also changes the action
of the T–modulus. Since moving in the moduli space changes the moduli, it can also
change the charges of the theory. There are, however, quantities that do not change
as a result of T-transformations. These are the T–dual invariants and are given by

n = QtLQ =
Q2

2
, m = P tLP =

P 2

2
, ` = QtLP = P tLQ = Q · P = P ·Q.(7.7)

The above T–dual invariants can be combined to yield the discriminant of a charge
vector as ∆ = 4mn−`2 = P 2Q2−(P ·Q)2. The discriminant for the case of N = 4, d =
4 compactification that we consider here is also invariant under S–duality transforms
i.e., the discriminant of the charge vector does not change in the S–moduli space either.
This implies that the ∆ is a U–duality invariant [DGM11a]. In this thesis, we shall
consider the case that P,Q are such that gcd(P ∧ Q) = 1.1 Dyons which obey this
relation are referred to as torsion 1 dyons. Dyons for which gcd(P ∧Q) > 1 will not be
studied in this thesis and we refer the reader to [BSS08b, BSS08a] for more details.

7.1.2. Making black holes in string theory. From the perspective of type IIB
string theory, it is also possible for us to assign a brane construction of BPS objects.
This is done by wrapping D1 and D5 branes on K3× T 2 ∼= K3× S1 × S̃1. Such black
hole solutions have been studied well [HS91, CM96, Mal96, HS91]. Essentially a
dyonic black hole solution can be constructed by first compactifying on K3 × S1 and
then compactifying again on S̃1. The charges of the black hole are sourced as follows:

(a) The electric charge Q2/2 = n is due to the momentum along the circle S1 and
the KK monopole charges that arise upon further compactification on S̃1.

(b) The magnetic charge P 2/2 = m = Q1Q5 arises from taking Q1 D1 branes
wrapping S1 and Q5 D5 branes wrapping K3× S1.

(c) The angular momentum ` = P · Q arises from taking motion in the KK
monopole background i.e., ` units of angular momentum along S̃1.

In this thesis, we shall be interested in two particular types of black hole solutions
viz., the 1

2
–BPS zero area black hole and 1

4
–BPS large black hole. These black hole

solutions have different behaviours across the moduli space as we shall see later.

(a) 1
2
–BPS Black holes:

1
2
–BPS black holes are zero area black holes (at zeroth order in α′ [DDMP05])

and do not contribute to the area law term in the Bekenstein–Hawking entropy
(7.1). They have no center of mass motion in the KK monopole background.

(b) 1
4
–BPS Black holes:

1
4
–BPS black holes are “large black holes” and contribute to the area law.

They are described by the D1–D5-KK-p system and include a motion in the
KK–monopole background [BMPV97].

These black holes can also be distinguished and constructed on the basis of the 4d/5d
uplift where 1

2
–BPS states lift to black strings in a Taub–NUT geometry in 5d, while

1
4
–BPS black holes lift to spinning black holes in a Taub–NUT geometry [GSY06b,

GSY06a].

1gcd(P ∧Q) = 1 means that PiQj − PjQi = 1, i, j = 1, · · · , 28.
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7.2. BPS states counts from supergravity: Attractors, Localization and
Exact Holography

While there are BPS black hole solutions in string theory, there is a specific reason
to study and count BPS spectra in non–geometric settings. This is due to the lack of
dependence of the BPS spectrum on the coupling of the theory. In other words, the
BPS partition function (which includes functions such as the elliptic genus (3.48)) do
not depend on the string coupling. This means that the BPS partition function in the
limit of large string coupling gs � 1 where the gravitational back reaction creates a
black hole solution is the same as in the limit of small string coupling gs � 1 which
is described by a weakly coupled SCFT. This means that the partition function of the
BPS states in the SCFT is the same as the partition function of the black hole in the
gravitational description of the theory, which leads to a holographic interpretation for
the entropy of these black holes, in the spirit of [AGM+00, Mal99]. This idea was
used to show that the leading entropy computation in the SCFT matches with the area
law for the D1–D5 black hole in a five dimensional compactification in [SV96] and has
led to extensive work on microstate counting thereafter. We refer the reader to [MS11,
DM11, DDMP05] for more details. In this thesis, we shall focus on the SCFT aspects
of black hole counting, although it would behoove us to motivate the notion of exact
holography, localization and the attractor mechanism for now. In simple terms, exact
holography from the perspective of this thesis is the technique to obtain an exact match
of the black hole partition function/entropy from the gravitational and field theoretic
description to all orders of expansion beyond the area law [DGM13, Gom11].

7.3. A comment on localization of supergravity

In this section, we discuss the first ingredient in exact holography viz., localization
of supergravity. Localization is a technique from differential geometry [DH82, AB94]
that has been applied to the study of BPS states in field theory [P+17] and supergravity
[DGM13, DGM11b, Rey16]. We refer the reader to these papers and thesis the
[Rey16] for more references. Localization for black holes in N = 4, d = 4 supergravity
will be reviewed in Section 8.3. The idea of exact holography would therefore be to
obtain an exact match between the black hole degeneracies obtained via localization of
N = 4 supergravity and the BPS state count obtained from the BPS partition function
from the SCFT description, for any and all charges.

7.4. The attractor mechanism

The attractor mechanism for black holes [FKS95, FK96] (see [Moo98, Sen08]
for reviews) states that fluctuations to asymptotic moduli do not affect the black hole
entropy and the entropy is fixed in terms of the attractor equations in moduli space.2

While we will not go into the details of solving the attractor equations, we do wish to
point out the reason of motivating them here:

(1) The attractor mechanism fixes the entropy of the black hole in terms of the
charges of the black hole.

(2) If we consider a moduli space in which the degeneracy of the black holes are
constant (such as in the case of 1

2
–BPS solutions in N = 4, d = 4, as we shall

see), the attractor mechanism is a sufficient description of the BPS counts

2Or a domain in moduli space where the black hole degeneracy will not change.
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from supergravity. For the case of 1
2
–BPS black holes in N = 4, d = 4, the

attractor mechanism has bee studied in [LCdWKM04].

7.5. Black holes and automorphic forms

Following the work of [SV96], there have been many bodies of work in trying
to count the BPS partition function for black holes from an SCFT point of view
[MMS99, DMVV97, DVV97, SSY06a, SSY06b, DGM11a, Mal96, Gai05,
CV07, DGM11a, DMZ12]. The key ingredient in the SCFT computation of BPS
black hole entropy is that the degeneracy of the black hole in the sense of W = eSBH are
computed charge wise and are given in terms of the Fourier expansion coefficients of the
partition function of the SCFT, which as we have already seen before in Chapter 2,
are automorphic forms. Automorphic forms show up in a variety of black hole and
moduli space related topics and also for other string compactifications for example in
[Moo98] but we shall not cover them in this thesis. Our sole focus in this section
will be to define/derive automorphic forms that capture the degeneracies of BPS black
holes in N = 4, d = 4 theories.

7.5.1. Modular forms and small black holes. Small black holes, as we have
seen in Section 7.1.2, are 1

2
–BPS objects in the compactification that we are considering.

The entropy of such black holes in in fact captured by the Dedekind–eta function as
in (2.7b) as

Z1/2(τ) :=
1

η(τ)24
= q−1

∞∏
i=1

1

(1− qi)24
,(7.8)

with a Fourier expansion given by

Z1/2(τ) = q−1 + 24 + 324 q + 3200 q2 + · · · .(7.9)

The derivation of this modular form can be performed in the dual heterotic frame
where these BPS states are part of the perturbative spectrum [DH89]. These are the
Dabholkar–Harvey (DH) states and will play an important role in this thesis. The
idea behind their derivation is as follows. Due to supersymmetry, it suffices to restrict
ourselves to the purely bosonic sector which is the spectrum of the right movers in the
ten dimensional heterotic string. Therefore, the partition function of 1

2
–BPS objects is

the partition function of the right movers in the heterotic string theory, which yields
the Dedekind–eta function (7.8). In [LCdWKM04], this degeneracy was reproduced
for the 1

2
–BPS black holes following the techniques using the attractor mechanism.

The partition function Z1/2(τ) admits the Fourier series as in (7.9) where the inter-
pretation of these Fourier coefficients ci is that they are the degeneracy of the 1

2
–BPS

black hole of either electric or magnetic charge 2i = Q2 or P 2. A rule of thumb is that
a modular parameter corresponds to either an electric or a magnetic charge, while the
elliptic parameter corresponds to the motion in the KK monopole background and is
therefore related to the angular momentum of the large black hole.
The partition function Z1/2(τ) is constant at all points in moduli space implying that
the count of 1

2
–BPS states does not change in the overall moduli space Ms ×MT as

in (7.2) and (7.3). Furthermore, since Z1/2(τ) is a weakly holomorphic modular form,
it has an exponential growth of degeneracies.
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7.5.2. Jacobi forms and single charge, large black holes. We have already
encountered Jacobi forms in Section 2.2. In the present context, these functions de-
scribe three charge black holes with area, electric charge, and fixed magnetic charge.3

These objects are related to the elliptic genera and indices of BPS states. From the
point of view of black holes in N = 4, d = 4 string theory, it is useful to keep in mind
the elliptic genus of K3(which is an index 1 Jacobi form) defined in (3.50) with the
Fourier expansion

EGK3(τ, z) = 2φ0,1(τ, z) = 2
∑
n,`

C(4n− `2)

CK3(∆)

qny` .(7.10)

In the above equation (7.10), the coefficients C(∆) are of prime importance.4 We shall
denote these coefficients as CK3(∆) for future reference. To make a connection to black
holes, it is important to consider the Hilbert scheme of K3, Hilb(K3). The Hilbert
scheme is related to the symmetric product orbifolds of K3 as a resolution of the singu-
larities in the symmetric product of K3 , Sym(K3)m+1 = (K3⊗K3⊗ · · · ⊗K3︸ ︷︷ ︸

m+1

)/Sm.

More specifically, this resolution is necessarily a crepant resolution meaning that it
does not change the canonical class of the manifold [DHVW85, VW94, QW02].
We shall refer to these objects equivalently. The Hilbert scheme/symmetric product
of K3 will play an important role in the full dyonic partition function. We define the
generating function of the elliptic genus of the Hilbert scheme as

Ẑ(τ, σ, z) =
∑
m>−1

EGHilb(K3) e
2πimσ

pm

=
1

p

∏
m≥0,n≥0,`

(
1− qnpmy`

)−2CK3(∆)
,(7.11)

where the second line of the definition is derived from an orbifold [DMVV97]. Consid-
ering this Hilbert scheme paves way to constructing the full dyonic partition function
[DMVV97, DVV97].
Jacobi forms can also be thought of as being the partition function of a dyonic black
hole where either the electric/magnetic chemical potential of the black hole is treated
in the micro–canonical ensemble and the magnetic/chemical potential is treated in the
grand canonical ensemble. In other words, in order to compute the degeneracy of a
dyonic black hole of a fixed electric and magnetic charge, the number theoretic tech-
nique is to fix one of them (this corresponds to a Fourier–Jacobi expansion of a Siegel
modular form) and then perform a Fourier expansion of an appropriate Jacobi form.5

To count BPS states of a three charge black hole with (say) electric charge n, angular
momentum `, and fixed magnetic charge m, we employ a Jacobi form φm(τ, z). This

Jacobi form has a Fourier expansion φm(τ, z) =
∑
n,`

cm(n, `)qny`, where the coefficients

cm(n, `) capture the degeneracy of a black hole at fixed magnetic charge m, electric
charge n = Q2/2, and angular momentum ` = P · Q. By electric–magnetic duality,

3Hence, only one modular parameter.
4The discriminant ∆ = 4mn− `2. However, m = 1 due to the index of the Jacobi form being 1.
5This split implicitly breaks electric–magnetic duality but the overall computation of the degen-

eracy respects this duality.
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we can also keep the electric charge fixed in which case the modular parameter of the
Jacobi form would correspond to the magnetic charge.

7.5.3. Siegel modular forms and dyonic black holes. We can finally address
the generating function for the degeneracies of dyonic black holes. We shall restrict
ourselves to the un–orbifolded case of N = 4, d = 4 theories, although a lot of the
work that will be mentioned here has already been generalized to the cases to CHL
orbifolds in [DJS07, DJS06, DS06, PVZ17, BCHP17, FKN20, CNR20]. The
starting point is the Dijkgraaf–Verlinde–Verlinde (DVV) conjecture.

Conjecture 7.5.1 (DVV). The generating function of all 1
4
–BPS states in N =

4, d = 4 string compactification is given in terms of the unique Igusa cusp form
of weight 10, Φ10(τ, σ, z), as

Z1/4(τ, σ, z) =
1

Φ10(τ, σ, z)
= (qyp)−1

∏
(m,n,`)>0

(
1− qny`pm

)−2CK3(4mn−`2)
,(7.12)

where (m,n, `) > 0 is the notation used to denote that ` ∈ Z if m ≥ 0, n > 0
and ` < 0 if m = n = 0 and CK3(∆) are the coefficients of the Fourier expansion
of the elliptic genus of K3 , as defined in (7.10).

The properties of Siegel modular forms have been discussed in Section 2.3. In
this thesis, we consider working with the product representation of the Igusa cusp
form (7.12) which is obtained by the multiplicative lift of the elliptic genus of K3
[GN97, Kaw97, DJS06]. This is related to Hilb(K3) (7.11) as

1

Φ10(τ, σ, z)
=
Ẑ(τ, σ, z)

φ10,1(τ, z)
,(7.13)

where Ẑ(τ, σ, z) is as defined in (7.11). (7.12) can be used to compute the degeneracy
of 1

4
–BPS black holes via

d(m,n, `) = (−1)`+1

∫
C
dτ dσ dz

e−iπ(nτ+mσ+2`z)

Φ10(τ, σ, z)
.(7.14)

The above quantity is related to the helicity supertrace index, B6 [Sen08, Sen11a].
The subtlety here arises from the C contour dependence. This subtlety is due to the

fact that the contour C could in principle encompass a double pole6 of
1

Φ10(τ, σ, z)
in

the Siegel upper half plane (2.23), and in doing so, the integral (7.14) picks up the
contribution from the residues at this double pole [CV07]. This can physically be
explained in terms of wall crossing phenomena.

7.6. Comments on wall crossing phenomena

Wall crossing was first studied in [CV93] as a phenomenon in which a quanti-
ty/index7 is only piece wise constant on moduli space, but changes discontinuously at
special real codimension 1 loci in moduli space known as walls of marginal stability.

6 1

Φ10(τ, σ, z)
is a meromorphic function with double poles at z = 0 and Sp(2,Z) images.

7Here, the quantity is the B6 index.
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Standard references for wall crossing include [Cec10, Pio13, KS08, DMZ12]. Wall
crossing phenomena has two interpretations in this case:

(1) The SCFT interpretation [Cec10]: The long BPS multiplet as defined in Sec-
tion 7.1.1 splits into two short BPS multiplets. This split necessarily implies
that split preserves the mass, central charge Z and necessarily leaves the phase
of the BPS states equal to the original state i.e.,

Central charge conservation: Z = Z1 + Z2 .

Mass conservation: |Z| = |Z1|+ |Z2| .(7.15)

Phase equality: argZ = argZ1 = argZ2 .

This also can be written in terms of the charge vectors as(
P
Q

)
→
(
P1

Q1

)
⊕
(
P2

Q2

)
.(7.16)

The discriminant of the original charge vector is still preserved in terms of the
decay products. Further restrictions on the form of (7.16) will be imposed
in Chapter 8. These restrictions arise from the fact that a bound state may
yield different decay products at different walls of marginal stability. We have
considered a 1 → 2 split i.e., a decay with two end products. The conditions
(7.15) hold for any number of decay products, as is usually the difficulty with
N = 2 theories. In N = 4, d = 4 theories, the wall crossing phenomenon is
much more restricted in the sense that a 1

4
–BPS state necessarily decays only

into a product of 1
2
–BPS states at codimension 1 walls of marginal stability.

(2) Gravitational interpretation: From (7.15), it should not be too difficult
to guess the gravitational interpretation of wall crossing phenomena. The
interpretation is that it is thermodynamically favourable for 1

2
–BPS black

holes to form a bound state (multi–center black holes) that effectively is 1
4
–

BPS (or vice–versa where a 1
4
–BPS bound state decays) at precisely those

value of moduli that are defined by walls of marginal stability. The walls of
marginal stability are therefore loci in the moduli space where the bound state
of the

(
1
2
⊕ 1

2

)
-BPS black holes degenerate i.e., the bound state radius diverges

to ∞ [Den00].

The interpretation of wall crossing phenomenon is as follows:

(a) The residue contribution to (7.14) when the contour encompasses a pole is
precisely the change in degeneracy due to wall crossing [CV07].

(b) The degeneracy of 1
4
–BPS states is not constant across moduli space.

(c)
1

Φ10(τ, σ, z)
also counts bound states of 1

2
–BPS black holes.

7.7. Mock Jacobi forms and single center black holes

In this section, we present a very pedagogical review of obtaining single center 1
4
–

BPS black hole degeneracies from (7.12). The rigourous derivation can be found in
[DMZ12] and is essential to ensure that the results are indeed consistent. We shall
however skip most of the technical details here. We recall a key statement that the
generating function for all 1

4
–BPS states in N = 4, d = 4 compactification is given by
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Figure 8. Wall crossing of the type 1
4
–BPS → 1

2
–BPS ⊕ 1

2
–BPS .

(7.12). We start with the Fourier–Jacobi expansion of (7.12) which gives us

1

Φ10(τ, σ, z)
=

∞∑
m=−1

ψm(τ, z)pm,(7.17)

where ψm(τ, z) are Jacobi forms of weight−10 and index m that are meromorphic along
lines in the UHP. Note that the notion of double poles in the SUHP can be translated
to lines (walls of marginal stability) in the UHP [Sen07]. These functions ψm(τ, z) are
the generating function of all dyons of magnetic charge m. Note that the meromorphic
variable z is still a contained in ψm(τ, z) and therefore the pole structure is still retained
by this Jacobi form. In order to recover the single center 1

4
–BPS degeneracies for a

state of given charge (m,n, `), it does not simply suffice to know the Fourier expansion
of (7.17) since there are also degeneracies of bound states captured by this function.
We may however, perform a split of this Jacobi form into two pieces

ψm(τ, z) = ψpm(τ, z) + ψFm(τ, z) ,(7.18)

where ψPm(τ, z) denotes the ‘polar’ piece and is meromorphic and ψFm(τ, z) is the finite
piece and is ‘holomorphic’. This preceding statement will be the focus of the next
chapter. For now, we let us define the terms in (7.18). The starting point to compute
ψPm(τ, z) is to define an averaging function that averages over the double pole at z = 0
and its Sp(2,Z) images in the SUHP. This averaging function is given by

A2,m = Av(m)

[
y

(y − 1)2

]
,(7.19)
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where A2,m is the average over all double poles in the Jacobi form of index m, and Av
is the standard averaging function defined as

Av(m)

[
y

(y − 1)2

]
=
∑
λ

qmλ
2

y2mλ qλy

(y − 1)2
.(7.20)

Properties of the averaging function can be found in §8 in [DMZ12]. The averaging
function (7.20) can be used to derive the Appell–Lerch sum A2,m as

A2,m(τ, z) =
∑
s∈Z

qms
2+sy2ms+1

(1− qsy)2
.(7.21)

Using the Appell–Lerch sum, we define the polar piece as

ψPm(τ, z) =
p24(m+ 1)

η(τ)24
A2,m(τ, z),(7.22)

where p24(m + 1) is the coefficient of qm in the Fourier expansion of
1

η(τ)24
. This

Appell–Lerch sum is precisely the function that exhibits wall crossing at the double
poles of z = 0 and its Sp(2,Z) images in the SUHP [DMZ12]. Putting together (7.18)
and (7.22), we have

ψFm(τ, z) = ψm(τ, z)− p24(m+ 1)

η(τ)24

∑
s∈Z

qms
2+sy2ms+1

(1− qsy)2
,(7.23)

which is a holomorphic, mock–Jacobi form that is weakly holomorphic. Recall that
this is required for the exponential growth of degeneracies. One would therefore expect
that computing the Fourier expansion coefficients of (7.23) gives the degeneracies of
1
4
–BPS black holes cFm(n, `) as

ψFm(τ, z) =
∑
n,`

cFm(n, `) qny`.(7.24)

It is however challenging to compute cFm(n, `) for arbitrary (m,n, `). Therefore, we
make use of the Rademacher expansion to compute these coefficients.

7.8. (Mock) Jacobi forms and the Rademacher expansion

In this section, we review the Rademacher expansion for a mock–Jacobi form fol-
lowing the introduction to the Rademacher expansion in Section 2.7 [BO06, BM13,
BM11, BO12] in the current context of mock–Jacobi forms that arise as the gener-
ating function of single center black hole states in N = 4, d = 4 string theory. The
function that is relevant here is the mock Jacobi form ψFm. In this case, the generalized
Rademacher expansion for the Fourier coefficients cFm(n, `), ∆ ≥ 0, was obtained in
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[FR17] and can be stated as

cFm(n, `) = 2π
∞∑
k=1

∑
˜̀∈Z/2mZ

4mñ−˜̀2<0

cFm(ñ, ˜̀) KLS
(

∆
4m
, ∆̃

4m
; k, ψ

)
`˜̀

k

(
|∆̃|
∆

)23/4

I23/2

(
π

mk

√
|∆̃|∆

)

+
√

2m
∞∑
k=1

KLS
(

∆
4m
,−1 ; k, ψ

)
`0√

k

(
4m

∆

)6

I12

(
2π

k
√
m

√
∆

)
(7.25)

− 1

2π

∞∑
k=1

∑
j∈Z/2mZ
g∈Z/2mkZ
g≡j(mod 2m)

KLS
(

∆
4m
,−1− g2

4m
; k, ψ

)
`j

k2

(
4m

∆

)25/4

×

×
∫ +1/

√
m

−1/
√
m

fk,g,m(u) I25/2

(
2π

k
√
m

√
∆(1−mu2)

)
(1−mu2)25/4 du ,

where KLS is the generalized Kloosterman sum with the multiplier system ψ(γ) given
explicitly in [FR17], and the function fk,g,m is given by

(7.26) fk,g,m(u) :=


π2

sinh2(πu
k
− πig

2mk
)

if g 6≡ 0 (mod 2mk) ,

π2

sinh2(πu
k

)
− k2

u2
if g ≡ 0 (mod 2mk) .

The last two terms in (7.25) arise due to the mock modular nature of ψFm. The key
feature of (7.25) is that the coefficients cFm(n, `) for ∆ ≥ 0 (the left-hand side) are
completely determined by the polar coefficients cFm(n, `) for ∆ < 0, and the modular
properties of ψFm such as its weight, index, and multiplier system.





CHAPTER 8

Reconstructing mock–modular black hole entropy from
1

2
–BPS states

Overview of this chapter

This chapter is based on the results published in [CKM+19].

In the previous section, we inferred from (7.24) that the degeneracies of single–centered
dyonic 1

4
–BPS black holes in Type II string theory on K3 × T 2 are the coefficients of

the Fourier expansion of certain mock Jacobi forms (7.23) obtained from the Igusa
cusp form Φ10(τ, σ, z)−1 (7.12). These mock Jacobi forms were explained to be weakly
holomorphic forms implying that their entropy is controlled by the polar states i.e.,
states of negative charge discriminant.
In this chapter we present an exact analytic formula for the degeneracies of the negative
discriminant states in (7.23) purely in terms of the degeneracies of the perturbative 1

2
–

BPS states, and due to the Rademacher circle method, show that the entropy of all
single centered black hole states can be captured by 1

2
–BPS degeneracies of states.

We arrive at the formula by using the physical interpretation that these negative dis-
criminant states are residual bound states in the finite mock Jacobi forms, and then
making use of previous results in the literature to track the decay of such states into
pairs of 1

2
–BPS states in the moduli space. Although there are an infinite number of

such decays, we show that only a finite number of them contribute to the formula.
We also discuss in detail the phenomenon of BH bound state metamorphosis (BSM)
[Sen11b, ADJM12]. We show that the dyonic BSM orbits with U–duality invari-
ant ∆ < 0 are in exact correspondence with the solution sets of the Brahmagupta–Pell
equation, which implies that they are isomorphic to the group of units in the or-
der Z[

√
|∆|] in the real quadratic field Q(

√
|∆|).

We present a reasonably large number of numerical checks of the exact formula in
Appendix C against the numerical data from the Igusa cusp form to establish perfect
agreement.

8.1. Motivation and set up of the problem

In the previous section, we mentioned that one of the aims of exact holography and
precision counting is to ascertain a match between the calculations for the black hole
degeneracy to all orders from the microscopic (SCFT) and macroscopic (supergravity)
sides of the holographic duality. The motivation for this chapter arises from trying to
obtain this exact match for the case of negative discriminant states in the mock Jacobi
form ψF (τ, z) as in (7.23).

8.1.0.1. Exact holography for N = 8, d = 4 theories. We first comment on the case

of N = 8, d = 4 compactifications. The
1

8
–BPS dyon spectrum can be computed by

91
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considering Type II on T 6 as being given by [MMS99]

ZN=8
1/8 (τ, z) = φ−2,1(τ, z) =

ϑ1(τ, z)2

η(τ)6
.(8.1)

For this case, the exact degeneracies of supersymmetric black holes are given by the
Fourier expansion coefficients of ZN=8

1/8 (τ, z) (8.1) as

ZN=8
1/8 (τ, z) =

∑
n,`

CN=8(n, `) e2πinτ e2πi`z .(8.2)

The black hole is labeled by the discriminant 4n− `2 which grows, at large charges, as
the square of the area of the horizon. The Hardy-Ramanujan-Rademacher formula for
Jacobi forms provides an exact analytic expression for the coefficients CN=8(n, `) of this
Jacobi form as an infinite sum over Bessel functions with successively decreasing argu-
ments. Importantly, this formula has no free parameters, and the only inputs are the
modular transformation properties (the weight and index) of the Jacobi form ZN=8

1/8

and an overall fixed normalization.1 Using localization techniques for supergravity
theories, each term in the Rademacher expansion can be interpreted as a functional
integral over the smooth fluctuations around certain asymptotically AdS2 configura-
tions [DGM11b, DGM13, DGM15].

8.1.0.2. Exact holography and localization for N = 4, d = 4 theories. The next
simplest examples to consider are 1

4
-BPS dyonic black holes in N = 4 string theories,

which have been reviewed in Chapter 7. The main subtlety in N = 4 string theory
compared to N = 8 string theory is that, at strong coupling, the supersymmetric index
receives contributions from 1

4
-BPS single-centered black holes as well as bound states

of two 1
2
-BPS black holes. The question then arises as to how to isolate the microstates

that contribute to the single-centered black hole only and computing this requires us to
abandon the modular symmetries of the Jacobi form and explain the single center black
hole entropy through mock Jacobi forms. This has again been reviewed in Chapter 7.
The degeneracies of the black holes are encoded in the Fourier expansion coefficients of
these mock Jacobi forms and one may still employ the Rademacher technique to these
mock–Jacobi forms [FR17] to obtain an exact analytic expression for the degeneracies
of (7.24) and is given by (7.25). This means that the degeneracies of the single center
1
4
–BPS black holes are determined entirely by mock–modular properties of (7.18) and

the polar terms therein. A polar state (and correspondingly polar coefficient) means
a state (or coefficient thereof) with discriminant ∆ = 4mn − `2 < 0. However, as
we shall see, the input information to the Rademacher expansion which are the polar
coefficients of the mock modular form themselves are not always in agreement with
the corresponding degeneracies obtained from the gravitational localization calculation
[MR16]. Therefore, to ascertain the exact count of these polar degeneracies is crucial
for the utilization of the Rademacher technique.

In this chapter we present a simple analytic formula for the polar coefficients in
terms of the degeneracies of 1

2
-BPS states in N = 4 string theory. In the heterotic

duality frame, these are realized as perturbative fluctuations of the fundamental strings
i.e., the Dabholkar-Harvey states [DH89]. This means that the full quantum degener-
acy of the black hole—which is a non-perturbative bound state of strings, branes, and

1The Rademacher formula, as reviewed in Section 7.8, typically has a finite number of integers
(the polar degeneracies) as input, but in this case the large symmetry of the theory implies there is
only one independent polar degeneracy which can be normalized to one.
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KK-monopoles—is completely controlled by simple perturbative elements of string the-
ory. The nature of the formula, presented below in (8.5), first constructed in [Sen11b],
is also important since it implies that the polar coefficients of the mock Jacobi forms
are simply linear combinations of quadratic functions of the 1

2
-BPS degeneracies. The

latter can be interpreted as counting worldsheet instantons or, more precisely, genus-
one Gromov–Witten invariants. This structure is clearly reminiscent of the OSV for-
mula ZBH = |Ztop|2 [OSV04], but the details are somewhat different. The right-hand
side of (8.111), involving instanton degeneracies, is controlled by Ztop, while the left-
hand side is the “seed” for the 1

4
-BPS BH degeneracies via an intricate series which is

dictated by the mock modular symmetry. The idea of exploiting modular symmetry
in order to reach a precise non-perturbative definition for the OSV formula for N = 2
theories was studied in [DM11], and demands a lot of further work since these theories
are more complicated.

8.1.1. The main formula. We know thus far that the degeneracy of single cen-
ter 1

4
–BPS black holes are controlled by the mock Jacobi form (7.23) with a Fourier

expansion given by

(8.3) ψFm(τ, z) =
∑
n,`

cFm(n, `) e2πinτ e2πi`z .

The microscopic degeneracies of 1
4
-BPS single-centered black holes are related to these

Fourier coefficients as

(8.4) dBH
micro(n, `,m) = (−1)`+1 cFm(n, `) for ∆ = 4mn− `2 > 0 .

We now present the analytic formula for the black hole degeneracies which is a combi-
nation of the following two formulas:

(1) From the previous chapters, we know that the BH coefficients cFm(n, `), ∆ > 0
are completely controlled by the polar coefficients cFm(n, `), ∆ < 0. The rele-
vant formula follows from the ideas of Hardy-Ramanujan-Rademacher applied
to mock Jacobi forms, which by now has become a well-established technique
in analytic number theory [BO06, BM13, BO12, FR17].

(2) The polar coefficients c̃Fm(n, `), ∆ < 0 required as input for the Rademacher
expansion are given by

(8.5) c̃Fm(n, `) =
∑

γ∈W(n,`,m)

(−1)`γ+1 |`γ| d(mγ) d(nγ) for ∆ = 4mn− `2 < 0 .

We obtain this formula using the ideas and results of [Sen11b], by track-
ing all possible ways that a two-centered black hole bound state of total
charge (n, `,m) decays into its constituents across a wall of marginal stability.
Here W(n, `,m) is a set of γ ∈ SL(2,Z) matrices that encode the relevant walls
of marginal stability, as studied in [Sen07]. This set is finite and we charac-
terize this set completely. The precise formulas are given in (8.108), (8.111).
The quantities (nγ, `γ,mγ) are the T -duality invariants of the charges (Q,P )
transformed by γ, and d(n) is the degeneracy of 1

2
-BPS states with charge

invariant n, given by [DH89]

(8.6)
1

η(τ)24
=

∞∑
n=−1

d(n) e2πinτ .



94 8. MOCK–MODULAR BLACK HOLE ENTROPY FROM 1
2
–BPS STATES

8.1.2. The idea of the calculation. The key idea for this chapter is to interpret
the polar terms of (7.23) as bound states of two 1

2
–BPS states. When the charges have

a negative discriminant they cannot form a single-centered black hole since A ∼
√

∆
. We know that the only other configurations that contribute to the 1

4
-BPS index

inN = 4 string theory are two-centered bound states of 1
2
-BPS black holes [DGMN10,

Sen11b]. Thus the problem becomes one of calculating all possible ways a given set
of charges with negative discriminant contributing to cFm can be represented as two-
centered black hole bound states.

Any such bound state is an S-duality (SL(2,Z)) transformation of the basic bound
state, which consists of an electrically charged 1

2
-BPS black hole with invariant n =

Q2/2, a magnetically charged 1
2
-BPS black hole with invariant m = P 2/2, and the

electromagnetic fields carry angular momentum ` = Q · P . The indexed degeneracy of
this system equals [Sen11b]

(8.7) (−1)`+1 |`| · d(n) · d(m) .

The factors d(n) and d(m) in this formula are, respectively, the internal degeneracies of
the electric and magnetic 1

2
-BPS black holes, and the factor (−1)`+1|`| is the indexed

number of supersymmetric ground states of the quantum mechanics of the relative
motion between the two centers [Den00]. The degeneracy of an arbitrary bound state
can be calculated by acting on the charges (Q,P ) by the appropriate S-duality trans-
formation and replacing the charge invariants in (8.7) by their transformed versions.
This is precisely the structure of the formula (8.5).

The final ingredient of the formula is to state precisely what are the allowed values
of γ which labels all possible bound states. A very closely related problem was solved
in an elegant manner in [Sen11b], which we use after making small modifications.
The basic intuition comes from particle physics—any bound state must decay into
its fundamental constituents somewhere, and so the question of which bound states
exist is the same as the question of what are all the possible decays of two-centered 1

2
-

BPS black holes. As was shown in [Sen11b] the possible decays are labeled by a
certain set of SL(2,Z) matrices. The exact nature of this set is a little subtle due
to a phenomenon called black hole bound state metamorphosis (BSM) [ADJM12,
Sen11b, CLSS13], which identifies different-looking physical configurations with each
other. This is the step which lacks a rigorous mathematical proof, but the physical
picture is well-supported. The sum over W(n, `,m) in (8.5) is precisely the sum over all
possible decay channels after taking metamorphosis into account. Thus the performed
checks of the formula (8.5) can be thought of as providing more evidence for the
phenomenon of metamorphosis.

The metamorphosis can be of three types: electric, magnetic, and dyonic. The
corresponding identifications generate orbits of length 2 in the first two cases and of
infinite length in the third. In the first two cases the metamorphosis has a simple Z/2Z
structure, while the group structure of the dyonic case was less clear so far. We show
in this chapter that the identifications due to dyonic BSM have a group structure of Z.
Moreover, the problem of finding BSM orbits maps precisely to finding the solutions to
a well-studied Diophantine equation, namely the Brahmagupta–Pell equation, whose
structure is completely known. In the language of algebraic number theory, this is
the problem of finding the group of units in the order Z[

√
|∆|] in the real quadratic

field Q(
√
|∆|).
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8.1.3. Gravitational interpretation. Localization in supergravity allows us to
study the quantum entropy of the gravitational theory is formulated as a functional
integral over asymptotically AdS2 configurations [DGM11b, DGM13, DGM15].
The result takes the form of an infinite sum of finite-dimensional integrals over the
(off-shell) fluctuations of the scalar fields around the attractor background, where the
integrand includes a tree-level and a one-loop factor in the off-shell theory. The in-
finite sum is interpreted as different orbifold configurations in string theory with the
same AdS2 boundary [DGM15]. In the N = 8 theory, this result agrees exactly
with the Rademacher expansion for the coefficient of the Jacobi form controlling the
microscopic index.

We can now offer a physical interpretation of the novel exact degeneracy for-
mula (7.25), (8.5) from this point of view. The sum over k in (7.25) runs over all
positive integers with the argument of the Bessel function suppressed as 1/k and the
Kloosterman sum depending on k. This part of the structure comes from a sum
over Γ∞\SL(2,Z) of the circle method, and can be interpreted in the gravitational
theory exactly as in the N = 8 theory, namely as a sum over orbifolds of the type
(AdS2 × S1 × S2)/Zk [DGM15]. The Kloosterman sum arises from an analysis of
Chern–Simons terms in the full geometry. The degeneracies of polar states c̃m(n, `)

c̃m(n, `) := cFm(n, `) for ∆ = 4mn− `2 < 0(8.8)

is interpreted as the number of states of a given (n, `,m) which do not form a big
single-centered BH. The finite sum over γ ∈ W(n, `,m) in (8.5) is indicative of a
further fine structure where the smallest units are the 1

2
-BPS instanton states with

their corresponding degeneracy. This is the sense in which the final degeneracy formula
is constructed out of the worldsheet instantons.

Outline of chapter. The outline of the chapter is as follows: In Section 8.2, we
review some of the concepts regarding the contour over which the Igusa cusp form can
be integrated, and explain the structure of the attractor region and moduli space. In
Section 8.3 we discuss the macroscopic supergravity counting of 1

4
–BPS states. Sec-

tion 8.4 discusses several details that are important for the proper counting of negative
discriminant states. In Sections 8.5 and 8.6 we present all the relevant calculations that
will lead to the explicit formula for the negative discriminant states. In Section 8.6, we
characterize the orbits of dyonic metamorphosis in terms of the orbits of the solutions
to the Brahmagupta–Pell equation. The final Section 8.7 presents the exact black hole
formula and Appendix C presents numerical data for the analysis presented in this
chapter.

8.2. The moduli space and the attractor region

Having reviewed the 1
4
–BPS single-centered degeneracies in Chapter 7, we now

discuss in a bit more detail the structure of walls in the moduli space. The moduli-
dependent contour C in (7.14) can be written in terms of the moduli-dependent central
charge matrix Z [CV07]. The latter can be parameterized2 by a complex scalar
Σ = Σ1 + iΣ2 as

(8.9) Z = Σ−1
2

(
|Σ|2 Σ1

Σ1 1

)
.

2This parametrization corresponds to a projection from the full moduli space to the two-
dimensional axion–dilaton moduli space of the heterotic frame [Sen07].
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In terms of this matrix, the contour in (7.14) reads (with ε→ 0+)

C =
{

Im(τ) = Σ−1
2 /ε, Im(σ) = Σ−1

2 |Σ|2/ε,
Im(z) = −Σ−1

2 Σ1/ε, 0 ≤ Re(τ),Re(σ),Re(z) < 1
}
.(8.10)

For the case of the mock Jacobi forms that we are considering, the attractor contour
reduces to

Im(z)/Im(τ) = −`/2m.(8.11)

The Fourier–Jacobi expansion (7.17) then corresponds to taking the limit Σ2 → ∞
while keeping Σ1 and εΣ2 fixed. This limit has a physical interpretation as the M-
theory limit, where one of the circles inside the internal T 2 of the Type II frame becomes
large [DMZ12]. In this limit, the expansion (7.17) around σ → i∞ takes us high into
the upper half-plane parameterized by Σ, and varying Σ1 moves us horizontally. This
is depicted in Figure 9a. The wall–crossing captured, in the M–theory limit, by the

(a) The M–theory limit (7.17) (b) The full Σ moduli space

Figure 9. The region R in the moduli space

Appell–Lerch sum (7.21) divides the moduli space into chambers separated by parallel
marginal stability walls located at Σ1 = α ∈ Z. The attractor contour (8.11) then
corresponds to picking a particular chamber, which we denote by R. As mentioned
below (8.11), ` can be restricted to 0 ≤ ` < 2m, so it follows that R is the chamber
between the walls located at α = 0 and α = −1. Thus,

(8.12) R : −Im(τ) < Im(z) ≤ 0 .

Now, in the chamber R, the Fourier coefficients of ψP
m in the range 0 ≤ ` < 2m

vanish because the coefficients of the Appell–Lerch sum vanish in this chamber, as
can easily be checked. Therefore, the Fourier coefficients of the meromorphic Ja-
cobi forms ψm in the chamber R are equal to the coefficients of the finite part ψFm.
For ∆ > 0, these coefficients correspond precisely to the single–centered black hole
degeneracies, as given by (8.4). However, ψFm also has coefficients with ∆ < 0 which
live in the chamber R. Thus, we arrive at the following physical interpretation of the
Fourier coefficients cFm: they count the indexed number of 1

4
–BPS dyonic states in the

chamber R. This is true for ∆ > 0 (which are single–centered black holes) as well as,
importantly, for ∆ < 0 (which correspond to multi–centered black holes).
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Because of the Rademacher formula (7.25), our task of finding an analytic formula
for the single–centered degeneracies (8.4) is thus reduced to finding an analytic formula
for the negative discriminant degeneracies, for which we will use the above physical
picture. As explained in the introduction, the 1

4
–BPS bound states counted by (8.8)

always decay upon crossing a wall of marginal stability. We therefore have to track
them in the Σ moduli space and reconstruct them as a sum of their 1

2
–BPS constituents.

The decays corresponding to moving horizontally by varying Σ1 have been taken into
account by ψP

m, so they will not contribute to cFm(∆ < 0). As discussed above, the
contribution from ψP

m in the region R actually vanishes.3 This is consistent with the
analysis of [Sen11b]. In addition, there can be other decays in the full moduli space,
and to see them we need to go away from the M–theory limit. As shown in [Sen11b],
the region R extends also vertically downwards back to the Σ2 = 0 line. Therefore,
away from the M–theory limit, the negative discriminant states contained inR can also
decay further upon crossing circular walls (the precise shape of these walls is charge–
dependent), which are shown in Figure 9b. We can now use the results of [Sen11b]
to count how many negative discriminant states live in the region R and obtain the
polar coefficients (8.8). This will be reviewed in Section 8.4.

8.3. Localization of N = 4 supergravity and black hole degeneracy

Before presenting the derivation of the formula for the polar coefficients c̃m(n, `)
defined in (8.8), we review how the main idea originates from physical considerations.
In [MR16] the asymptotic degeneracies of 1

4
–BPS single–centered BHs as a supergrav-

ity functional integral in the AdS2 near–horizon geometry of the BHs, following the
ideas of [Sen09, DGM11b] were computed. This computation did not yield the ex-
act answer matching the microscopic prediction. However, the results of [MR16] can
be interpreted as an approximate relation between the polar coefficients of the count-
ing function ψFm and the Fourier coefficients of the Dedekind eta function, which was
checked to be true to a good approximation. As we explain below, the main formula of
the present chapter (8.5) can be seen as correcting the approximate result of [MR16]
to an exact formula.

8.3.1. The quantum entropy of 1
4
–BPS single–centered black holes. While

we mainly focus on the microscopic picture in the rest of the chapter, the origins
of (8.111) are from a macroscopic intuition that we now review. Using ideas of
the AdS2/CFT1 correspondence, a macroscopic supergravity description for the degen-
eracies of microstates of supersymmetric BHs, called the quantum entropy formalism,
was put forward in [Sen09]. The near–horizon geometry of extremal black holes uni-
versally contains an AdS2 factor, and the proposal of [Sen09] is that the degeneracies
of supersymmetric extremal black holes is a functional integral on this AdS2 space
defined as

(8.13) dmacro(Q,P ) =
〈

exp
[
qI

∫
S1

AI
]〉finite

EAdS2

,

where the computation involves the expectation value of the Wilson line around the
Euclidean time circle S1 for the U(1) gauge fields AI under which the black hole is
charged, qI denotes the corresponding charges of the BH, and the superscript “finite”

3If we are however interested in another chamber of the moduli space where the Appell–Lerch
sum does not vanish, it is important to remove the associated decays taking place when varying Σ1.
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indicates a particular infrared regularization scheme to deal with the infinite volume
of the EAdS2 factor in the near–horizon geometry. We refer the reader to [Sen09] for
details.

To compute the path integral (8.13) beyond the leading large–charge approxima-
tion, powerful techniques of supersymmetric localization have been employed starting
with the work of [DGM11b]. Localization has been an invaluable tool in the study of
partition functions in gauge theories and in many cases has allowed us to reduce a com-
plicated path integral to a much simpler finite dimensional integral. A complete review
falls outside the scope of the present chapter,4 so we will simply give the final result ob-
tained in [DGM13, GM13, MR13, MR15, GIJ15, dWMR18, JM19] for (8.13)
after localization and for the class of black holes we are interested in. For 1

2
–BPS black

hole solutions of an N = 2 supergravity theory with holomorphic function F , we have
(8.14)

dmacro(Q,P ) =

∫
MQ

nV∏
I=0

dφI µ(φI) exp
[
4π Im[F (pI , φI)]−π qIφI

] (
χV(pI , φI)

)2− 1
12

(nV +1)
.

The definition of the various quantities entering (8.14) are as follows. The integral
is over the manifold MQ, which is characterized by the bosonic field configurations
that are supersymmetric with respect to a specific supercharge Q preserved by the
black hole solution. This manifold is (nV + 1)–dimensional, where nV is the number
of Abelian vector multiplets under which the black hole is charged, and φI denote the
coordinates on MQ. Unlike the case of localization of a generic N = 2 supergravity
theory [MR15], the localization of 1

4
–BPS solutions in N = 4 supergravity demands a

truncation to N = 2 and this truncation discards the hypermultiplet contribution from
(8.14) [MR16, SY06]. The integrand is completely specified by the function F (pI , φI)
of the theory, which is a homogeneous holomorphic function of its arguments. The
associated Kähler potential χV(pI , φI) is built out of this function. Finally, we have
denoted by µ(φI) the measure onMQ, which was not obtained from first principles in
the above references, but constrained to be a function that contributes O(1) growth to
the entropy when all the charges are scaled to be large.

To apply the formula (8.14) to the 1
4
–BPS single–centered black hole solution of

the N = 4 theory discussed in Chapter 7, one consistently truncates the latter theory
to an N = 2 theory with nV = 23 multiplets and function [SY06]

(8.15) F (pI , φI) = −X
1

X0
XaCabX

b +
1

2iπ
log
[
η24
(X1

X0

)]
, with XI = φI + i pI ,

where Cab is the intersection matrix on the middle homology of the internal K3
manifold and a, b = 2, . . . , 23. Using this data and assuming a certain measure
on MQ, [MR16, Gom17] showed that the finite dimensional integral (8.14) could
be put in the form of a sum of I–Bessel functions indicative of a Rademacher–type ex-
pansion for the macroscopic degeneracies of single–centered 1

4
–BPS black holes, similar

to the exact microscopic formula (7.25). The above assumption about the measure was
essentially a statement of consistency with a certain way of expanding the microscopic
formula (7.14), as we now explain.

8.3.2. The measure and Rational Quadratic Divisors. The z–integral in
the microscopic degeneracy formula (7.14) can be performed by calculating residues
at the so called Rational Quadratic Divisors (RQDs) of the Igusa cusp form Φ10. The

4See [P+17] for an introduction and reviews in the context of field theory.
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leading contribution to the integral comes from the RQD located at z = 0 [DVV97].
Near z = 0, the Igusa cusp form behaves as

(8.16) Φ10(τ, σ, z) = 4π2 (2z − τ − σ)10 z2 η(τ)24 η(σ)24 +O(z4) .

The remaining integral in τ and σ can then be expressed as [DS06]

(8.17) d 1
4
(Q,P ) ' (−1)`+1

∫
C2

d2τ

τ2
2
e−F(τ1,τ2) ,

where ' indicates that there are subleading contributions coming from other RQDs
(additional poles in Φ−1

10 ), and τ = τ1 + iτ2. The function F(τ1, τ2) is given by

F(τ1, τ2) = − π

τ2

(
n− `τ1 +m(τ 2

1 + τ 2
2 )
)

+ ln η24(τ1 + iτ2) + ln η24(−τ1 + iτ2) + 12 ln(2τ2)

− ln

[
1

4π

{
26 +

2π

τ2

(n− `τ1 +m(τ 2
1 + τ 2

2 ))

}]
,

(8.18)

and the contour of integration C2 is required to pass through the saddle–point of F(τ1, τ2).
This way of manipulating the microscopic degeneracy formula corresponds, in physics,
to calculating the degeneracies of BHs whose magnetic as well as electric charges grow
at the same rate. In contrast, the expansion studied in (7.17) in the previous chapter
corresponds to fixing the magnetic charges and letting the electric charges grow.

Adding a total derivative term and comparing to the macroscopic localized in-
tegral (8.14), the authors of [MR16, Gom17] concluded that the measure factor,
corresponding to the leading RQD of Φ10 located at z = 0, should take the form

(8.19) µ(φI) = m+ E2

(φ1 + ip1

φ0

)
+ E2

(
−φ

1 − ip1

φ0

)
,

where E2 is the Eisenstein series of weight 2, related to the Dedekind eta function as

(8.20) E2(τ) =
1

2πi

d

dτ
log η(τ)24 .

Using the measure (8.19) in the integral (8.14) leads to an infinite sum of I-Bessel
functions coming from integrating term-by-term the series expansions of the prepo-
tential and the measure [MR16]. It was noticed in [MR16] that this infinite sum
begins with terms that become smaller up to a point, but that the integrals start di-
verging after a while. This behavior is characteristic of an asymptotic series, which
prompted [MR16] to truncate the sum after a finite number of terms. This was
achieved using a contour prescription given in [Gom17]. The end result, after evalu-
ating the integrals, was then

dmacro(Q,P ) ' 2π
∑

0≤ ˜̀≤m
∆̃<0

(˜̀− 2 ñ) d(m+ ñ− ˜̀) d(ñ)
cos
(
π(m− ˜̀)`/m

)
√
m

×

×
( |∆̃|

∆

)23/4

I23/2

( π
m

√
|∆̃|∆

)
,

(8.21)

where d(n) is the nth Fourier coefficient of the Dedekind eta function as given in (8.6), ∆
is the usual discriminant 4mn − `2, and the I-Bessel function is defined in (2.48).
Comparing the above macroscopic result to the Fourier coefficients (2.47) and (2.50),



100 8. MOCK–MODULAR BLACK HOLE ENTROPY FROM 1
2
–BPS STATES

we see that dmacro is the first (k = 1) term in the Rademacher expansion for a Jacobi
form of weight −10 upon making the identification

(8.22) cm(ñ, ˜̀) = (˜̀− 2 ñ) d(m+ ñ− ˜̀) d(ñ) for ∆̃ = 4mñ− ˜̀2 < 0 .

This proposal, motivated by the exact computation of a supergravity path integral,
already offered a very good numerical agreement with the microscopic data and hinted
at an intricate relationship between the Fourier coefficients of a simple modular form
(the Dedekind–eta function) and those of the more complicated mock Jacobi forms ψF

m.
However, detailed numerical investigations also showed that the formula (8.22) cannot
be the complete answer, as evidenced by the small discrepancies between the left- and
right-hand sides highlighted in the tables of [MR16].

Since the derivation reviewed above relied on the approximations related to the
asymptotic nature of the series, it was already clear that (8.21) is just the beginning
of the complete formula. In the rest of the chapter, we obtain the correct and exact
relationship between the polar terms of ψF

m and the Fourier coefficients of η(τ)−24

based on a precise analysis of negative discriminant states in N = 4 string theory, as
summarized in (8.5). Therefore, the results of the present chapter can be interpreted
as giving us the precise way to take into account the subleading RQDs that correct the
measure (8.19), and truncate the infinite sum of Bessel functions arising from (8.14).5
6

8.4. Negative discriminant states and walls of marginal stability

Now we turn back to the main goal, which is to obtain an analytic formula for the
degeneracies of negative discriminant 1

4
–BPS states c̃m(n, `) as defined in (8.8) in terms

of the coefficients of the Dedekind eta function. In this section we set up the problem
in a convenient form after reviewing some facts about negative discriminant states
and walls of marginal stability associated to negative discriminant state decays. As
reviewed in the previous section, we are interested in counting the number of negative
discriminant states in the region R, which correspond to bound states of two 1

2
–BPS

states. Following [Sen11b], a convenient way to do so is to count how bound states
appear or decay as we move around the moduli space parameterized by Σ discussed
around (8.9). When we cross a wall of marginal stability, bound states appear or decay
and contribute to the degeneracies of all negative discriminant states contained in ψFm.
We now review the structure of these walls of marginal stability, referring the reader
to [Sen07, Sen11b] for more details.

8.4.1. Walls of marginal stability: Notation.

(1) In the Σ upper half–plane, the walls of marginal stability are of two types
[Sen07]:
(a) Semi–circles connecting two rational points p/r and q/s such that ps −

qr = 1. We denote these walls as S–walls.

5The idea of summing up the contributions from all the RQDs of Φ10 to obtain the exact degen-
eracy of the dyonic BH was put forward in [MP09], but the lack of good technology at the time also
led to divergent sums.

6The conclusions of this chapter do not mean that there is not another way to obtain the exact
single–centered BH degeneracies after resummation of the residues of the RQDs in a manner consistent
with the Sp(2,Z) symmetry of Φ10. We note, however, that such an enterprise would involve some
notion of a “mock” Siegel form that has not been made precise in the mathematical literature to the
best of the author’s knowledge.
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(b) Straight lines connecting i∞ to an integer. These can be thought of as
special cases of the above expressions when r = 0 and p = s = 1, or
when s = 0 and q = −r = 1. We denote these walls as T–walls.

Figure 10. Structure of T–walls (green) and S–walls (red) in the upper
half–plane.

To any T- or S–wall we associate the following matrix,

γ =

(
p q
r s

)
∈ PSL(2,Z) .(8.23)

(2) Given an initial charge vector (n, `,m) = (Q2/2, Q · P, P 2/2), there is an
associated charge breakdown at a wall γ of the form (8.23), given by(

Q
P

)
−→

(
p(sQ− qP )
r(sQ− qP )

)
+

(
q(−rQ+ pP )
s(−rQ+ pP )

)
,(8.24)

and which corresponds to a 1
4
–BPS BH decaying into two 1

2
–BPS centers. The

charges of the two centers are given by γ ·
(
Qγ

0

)
and γ ·

(
0
Pγ

)
, with

(8.25)

(
Qγ

Pγ

)
= γ−1 ·

(
Q
P

)
,

which shows that after the breakdown one center is purely electric while
the other is purely magnetic in the new frame. We define (nγ, `γ,mγ) =
(Q2

γ/2, Qγ · Pγ, P 2
γ /2), which are given explicitly by

nγ = s2n+ q2m− sq` ,
`γ = −2srn− 2pqm+ `(ps+ qr) ,

mγ = r2n+ p2m− pr` .
(8.26)
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(3) The set of matrices that characterize the walls in the Σ upper half–plane can
be divided into subsets that satisfy the following properties:

Γ+
S :=

{
γ =

(
p q
r s

)
∈ PSL(2,Z)

∣∣∣ r > 0, s > 0

}
,

Γ−S :=

{
γ =

(
p q
r s

)
∈ PSL(2,Z)

∣∣∣ r > 0, s < 0

}
,

ΓT :=

{
γ =

(
p q
r s

)
∈ PSL(2,Z)

∣∣∣ rs = 0

}
.

(8.27)

Because the above matrices have unit determinant, the walls in Γ+
S have p/r >

q/s, and the walls in Γ−S have p/r < q/s. We denote by ΓS = Γ−S ∪Γ+
S the full

set of S–walls. Notice that PSL(2,Z) = ΓS ∪ ΓT .
(4) We define the orientation of a wall γ to be q/s → p/r. With respect to this

orientation, a bound state of 1
2
–BPS states exists in the chamber to the right

of the wall if `γ < 0, and in the chamber to the left of the wall if `γ > 0
[Sen11b].

(5) The attractor region R in (8.12) is the region of the Σ upper half–plane
bounded by the T–walls 0→ i∞, 1→ i∞ and the semi–circular S–wall 0→ 1.
(Note that, because of the negative sign in the contour (8.10), the attractor
region −Im(τ) < Im(z) ≤ 0 as in (8.12) maps to 0 ≤ Re(Σ) < 1.) We will be
interested in the degeneracies of negative discriminant states in this region.

From Point 4 combined with (8.26), it is clear that none of the T–walls contribute
in the region R. For example, when r = 0, γ =

(
1 q
0 1

)
and this implies (nγ, `γ,mγ) =

(n + q2m− q`, `− 2qm,m). Recall that we can restrict ourselves to 0 ≤ ` < 2m, this
shows that when q ≥ 0, the above T–walls contribute to the right of the region R.
This is consistent with the fact that ψP

m, which captures all the T–walls, actually has
vanishing Fourier coefficients in the region R.

For the S–walls, there exists a map between the sets Γ+
S and Γ−S , given by the right

multiplication of an element of Γ+
S by the matrix

(8.28) S̃ =

(
0 −1
1 0

)
.

This map reverses the orientation of the wall and flips the sign of `γ. Furthermore, S̃
squares to −I, which means that it is an involution in PSL(2,Z). Therefore we can
focus only on elements of Γ+

S when discussing the details of negative discriminant states
breakdowns across walls of marginal stability.

8.4.2. Towards a formula for black hole degeneracies. Upon crossing a wall
of marginal stability, the index jumps by an amount controlled by the generating
function of each of the associated 1

2
–BPS centers. The latter is given by the inverse

of η(τ)24, whose Fourier coefficients are given by the partition function into 24 col-
ors p24(n) (cf. Equation (8.6)). Summing up all possible decays across the S–walls
leads to the following counting formula for negative discriminant states living in the
region R:

(8.29)
1

2

∑
γ∈ΓS

(−1)`γ+1 θ(γ,R) |`γ| d(mγ) d(nγ) ,



8.4. NEGATIVE DISCRIMINANT STATES AND WALLS OF MARGINAL STABILITY 103

where the function θ(γ,R) is a step–function giving 1 if the bound state exists on the
same side of the wall γ bounding R and 0 otherwise. Formally, it is defined as follows

θ(γ,R) =

∣∣∣∣∣O(γ,R) + sgn(`γ)

2

∣∣∣∣∣ , O(γ,R) =

{
+1, γ ∈ Γ+

S

−1, γ ∈ Γ−S
.(8.30)

On one hand this sum can be written in a more covariant manner by extending it to
a sum over all matrices in PSL(2,Z),

(8.31)
1

2

∑
γ∈PSL(2,Z)

(−1)`γ+1 θ(γ,R) |`γ| d(mγ) d(nγ) ,

by extending the θ function to all of PSL(2,Z) via

(8.32) θ(γ,R) = 0 , γ ∈ ΓT ,

because the T–walls do not contribute in the region R as we saw above. On the
other hand, the sum (8.30) can also be written as a sum over a smaller set as follows.
Note that the summand in equation (8.29) is invariant under a transformation by the
matrix S̃ given in equation (8.28) because nγS̃ = mγ, mγS̃ = nγ, `γS̃ = −`γ and S̃

exchanges Γ+
S and Γ−S . This means that the contributions from the sum over γ ∈ Γ+

S

and γ ∈ Γ−S are equal and we can sum over Γ+
S only. So, we can alternatively write (8.29)

as

(8.33)
∑
γ∈Γ+

S

(−1)`γ+1

∣∣∣∣1 + sgn(`γ)

2

∣∣∣∣ |`γ| d(mγ) d(nγ) .

8.4.3. A subtlety from bound state metamorphosis. While accounting for
all the negative discriminant states in the region R, there is a further subtlety that
needs to be taken into account due to a phenomenon known as bound state metamor-
phosis (BSM) [ADJM12, CLSS13, Sen11b]. BSM stems from the fact that when
one or both 1

2
–BPS centers making up a 1

4
–BPS bound state carry the lowest possible

charge invariant (that is, when nγ = −1, mγ = −1 or nγ = mγ = −1 for a given
wall γ), two or more bound states must be identified following a precise set of rules to
avoid overcounting in the index (8.33). Thus we can write the set of all contributing
walls as the quotient

(8.34) ΓBSM(n, `,m) = PSL(2,Z)/BSM ,

and write the polar degeneracies (8.8) as

(8.35) c̃m(n, `) =
1

2

∑
γ∈ΓBSM(n,`,m)

(−1)`γ+1 Θ(γ) |`γ| d(mγ) d(nγ) .

Here we have to introduce a new function Θ(γ) which generalizes the function θ(γ,R)
defined above to take into account the phenomenon of BSM so that it is defined on
the coset ΓBSM(n, `,m). We will be in a position to give a proper definition after a
discussion of BSM in the following sections. We can also present this formula as a sum
over the set ΓS or Γ+

S modulo the identifications due to BSM for the reasons discussed

above (T–walls do not contribute in R, and S̃ gives a map between Γ−S and Γ+
S ):

(8.36) c̃m(n, `) =
∑

γ∈Γ+
S /BSM

(−1)`γ+1 Θ(γ) |`γ| d(mγ) d(nγ) .
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Given that the left–hand side of this formula is finite, it is reasonable to expect
that given a set of initial charges (n, `,m), only a finite subset of walls of marginal
stability gives a non–zero contribution to the above sums. This expectation turns out
to be correct and we can write the final formula as a sum over the finite set W(n, `,m)

(8.37) c̃m(n, `) =
∑

γ∈W(n,`,m)

(−1)`γ+1 |`γ| d(mγ) d(nγ) .

The goal in the following sections is to now fully characterize the subset W(n, `,m) and
show that it contains a finite number of elements for a given charge vector (n, `,m).

It will be convenient to split the characterization of the set W(n, `,m) depending
on whether BSM does not or does occur. This will be the subject of sections 8.5 and
8.6, respectively. Before initiating the study of the finiteness of W(n, `,m), we recall
from the discussion below (8.11) that we can restrict the charge vector to be such
that 0 ≤ ` < 2m. In addition, ψFm has even weight so there is a reflection symmetry
` → −` which allows us to restrict ourselves to the case7 ` ∈ {0, . . . ,m}. The index
m runs from −1 to +∞ in the expansion (7.17). For m = −1 and m = 0, there is no
macroscopic BH and therefore we only study m > 0 in the following. Thus the goal is
to study the set W(n, `,m) of walls of marginal stability for a charge vector (n, `,m)
that satisfies m > 0, n ≥ −1 and 0 ≤ ` ≤ m.

8.5. Negative discriminant states without metamorphosis

In this section, we begin to characterize W(n, `,m). For the time being we ignore
the phenomenon of BSM (which will be the subject of the next section), and show that
the contribution to W(n, `,m) in this case is finite. Accordingly, in order to identify
the walls that contribute to the polar degeneracies c̃m(n, `), we study the system of
inequalities mγ ≥ 0 and nγ ≥ 0 defined in (8.26) for a given charge vector (n, `,m)
such that ∆ = 4mn − `2 < 0 and 0 ≤ ` ≤ m. As explained above, we focus on
walls in Γ+

S ⊂ PSL(2,Z), which allows us to choose r, s > 0 in the following. The
condition mγ ≥ 0 then amounts to

(8.38) mγ = m
(p
r

)2

− `
(p
r

)
+ n ≥ 0 .

The first equality defines a parabola in the (p/r, y = mγ)−plane and the condition
m > 0 means that the inequality has two branches:

(8.39)
p

r
≥
`+

√
|∆|

2m
or

p

r
≤
`−

√
|∆|

2m
.

We will call these positive and negative “runaway branches” since p/r is unbounded
from above or from below, respectively. The condition nγ ≥ 0 amounts to

(8.40) nγ = m
(q
s

)2

− `
(q
s

)
+ n ≥ 0 .

Moreover, using that the determinant of γ must be equal to one, we have

(8.41)
q

s
=
p

r
− 1

rs
,

7Note that even though ψFm is not modular but only mock modular, both its completion ψ̂Fm and
its shadow, and therefore ψFm itself, enjoy this `→ −` symmetry [DMZ12].
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and so the first equality in (8.40) can also be seen as a parabola in the (p/r, y =
nγ)−plane, shifted by 1/(rs) compared to the first parabola. The condition nγ ≥ 0
also has a positive and negative runaway branch,

(8.42)
p

r
≥
`+

√
|∆|

2m
+

1

rs
or

p

r
≤
`−

√
|∆|

2m
+

1

rs
.

Recall from Section 8.4 that we focus on Γ+
S walls which corresponds to rs > 0. We

split the argument in two cases. Considering

(8.43)
`−

√
|∆|

2m
+

1

rs
<
`+

√
|∆|

2m
,

the smaller intercept with the p/r axis of the shifted nγ-parabola is smaller than the
larger intercept with the p/r axis of the mγ-parabola. This situation is illustrated in
Figure 11a. In this case, requiring both inequalities mγ ≥ 0 and nγ ≥ 0 implies that

(a) The two runaway branches A± in the case where rs > m√
∆
> 0

(b) The runaway branches B± and the bounded branch C when m√
∆
>

rs > 0

Figure 11. The regions where mγ ≥ 0 and nγ ≥ 0 for rs > 0, denoted
in green

(8.44)
p

r
≥
`+

√
|∆|

2m
+

1

rs
and rs >

m√
|∆|

> 0 ,
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on the positive runaway branch which we denote A+, or

(8.45)
p

r
≤
`−

√
|∆|

2m
and rs >

m√
|∆|

> 0 ,

on the negative runaway branch which we denote A−. For a given set of (n, `,m), the
conditions (8.44) have solutions over the integers for (p, r, s). However, if we supplement
this system with the condition that `γ > 0 (since this is a Γ+

S wall this condition is
necessary to have a non–zero contribution owing to the Θ function in (8.36)), then
there are no solutions for (p, r, s). Indeed these conditions imply that

0 < 2
r

s
nγ + `γ = `− 2

q

s
m = `− 2

(
p

r
− 1

rs

)
m

=⇒ p

r
<

`

2m
+

1

rs
,

(8.46)

which is in contradiction with the first equality of (8.44). Similarly, supplementing the
branch A− by the condition `γ > 0, there are no solutions for (p, r, s). This can be
seen by showing that the inequality 2 s

r
mγ + `γ > 0 is in contradiction with the first

inequality of (8.45).

The other case to consider is when

(8.47)
`−

√
|∆|

2m
+

1

rs
≥
`+

√
|∆|

2m
.

This means that the smaller intercept of the shifted parabola is larger than or equal
to the larger intercept of the original one, as illustrated in Figure 11b. In this case, we
still have the usual runaway branches which we call B+ and B−, but in addition a new
branch of solutions for p/r opens up, which we call the bounded branch C,

(8.48)
`+

√
|∆|

2m
≤ p

r
≤
`−

√
|∆|

2m
+

1

rs
and

m√
|∆|
≥ rs > 0 .

Once again, adding the condition that `γ > 0 suffices to show that there are no integer
solutions (p, r, s) to the system of inequalities characterizing the runaway branches
B±. The proof of this is identical to the one above for A±. There are now however
solutions for the C branch. Observe that on this branch we also have a condition on
the original charges: since r and s are integers, rs ≥ 1 and so the second condition
in (8.48) demands that m ≥

√
|∆|. Including the inequality `γ > 0, we obtain the

following system for potential walls without BSM contributing to the polar coefficients:

(8.49)


`+
√
|∆|

2m
≤ p

r
≤ `−
√
|∆|

2m
+ 1

rs

m√
|∆|
≥ rs > 0

−2nrs− 2mpq + `(ps+ qr) > 0

.

To analyze this system, we start by using the unit determinant condition to elimi-
nate q, and then express everything in terms of the variables

(8.50) P := ps , R := rs .
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Then (8.49) takes the form of a system of inequalities on two variables (P,R):

(8.51)


`+
√
|∆|

2m
≤ P

R
≤ `−
√
|∆|

2m
+ 1

R

m√
|∆|
≥ R > 0

−2nR− 2mP
R

(P − 1) + `(2P − 1) > 0

.

We can analyze this system on a case-by-case basis, depending on the original charges
(n, `,m). Recall that we must only consider 4mn− `2 < 0, m > 0 and 0 ≤ ` ≤ m.

(1) Case 1: m > 0, n = −1
In this case, there are no integer solutions to (8.51). We see from equations
(8.26) that n = −1 and nγ ≥ 0, mγ ≥ 0 require that p, q 6= 0. The left-hand-
side of the first inequality in equation (8.51) implies that P/R > 0, which
then implies that p > 0 since r, s > 0. The determinant condition ps− qr = 1
then requires that q > 0 as well. However, this is a contradiction since the
right-hand-side of the first inequality in equation (8.51) can be rewritten as

(8.52)
q

s
=
P

R
− 1

R
≤
`−

√
|∆|

2m
< 0 .

Here we used that for m > 0, n = −1 we have
√
|∆| =

√
`2 + 4m > `.

(2) Case 2: m > 0, n = 0, and ` > 0
In this case we find solutions given by

(8.53) P = 1 , 0 < R ≤ m

`
.

Translating back to the original (p, q, r, s) variables, this yields matrices of the
form

(8.54)

(
1 0
r 1

)
, with 0 < r ≤ m

`
.

Note that all entries in the above matrix are bounded from above by m. As
we will see below, such m-dependent bounds always arise when considering
the set of contributing walls W(n, `,m).

(3) Case 3: m > 0, n > 0 and ` > 0
This case is slightly more involved. First, notice from the left-hand-side of the
first inequality in equation (8.51) that P = ps > 0. Therefore we split the
discussion depending on whether P = 1 or P > 1.
(a) Case 3a: P = 1

In this case the inequalities (8.51) with P = 1 impose

(8.55) P = 1 , 0 < R ≤
`−

√
|∆|

2n
.

In the variables (p, q, r, s), we therefore have a non–zero contribution to
the polar coefficients from matrices of the form:

(8.56)

(
1 0
r 1

)
, with 0 < r ≤

`−
√
|∆|

2n
≤ m− 1

2n
.

Again, note that all entries in the above matrix are smaller than m.
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(b) Case 3b: P > 1
In this case, the inequalities (8.51) yield the following bounds on P and
R:

(8.57) 1 < P ≤ 1

2

(
1 +

`√
|∆|

)
,

`+
√
|∆|

2n
(P − 1) ≤ R ≤

`−
√
|∆|

2n
P .

The corresponding walls do not start at q/s = 0 but instead are strictly
inside the largest semi-circular S-wall 0 → 1.
Note that we can again get an m-dependent upper bound on P by using
the fact that ` ≤ m and

√
|∆| ≥ 1. We can also use this upper bound on

P in the upper bound on R directly to obtain

(8.58) P ≤ m+ 1

2
, R ≤ m√

|∆|
.

The above implies that all matrix entries of γ ∈ PSL(2,Z) satisfying
(8.57) are bounded from above by m.

This exhausts all possible cases for contributions without BSM: the conditions
(8.54), (8.56) and (8.57) with n ≥ 0 and `,m > 0 fully characterize the set W(n, `,m)
in this case. By inspection, this set has a finite number of elements. Observe that
all the walls giving a non-zero contribution to (8.37) have entries bounded from above
by m.

8.6. Effects of black hole bound state metamorphosis

We now turn to identifying the walls of marginal stability for which BSM is relevant.
We study the problem systematically in three different cases viz., magnetic-, electric-,
and dyonic-metamorphosis, corresponding to mγ = −1, nγ = −1 and mγ = nγ = −1,
respectively.

8.6.1. Magnetic metamorphosis case: mγ = −1, nγ ≥ 0. As in Section 8.5, we
start with a charge vector (n, `,m) such that 4mn− `2 < 0 and 0 ≤ ` ≤ m. However,
we are now interested in the walls γ for which mγ = −1 and nγ ≥ 0. The idea behind
magnetic metamorphosis is that when there is a wall γ such that mγ = −1, then there
is another wall γ̃ which has the exact same contribution to the index as γ. Furthermore,
one needs to implement a precise prescription to properly account for such walls, and
avoid overcounting in the polar degeneracies, as shown in [Sen11b, CLSS13]. It will
be useful to explicitly review some details of this phenomenon. To do so, we begin
with the following definition:

Definition 8.6.1. For a wall γ with mγ = −1, nγ ≥ 0, we define its metamorphic
dual as

(8.59) γ̃ := γ ·
(

1 −`γ
0 1

)
.

With this definition, the prescription found in [Sen11b, CLSS13] to properly
account for magnetic-BSM can be summarized as follows (we refer the reader to the
references just mentioned for a physical justification of this):
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A wall γ at which magnetic-BSM occurs contributes to the polar coeffi-
cients c̃m(n, `) if and only if γ and its metamorphic dual γ̃ both contribute
in R. If so, the contributions of γ and γ̃ should be counted only once.

A necessary condition for the second part of the prescription is that both γ and γ̃ have
the same index contribution, as we now review. First, from Definition 8.6.1, it is easy
to see that a wall γ and its metamorphic dual γ̃ have the same end point p/r,

γ =

(
p q
r s

)
⇐⇒ γ̃ =

(
p −p`γ + q
r −r`γ + s

)
.(8.60)

With this, we prove the following statement:

Proposition 8.6.1. For a given set of charges (n, `,m), the wall γ̃ has the same
index contribution as γ to the polar coefficients c̃m(n, `).

Proof. First consider the wall γ for which the electric and magnetic centers are

Qγ = sQ− qP , Pγ = −rQ+ pP .(8.61)

Thus, we have

`γ = Qγ · Pγ = −srQ2 − qpP 2 + (sp+ qr)Q · P.(8.62)

A similar calculation for γ̃ shows that Qγ̃ = Qγ + `γPγ and Pγ̃ = Pγ, as well as

`γ̃ = (Qγ + `γPγ) · Pγ = `γ + `γP
2
γ = −`γ ,(8.63)

where in the last equality we have made use of the fact that mγ = P 2
γ /2 = −1. We

also note that the above considerations imply

mγ = mγ̃ = −1 , nγ̃ =
(
nγ + `2

γmγ + `2
γ

)
= nγ .(8.64)

From (8.63), (8.64) and the fact that a given bound state of charges (n′, `′,m′) has
indexed degeneracy (−1)`

′+1|`′|d(n′)d(m′), we conclude that a wall γ and its metamor-
phic image γ̃ contribute equally to the negative discriminant degeneracies. �

We now illustrate the potential non-zero contributions to the formula (8.36) from
magnetic-BSM walls, implementing the above prescription. Recall that the walls we
are summing over in the index formula are in Γ+

S and are thus oriented from left to right
(they have p/r > q/s). From (8.60), we then have the following possible configurations
for the wall γ and its dual:

(1) Case
p

r
>
−p`γ + q

−r`γ + s
>
q

s
, as shown in Figure 12

(a) The situation `γ = −`γ̃ > 0 shown in Figure 12a leads to a contradiction

as follows. If −r`γ + s > 0, then we find from
−p`γ + q

−r`γ + s
>

q

s
that

−ps`γ + qs > −rq`γ + qs which implies 0 > `γ(ps − qr) = `γ (because
γ ∈ PSL(2,Z)), which contradicts the assumption that `γ > 0. For

−r`γ + s < 0, we find from
p

r
>
−p`γ + q

−r`γ + s
that −pr`γ + ps < −pr`γ + qr

which leads to the contradiction 1 = ps− qr < 0. Therefore this scenario
does not occur.

(b) The situation `γ = −`γ̃ < 0 as seen in Figure 12b does occur but does
not contribute to the index computed in the region R owing to the BSM
prescription presented below Definition 8.6.1.
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(a) Case
p

r
>
−p`γ + q

−r`γ + s
>
q

s
, `γ = −`γ̃ > 0 (b) Case

p

r
>
−p`γ + q

−r`γ + s
>
q

s
, `γ = −`γ̃ < 0

Figure 12. Metamorphosis for
p

r
>
−p`γ + q

−r`γ + s
>
q

s

(2) Case
p

r
>
q

s
>
−p`γ + q

−r`γ + s
, as shown in Figure 13

(a) Case
p

r
>
q

s
>
−p`γ + q

−r`γ + s
, `γ = −`γ̃ < 0 (b) Case

p

r
>
q

s
>
−p`γ + q

−r`γ + s
, `γ = −`γ̃ > 0

Figure 13. Metamorphosis for
p

r
>
q

s
>
−p`γ + q

−r`γ + s

(a) For the case `γ = −`γ̃ < 0 as in Figure 13a, we run into a contradiction
analogous to the one of Figure 12a.

(b) The case of `γ = −`γ̃ > 0 as in Figure 13b does again occur but does
not contribute to the black hole degeneracy in the region R owing to the
BSM prescription.

(3) Case
−p`γ + q

−r`γ + s
>
p

r
>
q

s
as shown in Figure 14

(a) For the case as in Figure 14a, there will be a contribution to the index
in the region R from the walls γ and γ̃, in accordance with the BSM
prescription. Furthermore, Proposition 8.6.1 shows that both contribu-
tions are equal, and the prescription states that they must be identified
to avoid overcounting.

(b) The case shown in Figure 14b does not contribute to the black hole de-
generacy in R since neither γ nor γ̃ contribute in R.
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(a) Case
−p`γ + q

−r`γ + s
>
p

r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

−p`γ + q

−r`γ + s
>
p

r
>
q

s
, `γ = −`γ̃ < 0

Figure 14. Metamorphosis for
−p`γ + q

−r`γ + s
>
p

r
>
q

s

In summary, we have shown that the only magnetic-BSM walls that give a non-

trivial contribution to (8.36) must satisfymγ = −1, nγ ≥ 0, `γ > 0, as well as
−p`γ + q

−r`γ + s
>

p

r
. Observe now that if −r`γ + s > 0, then we can rewrite the latter inequality

as 0 > ps− qr = 1 which is a contradiction. Thus, we find that the walls giving a non-
trivial contribution to the index (8.36) must have −r`γ +s < 0, which implies `γ > s/r
and therefore is stronger than `γ > 0.

Upon eliminating q using the condition that the walls are in PSL(2,Z), we can
write the three conditions mγ = −1, nγ ≥ 0 and `γ > s/r as

m
(ps− 1

r

)2

− `
(ps− 1

r

)
s+ ns2 ≥ 0 ,

mp2 − `pr + nr2 = −1 ,

−2nrs− 2m
p

r
(ps− 1) + `(2ps− 1) >

s

r
.

(8.65)

We split the discussion in various cases depending on the values of the charges (n, `,m),
subject to the conditions 4mn − `2 < 0, m > 0 and 0 ≤ ` ≤ m. We further focus on
the Γ+

S walls that have r, s > 0.

(1) Case 1: m > 0, n = −1
In this case we solve for r in (8.65) and obtain two solutions

(8.66) r± =
1

2

(
±
√
p2|∆|+ 4− `p

)
.

Since r− is negative we can discard it and focus on the r+ solution. Insert-
ing this in the inequalities nγ ≥ 0 and `γ > s/r, we obtain the following
inequalities on s,

(8.67)

max
[1

2

(
`
√
p2|∆|+ 4− p|∆|

)
, 0
]
< s ≤ 1

4

(
`+

√
|∆|
)(√

p2|∆|+ 4− p
√
|∆|
)
,

where we have taken into account the fact that we are only interested in
solutions with s > 0. Clearly the right-hand side must be greater or equal to
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one for this to have solutions in Z, which in turn translates to an upper bound
on p, given below. A lower bound on p arises because the lower bound on s will
become p-dependent for sufficiently small p (certainly for p ≤ 0). In that case

we know that the lower bound 1
2

(
`
√
p2|∆|+ 4−p|∆|

)
= 1

2

(
`(2r++`p)−p|∆|

)
is an integer or a half-integer. Since s has to be strictly larger than this lower
bound but smaller than the upper bound, we find that the gap between the
upper and lower bound on s has to be at least 1/2, which leads to a lower
bound on p. The final range one obtains is

(8.68) − 1 +
1

4m

(
`(1 + 4m)√
|∆|+ 1

)
≤ p ≤ 1

2
+

1

2m

(
`(m+ 1)√
|∆|

− 1

)
.

Since 0 ≤ ` ≤ m, the upper bound on p is maximized by taking ` = m, in which

case one obtains p ≤ 1
2

(
1 − 1

m
+ m+1√

m(m+4)

)
< 1, while the lower bound on p

trivially implies that p ≥ 0. So, we actually find that there are only solutions
with p = 0, which then implies that r = r+ = 1 and q = (ps − 1)/r = −1.
The range for s simplifies substantially and the only matrices that contribute
in this case are

(8.69)

(
0 −1
1 s

)
, with ` < s ≤ 1

2

(
`+

√
|∆|
)
< m+ 1 .

Here we have used that 0 ≤ ` ≤ m to get a simple m-dependent upper bound
on s.

(2) Case 2: m > 0, n = 0 and ` > 0
In this case, the system (8.65) imposes

(8.70) r =
1 +mp2

`p
.

Requiring r > 0 to be an integer fixes p = 1 and ` | (m + 1). Then the
condition `γ > s/r is automatically satisfied for s > 0, while the condition
mγ ≥ 0 requires s = 1. Thus, the matrices satisfying (8.65) are of the form

(8.71)

(
1 0

m+1
`

1

)
, with ` | (m+ 1) .

This set of matrices has entries that are trivially bounded from above by
(m+ 1)/`. Among all matrices that contribute to the index (8.36), we obtain
here the maximal entry m+ 1 for ` = 1.

(3) Case 3: m > 0, n > 0 and ` > 0
In this case we solve for r using mγ = −1 and obtain two solutions

(8.72) r± =
1

2n

(
`p±

√
p2|∆| − 4n

)
.

Note that sign(p) = sign(r±), so our restriction to r > 0 implies in this case
p > 0. The reality of the square root in r± actually implies a stronger lower
bound on p,

(8.73) 2

√
n

|∆|
≤ p .
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Together with the conditions nγ ≥ 0 and `γ > s/r, we find
(8.74)

max
[ 1

2n

(
p|∆| ± `

√
p2|∆| − 4n

)
, 0
]
< s ≤ 1

4n

(
`+

√
|∆|
)(

p
√
|∆| ±

√
p2|∆| − 4n

)
,

where the upper and lower signs are for r = r+ and r = r−, respectively. We
should require that the right-hand side of the above equation be greater than
one to have integer solutions for s. For the lower sign, this criterion yields an
upper bound on p,

(8.75) p ≤ 1

2
+

1

2m

(
`(m+ 1)√
|∆|

− 1

)
,

which shows that there is a finite number of walls with r = r− contributing
to (8.36). Furthermore, the wall matrix entries are again bounded by sim-
ple m-dependent functions, as follows. For p as in (8.75) we notice that
the upper bound is maximized for ` = m and |∆| = 1,8 in which case
one finds p < 1

2

(
2 +m− 1

m

)
< 1 + m

2
. Similarly, we can derive an m-

dependent upper bound on s > 0 as follows: p
√
|∆| −

√
p2|∆| − 4n is a

monotonically decreasing function of p and therefore maximal when p is at
its lower bound 2

√
n/|∆| from (8.73). Taking into account that 1 ≤ n and√

|∆| < ` ≤ m, we then find s ≤ `+
√
|∆|

2
√
n

< m. Using the upper bound on s we

likewise find an upper bound on the remaining entry, 0 ≤ q = (ps − 1)/r− ≤(
p
√
|∆| −

√
p2|∆| − 4n

)
/2 <

√
m/2.

For the upper sign, which corresponds to picking r = r+ in (8.72), requiring
that the right-hand side of (8.74) be greater than one does not yield addi-
tional constraints on p. In this case, we thus only have the lower bound (8.73).
However, numerical investigations up to m = 30 show that the set of walls
with r = r+ is finite, and in fact consists of only a single element for a given
value of m,n, ` > 0. Furthermore, the entries of the matrix associated to such
walls are always strictly less than m. It seems that imposing integrality of the
matrix entries on top of the above conditions severely restricts the contributing
walls with r = r+, although we have not managed to show this analytically.
We leave this as an interesting problem for the future.

The above analysis shows that the set of walls at which magnetic-BSM occurs and
that give a non-trivial contribution to the index (8.36) is finite with entries bounded
from above by m + 1 (see Equation (8.71)). Aside from the case with m,n, ` > 0
and r = r+, we were able to show this analytically. Nevertheless, the numerical
investigations have shown that the same conclusion holds for the latter walls. Some
more details are presented in Appendix C.

8.6.2. Electric metamorphosis case: nγ = −1,mγ ≥ 0. Having expounded the
details of the magnetic metamorphosis case in the previous subsection, we can make
use of these results to work out the electric metamorphosis case at almost no extra cost.
This follows from combining Proposition 8.6.1 with the observation below (8.28), which
shows that acting with S̃ on the metamorphic dual γ̃ (8.59) of a wall γ with mγ = −1

8These values cannot actually be obtained, so there is a slightly stronger but more complicated
bound.
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produces a wall with nγ = −1 and with the same orientation as that of γ. Indeed, the

charges associated with the wall γ̃ · S̃ are given by

(8.76) (nγ̃S̃, `γ̃S̃, mγ̃S̃) = (mγ, `γ, nγ) = (−1, `γ, nγ) .

As in the magnetic-BSM case, for a wall γ such that electric metamorphosis occurs
there is another wall γ̃ which gives the same contribution to the index:

Definition 8.6.2. For a wall γ with nγ = −1, mγ ≥ 0, we define its metamor-
phic dual as

(8.77) γ̃ = γ ·
(

1 0
−`γ 1

)
.

We must then employ a prescription analogous to the one presented below Defini-
tion 8.6.1 for electric-BSM contributions to avoid overcounting. This is again necessary
since an electric-BSM wall and its metamorphic dual (8.77) have the same contribution
to the index:

Proposition 8.6.2. For a given set of charges (n, `,m), the wall γ̃ has the same
index contribution as γ to the polar coefficients c̃m(n, `).

Proof. This is proven completely analogously to the proof of Proposition 8.6.1.
�

Furthermore we recall that, as explained below (8.32), the summand of the count-
ing formula for negative discriminant states is invariant under an S̃-transformation.
From (8.76), it is clear that the electric-BSM wall γ̃ · S̃ gives the same contribution
to the polar coefficients c̃m(n, `) as the magnetic-BSM wall γ. Thus, in addition to
the above prescription that requires us to identify an electric-BSM wall with its meta-
morphic dual, we also need to identify the contribution of electric-BSM walls with
the contribution of magnetic-BSM walls to avoid further overcounting. The BSM pre-
scription in the case of magnetic or electric walls therefore identifies four contributions
together for a given set of charges (n, `,m).

From Definition 8.6.2, it is easy to see that a wall γ and its metamorphic dual γ̃
have the same starting point q/s,

γ =

(
p q
r s

)
⇐⇒ γ̃ =

(
−q`γ + p q
−s`γ + r s

)
.(8.78)

Given this and the fact that we look for walls in Γ+
S (with p/r > q/s), we have the

following possible configurations for the electric-BSM wall γ and its dual:

(1) Case
p

r
>
−q`γ + p

−s`γ + r
>
q

s
, as shown in Figure 15

(a) For the situation `γ = −`γ̃ > 0 as in Figure 15a, one can show that this
configuration leads to a contradiction, analogous to the magnetic-BSM
case of Figure 12a. Therefore this scenario does not occur.

(b) The case `γ = −`γ̃ < 0 as seen in Figure 15b does occur but does not
contribute to the index in the region R owing to the BSM prescription.

(2) Case
−q`γ + p

−s`γ + r
>
p

r
>
q

s
, as shown in Figure 16
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(a) Case
p

r
>
−q`γ + p

−s`γ + r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

p

r
>
−q`γ + p

−s`γ + r
>
q

s
, `γ = −`γ̃ < 0

Figure 15. Metamorphosis for
p

r
>
−q`γ + p

−s`γ + r
>
q

s

(a) Case
−q`γ + p

−s`γ + r
>
p

r
>
q

s
, `γ = −`γ̃ > 0 (b) Case

−q`γ + p

−s`γ + r
>
p

r
>
q

s
, `γ = −`γ̃ < 0

Figure 16. Metamorphosis for
−q`γ + p

−s`γ + r
>
p

r
>
q

s

(a) For the case `γ = −`γ̃ < 0 as in 16a, there is again a contradiction which
prevents this configuration from happening, as in the magnetic-BSM case
of Figure 13a.

(b) The case `γ = −`γ̃ > 0 as in Figure 16a does again occur but does not
contribute to the index in the region R owing to the BSM prescription.

(3) Case
p

r
>
q

s
>
−q`γ + p

−s`γ + r
, as shown in Figure 17

(a) For the case as in Figure 17a, there will be a contribution to the index
in the region R from γ and γ̃. Here, just as in the magnetic-BSM case,
both these contributions are equal owing to Proposition 8.6.2 and must
be identified according to the BSM prescription.

(b) The case as shown in Figure 17b does not contribute to the black hole
degeneracy in the region R since neither γ nor γ̃ does.

Just as in the previous section, the above analysis shows that the only electric-
BSM walls that give a non-trivial contribution to (8.36) must satisfy mγ ≥ 0, nγ =
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(a) Case
p

r
>
q

s
>
−q`γ + p

−s`γ + r
, `γ = −`γ̃ > 0 (b) Case

p

r
>
q

s
>
−q`γ + p

−s`γ + r
, `γ = −`γ̃ < 0

Figure 17. Metamorphosis for
p

r
>
q

s
>
−q`γ + p

−s`γ + r

−1, `γ > 0, as well as
q

s
>
−q`γ + p

−s`γ + r
. Once again, the last inequality leads to a stronger

restriction on `γ, namely `γ > r/s. We now explicitly give the form of the walls for
which electric-BSM occurs, for all values of (n, `,m) with the usual restrictions that
4mn− `2 < 0, m > 0 and 0 ≤ ` ≤ m. We make use of the observation at the beginning
of this section regarding the action of S̃ on the metamorphic dual of a magnetic-BSM
wall.

(1) Case 1: m > 0, n = −1
Acting on the metamorphic dual (8.59) of (8.69) with an S̃-transformation,
we obtain the walls

(8.79)

(
1 0

s− ` 1

)
, with ` < s ≤ 1

2

(
`+

√
|∆|
)
< m+ 1 .

(2) Case 2: m > 0, n = 0 and ` > 0
Acting on the metamorphic dual (8.59) of (8.71) with an S̃-transformation,
we obtain the walls

(8.80)

(
` 1
m m+1

`

)
, with ` | (m+ 1) .

This set of matrices has entries that are bounded from above by max[m, (m+
1)/`]. Among all matrices that contribute to the index, we obtain here the
maximal entry m+ 1 for ` = 1.

(3) Case 3: m > 0, n > 0 and ` > 0
Acting on the metamorphic dual (8.59) of the walls of Case 3 in Section 8.6.1
with an S̃-transformation, we obtain a finite set of electric-BSM walls. This
can be shown analytically when acting on walls with r = r−, and numerically
when acting on walls with r = r+. Moreover, all entries are strictly bounded
from above by m. We refer the reader to Appendix C for some numerical
checks.

Just as in the magnetic-BSM analysis of Section 8.6.1, in all the above cases we
obtain a finite number of electric-BSM walls whose entries are bounded by m+ 1 (see
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Equation (8.80)). In the next section, we turn to the final case that remains to be
analyzed, which is when both transformed charges mγ and nγ are equal to −1.

8.6.3. Dyonic metamorphosis case: mγ = nγ = −1. The final case of meta-
morphosis occurs when both the electric and magnetic charges attain their lowest
possible values. In the previous two cases of BSM, a magnetic or electric wall came
with a single metamorphic dual, and as explained above the resulting four walls for a
given charge vector (n, `,m) have to be identified to obtain the correct contribution
to the polar coefficients c̃m(n, `). When both mγ = nγ = −1, there are two centers
to be identified and we can identify the magnetic and electric centers alternatively.
This generates an infinite sequence of dual walls [Sen11b]. The metamorphic duals
can be generated in two ways depending on which center we start the identification
with. Since they are equivalent, we choose to start the identification with the magnetic
center.

Definition 8.6.3. Let γ be a wall at which mγ = nγ = −1. The metamorphic
duals are

γ̃ i = γ̃ i−1 ·M(imod 2) for i > 0 , and γ̃0 = γ ,(8.81)

where M1, M0 are defined as

M1 :=

(
1 −`γ
0 1

)
, M0 :=

(
1 0
`γ 1

)
.(8.82)

For example, γ̃1 = γ ·M1, γ̃2 = γ̃1 ·M0, γ̃3 = γ̃2 ·M1, . . .
9 Note that the identification

of the electric center in M0 does not have a ‘−`γ’ unlike in (8.77) and this dual wall
will have the same sign of `γ as γ.

Proposition 8.6.3. For a given set of charges (n, `,m), the walls γ̃ i>0 all have the
same index contribution as γ to the polar coefficients c̃m(n, `).

Proof. From the previous sections, we have already shown that the matrices that
identify magnetic centers (8.59) and electric centers (8.77) leave the value of electric
and magnetic charges invariant while only flipping the sign of `γ. Therefore, the infinite
set of walls generated in (8.81) have the same contribution to the index. �

We now characterize dyonic metamorphosis. The possible cases for dyonic meta-
morphosis are shown in Figure 18, where only one case as shown in Figure 18b can in
principle contribute to the black hole degeneracy in the attractor region R. The reason
for this is the BSM prescription: all walls and their metamorphic must contribute in
the same region to contribute to the polar coefficients c̃m(n, `). To obtain the explicit
form of the dyonic-BSM walls we must solve the following system,

nγ = s2n+ q2m− sq` = −1 ,

mγ = r2n+ p2m− rp` = −1 ,

`γ = −srn− pqm+ `(ps+ qr) =
√
|∆|+ 4 ,

(8.83)

with

(
p q
r s

)
∈ PSL(2,Z). It is important to recall that the discriminant ∆ is a U -

duality invariant. For this reason, the value of `γ is not independent and is fixed in

9Starting with the electric center, we would have γ̃1 = γ ·M0, γ̃2 = γ̃1 ·M1, γ̃3 = γ̃2 ·M0, . . .
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(a) Case of mγ = −1, nγ = −1 metamorpho-
sis where all the metamorphic walls are inside
the original wall.

(b) Case of mγ = −1, nγ = −1 metamor-
phosis where all the metamorphic walls are
outside the original wall.

Figure 18. Possible cases of metamorphosis for mγ = −1, nγ = −1.
There are an infinite series of walls to be identified but we have not
depicted them here in order to avoid cluttering of the images.

terms of the charges (n, `,m) as `2
γ − 4 = `2 − 4mn = |∆|. We further restrict to

the case where `γ is positive i.e., `γ =
√
|∆|+ 4 so that the wall contributes to the

region R. Given a charge vector (n, `,m), there is an infinite sequence of walls, all

with associated transformed charges (nγ, `γ, mγ) = (−1,
√
|∆|+ 4, −1), which get

identified by the BSM prescription.

We now study the explicit form of the contributing walls. When n = 0, the dis-
criminant is |∆| = `2 (with ` > 0). This reduces (8.83) to

nγ = q2m− sq` = −1 ,

mγ = p2m− rp` = −1 ,

`γ = −pqm+ `(ps+ qr) =
√
|∆|+ 4 .

(8.84)

Demanding that `γ ∈ Z implies that |∆| + 4 is a perfect square i.e., `2 + 22 = `2
γ

for `γ ∈ Z. We know, however, that there is no Pythagorean triple with 2 as an ele-
ment. (The difference of two squares form an increasing sequence 3, 5, 7, 8, . . . and this
does not include 22 = 4.) Therefore, there is no dyonic metamorphosis for n = 0.

When n 6= 0, we can solve the system (8.83) after eliminating q using the PSL(2,Z)
relation q = (ps− 1)/r. From mγ = −1 we obtain

(8.85) r = r± =
1

2n

(
`p±

√
p2|∆| − 4n

)
.
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For each value of r, the condition nγ = −1 is quadratic in s and yields two branches
of solutions. We therefore arrive at the following dyonic-BSM walls10

(8.86)

γ+,± =

 p 1
2

(
±p
√
|∆|+ 4 +

√
|∆| p2 − 4n

)
1

2n

(
`p+

√
p2|∆| − 4n

)
1

4n

(
`p+

√
|∆|p2 − 4n

)(
`±

√
|∆|+ 4

)
−mp

 ,

and
(8.87)

γ−,± =

 p 1
2

(
±p
√
|∆|+ 4−

√
|∆| p2 − 4n

)
1

2n

(
`p−

√
p2|∆| − 4n

)
1

4n

(
`p−

√
|∆|p2 − 4n

)(
`±

√
|∆|+ 4

)
−mp

 .

Since −γ+,±(−p) = γ−,±(p) and we look for walls in PSL(2,Z), we can focus on one
type of walls, say γ−,±. We therefore drop the first subscript and simply denote walls of
the form (8.87) as γ±. Examining the top-right entry of γ±, a necessary condition for

these walls to have integer entries is that
√
|∆|+ 4,

√
|∆|p2 − 4n ∈ Z. In the following

we let y = p and D = |∆|. The requirement that D + 4 is a perfect square implies
that D is not a square (as already observed above), and further that D is congruent
to 0 or 1 modulo 4.

The requirement
√
Dy2 − 4n ∈ Z can then be expressed as the requirement for y

to be a solution of

(8.88)
√
D y2 − 4n = x =⇒ x2 −D y2 = −4n ,

with x, y ∈ Z. We now split the discussion in two cases.

(1) Case 1: n = −1
In the case n = −1, the condition (8.88) takes the form

(8.89) x2 −D y2 = 4 .

This equation is the so-called Brahmagupta–Pell equation and has been well-
studied over the years.11 It is one of the classic Diophantine equations, and
its solutions have been fully classified. In the language of modern algebraic
number theory this problem is closely related to the problem of finding units
in the ring of integers of the real quadratic field Q(

√
D). We will present the

solution below in elementary terms, and later make some comments on the
more formal interpretation. We follow the treatment of [Coh08, Con19b,
Con19a]. The equation (8.89) has an infinity of solutions given as follows.
Let

(8.90) u = u0 +
√
D v0 ,

be such that u2
0−D v2

0 = 4 with the least strictly positive v0. Then all solutions
of (8.89) are given by [Coh08]

(8.91)
x+
√
D y

2
=
(u0 +

√
D v0

2

)k
with k ∈ Z .

10As mentioned above, a consequence of U -duality is that the equation `γ =
√
|∆|+ 4 is not

independent and does not yield additional constraints.
11In the literature, it is common to denote “the” Pell equation as the equation where the right-

hand side is equal to one. However, the latter is a special case of (8.88) with n = −1, see e.g., [Coh08,
Con19b, Con19a].



120 8. MOCK–MODULAR BLACK HOLE ENTROPY FROM 1
2
–BPS STATES

In general the difficulty is to find the fundamental solution u, as u0 and v0

need not be small even for small D.12 In our case however, we can can use
the physics of the problem which guarantees that `γ =

√
D + 4 is an integer.

Therefore, the fundamental solution is simply

(8.92) u =
√
D + 4 +

√
D ⇐⇒ (u0, v0) = (

√
D + 4, 1) .

From this solution we generate all other solutions from (8.91). Expanding

that equation and matching the coefficients of unity and
√
D leads to the

recurrence

2xk+1 =
√
D + 4xk +D yk ,

2 yk+1 = xk +
√
D + 4 yk ,

(8.93)

for k ∈ Z. Given a solution xk +
√
D yk to (8.89), the matrix (8.87) reads

(8.94) γ±(k) =

 yk
1
2

(
±yk
√
D + 4− xk

)
1
2

(
xk − `yk

)
1
4

(
xk
(
`±
√
D + 4

)
− yk

(
D ± `

√
D + 4

))
 .

Using the recursion relations (8.93), we can now show that acting on the right

of γ+(k) with M1 · S̃−1 =

(√
D + 4 1
−1 0

)
yields

(8.95) γ+(k) ·M1 · S̃−1 = γ+(k + 1) ∀ k ∈ Z ,

while acting on the right of γ−(k) with M0 · S̃−1 =

(
0 1
−1

√
D + 4

)
yields

(8.96) γ−(k) ·M0 · S̃−1 = γ−(k + 1) ∀ k ∈ Z .

Let us focus on γ+(k) 13. In the language of Definition 8.6.3, the recur-
rence (8.95) can be written as

(8.97) γ̃k =

{
(−1)

(|k|−1) mod 4
2 γ+(k) · P · S̃ for |k| ≥ 1 odd

(−1)
|k|mod 4

2 γ+(k) · P for |k| ≥ 2 even
, and γ̃0 = γ+(0)·P ,

where we used M0 = S̃ ·M1 · S̃−1 and P =

(
−1 0
0 1

)
. Here, k > 0 corresponds

to starting the identification with the magnetic center in Definition 8.6.3 and
k < 0 corresponds to starting with the electric center. Equation (8.97) shows
that all metamorphic duals of the dyonic-BSM walls γ+(0) are precisely all
the solutions to the Brahmagupta–Pell equation (8.89).

The first representative of the orbit (the wall with k = 0) is given by

(8.98) γ+(0) =

(
0 −1
1 1

2

(
`+
√
D + 4

)) .

12A famous example (Fermat’s challenge) is the equation a2 −D b2 = 1 with D = 61, where the
fundamental solution is given by a0 = 1766319049 and b0 = 226153980. As we see below, this example
does not appear in the physical system we study because D + 4 = 65 is not a perfect square.

13As γ−(0) = γ+(1) · S̃, the metamorphic duals generated by γ−(k) are isomorphic to those
generated by γ+(k).
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Note that `2 = D−4m ≡ D+4 (mod 2), which implies that ` ≡
√
D + 4 (mod 2),

so that the bottom-right entry of (8.98) is always an integer. Therefore, pro-
vided that

√
D + 4 ∈ Z, the wall γ+(0) ∈ Γ+

S and all the metamorphic duals
to be identified according to the BSM prescription are generated by the right
action of M1 · S̃−1. These dual walls are given by all the solutions to (8.89)
as in (8.94). This completely characterizes dyonic-BSM in the case n = −1.
Furthermore, since 0 ≤ ` ≤ m, the first representative of this orbit γ+(0)
clearly has entries bounded by 0 < 1

2

(
`+
√
D + 4

)
≤ m+ 1.

(2) Case 2: n ≥ 1
In this case we are interested in the solutions to the so-called generalized
Brahmagupta–Pell equation (8.88)

(8.99) x2 −D y2 = −4n .

As before, we have that D > 0 is not a square. Unlike in the n = −1 case, this
equation does not necessarily have a solution for general D and n. However,
when there is a solution (x0, y0) then there are infinitely many solutions which
are all generated by multiplication with powers of the fundamental unit given
in (8.92),

(8.100) x+
√
D y = (x0 +

√
D y0)

(√
D + 4 +

√
D

2

)k
for any k ∈ Z .

By repeating the same steps as in Case 1 above, one can again show that the
orbit of metamorphic duals is precisely the solution set of the generalized Pell
equation, and is generated by the matrices (8.95) and (8.96) acting on

(8.101) γ±(0) =

(
y0

1
2

(
±y0

√
D + 4− x0

)
1

2n

(
`y0 − x0

)
1

4n

(
`y0 − x0

)(
`±
√
D + 4

)
−my0

)
.

As in (8.98), we have
√
D + 4 ∈ Z and ` ≡

√
D + 4 (mod 2). In order for

the matrix entries to be integer, a sufficient condition is x0 ≡ `y0 (mod 2n).
By (8.99) we have x2

0 ≡ D y2
0 (mod 2n). Together with the fact that D ≡

`2 (mod 2n), this implies that x2
0 ≡ `2 y2

0 (mod 2n), so that if n is square free,
then we automatically have x0 ≡ `y0 (mod 2n). Once this condition is met,
the full orbit of metamorphic duals is generated by M1 · S̃−1 or M0 · S̃−1 as
before.

Since k runs over all integers in (8.100), it is clear that every Pell orbit—
and therefore every dyonic BSM orbit—has an element with smallest |y|, which
is called the fundamental solution. Although there is no existence theorem
for solutions to the generalized Brahmagupta–Pell equation (8.99) when n ≥
1, there is a powerful theorem [Con19b, Con19a] which states that the
fundamental solution is bounded according to

(8.102) x2 ≤ 2n
(√

D + 4 +
√
D
)
, y2 ≤ 2n

(√
D + 4 +

√
D

D

)
.

These bounds are very restrictive, and in particular, they imply that the set
of dyonic-BSM orbits is finite, with a representative whose entries are strictly
less than m+ 1.
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We have thus fully characterized the dyonic-BSM walls and explained how the
infinite orbit of metamorphic duals defined in Definition 8.6.3 is in one-to-one corre-
spondence with the infinite orbit of solutions to the (generalized) Brahmagupta–Pell
equation. Crucial to being able to solve the problem was the fact that U -duality
fixes `γ =

√
|∆|+ 4 to be an integer.

It is instructive to restate the solutions of the Brahmagupta–Pell equation in the
language of algebraic number theory [Coh08, Con19b, Con19a]. Consider the real

quadratic field K = Q(
√
D) where D > 0 is not a square. We will denote elements

of this field either as (x, y) or as x +
√
D y with x, y ∈ Q. The norm of this element

is N(x, y) = x2 −Dy2. By a change of variables ([Coh08], p. 355) one can bring the
basic Brahmagupta–Pell equation to the form

(8.103) x2 −D y2 = 1 .

Thus we are looking for elements of norm 1. By multiplicativity of the norm, it is clear
that if u = x +

√
D y is a solution of (8.103), then so is uk for k ∈ Z. (It is easy to

check, by rationalizing denominators and using (8.103), that negative powers are also
good solutions.) The problem of finding all solutions to the basic Brahmagupta–Pell

equation is then precisely the problem of finding all units in the order Z[
√
D]. Denoting

the discriminant of K as D0, we have D = D0f
2. When f = 1 the solution to this

problem is given by Dirichlet’s unit theorem, that all solutions are generated as powers
of the fundamental unit a0 +

√
D b0 which is the unit with least positive b0. In fact this

statement holds even when f > 1 (one can use a proof by induction on the number of
prime powers of f). By changing variables back, we obtain the formulation (8.91).

For the general case we have, after the change of variables mentioned above,

(8.104) x2 −D y2 = −n ,
with n ∈ Z (We are however interested in n ≥ −1 with n 6= 0). In this case, we are
looking for elements in K with norm −n. Once again it is easy to see, by the multiplica-
tivity of the norm, that given one such element (x0, y0) with N(x0, y0) = −n we have an

infinite number of elements with the same norm generated by multiplying x0 +
√
D y0

by arbitrary powers of a unit. The main theorem in this case says that there are a
finite number of fundamental solutions (x0, y0) which lie in the range |x0| ≤

√
|n|u,

|y0| ≤
√
|n|u/D, where u is any unit satisfying u > 1 and N(u) = 1. This last

condition, translated back to the original variables is presented in (8.102).

Summary. For convenience, we now summarize the results of Sections 8.5 and 8.6
where we have characterized all the walls contributing to the negative discriminant
degeneracies (8.36). There are two notable points.

Finiteness. Examining the various cases (with and without BSM), we see that the set
of relevant walls is finite, and in fact small in the following sense: it consists of S–walls
with entries bounded (in absolute value) from above by m+ 1, where the upper bound
is optimal for certain values of the original charges (n, `,m), as evidenced e.g., in (8.71).
Moreover, all walls are such that |p/r| ≤ 1 and |q/s| ≤ 1 and so their endpoints lie in
the strip Σ1 ∈ [−1,+1] in the Σ moduli space.

Structure. The structure of walls of electric and magnetic BSM form an orbit generated
by the corresponding BSM transformation which acts as Z/2Z. The dyonic bound state
metamorphosis has a very interesting characterization. We already knew that there is
an infinite set of different-looking gravitational configurations, all with the same total
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dyonic charge invariants with negative discriminant, which are related by U -duality to
each other. The phenomenon of BSM [Sen11b, CLSS13] says that these configura-
tions actually should not be considered as distinct physical configurations; rather, they
must be identified as different avatars of the same physical entity. The considerations
in this section show that the following sets are in one-to-one correspondence:

1. The orbit of dyonic metamorphic duals with charges (n, `,m) with `2−4mn =
D > 0, and

2a. Solutions to the generalized Brahmagupta–Pell equation x2 − D y2 = −4n
with fundamental solution (x0, y0), and the conditions

√
D + 4 ∈ Z and x0 ≡

` y0 (mod 2n), or, equivalently,

2b. The set of algebraic integers of norm −n in the order Z[
√
D] of the real qua-

dratic field K = Q(
√
D) with 1

2
(
√
D + 4 +

√
D) as the fundamental unit, as

well as the second congruence condition above.

Moreover, these sets are isomorphic to each other (and to Z) as an additive group. The
generators of the groups are given, respectively, by the generators in Definition 8.6.3
(modulo S̃), and by multiplication in K by the fundamental unit.

8.7. The exact black hole formula

In this section we assemble all the elements of the previous sections into one formula,
and then we present checks of this formula. So far we have seen that the walls of
marginal stability contributing to the polar coefficients according to Equation (8.36)
are a subset of PSL(2,Z). Bound state metamorphosis is an equivalence relation on
the set PSL(2,Z) and therefore divides it into orbits µ. We denote the set of orbits as
(cf. Equation (8.34))

(8.105) ΓBSM(n, `,m) = PSL(2,Z)/BSM .

The orbits are of the following three types:

(1) Walls for which there are no metamorphosis. These walls have no duals and
therefore lie in an orbit of length 1.

(2) Walls with either electric or magnetic metamorphosis, for which there is ex-
actly one dual with the same contribution to the index. These walls lie in an
orbit of length 2.

(3) Walls with dyonic metamorphosis for which there are an infinite number of
dual walls. These walls lie in an orbit of infinite length with a group structure
isomorphic to Z.

We have seen that the contribution of an orbit to the index is one if all its elements
contribute, and zero otherwise. This can be encoded in the following function defined
on orbits (recalling Equations (8.30), (8.32) for the definition of the θ function),

(8.106) Θ(µ) =
∏
γ∈µ

θ(γ,R) , µ ∈ ΓBSM(n, `,m) ,

which can be lifted to a function on the space of walls as (using the same notation)

(8.107) Θ(γ) = Θ(µ) , γ ∈ µ .
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We now have all the elements to present the full formula for the polar degeneracies (8.8).
in the range 0 ≤ ` ≤ m we have:14

(8.108) c̃m(n, `) =
1

2

∑
γ∈ΓBSM(n,`,m)

(−1)`γ+1 Θ(γ) |`γ| d(mγ) d(nγ) .

The sum in the above formula runs over ΓBSM(n, `,m) which was defined as a coset
of PSL(2,Z) in (8.105). We can also write the formula so that the sum runs over a
smaller set, by using the symmetry of the theory and making a choice in obtaining
the coset representative. Such a choice makes the formula more explicit and is useful
for computations. We had already illustrated the idea of two such formulas in the
preliminary discussion in Section 8.4.2 where we didn’t take BSM into account. In

that case we had a sum over PSL(2,Z) in (8.31) but by using the involution S̃, we
could equivalently write it as a sum over Γ+

S as in (8.33) with an additional factor of 1
2
.

When BSM is present this discussion needs to be modified. When we have pure electric
or pure magnetic BSM, the orbits of length 2 discussed in Case 2 above are actually
part of a full symmetry orbit of length 4 via the following identifications:
(8.109)

(nγ, `γ,mγ) = (N 6= −1, L > 0,−1)
γ̃m7−→ (N,−L,−1)

S̃7−→ (−1, L,N)
γ̃e7−→ (−1,−L,N) .

In particular, the combined symmetry of BSM and S̃ implies an identification of two
walls in Γ+

S , namely the first and the third of the above sequence.
By definition, a given wall belongs to one and only one symmetry orbit, and, as we

have shown in the previous sections, when 0 ≤ ` ≤ m, every orbit has a non-empty
intersection with the set

(8.110)

{(
p q
r s

)
⊂ Γ+

S

∣∣∣∣ |p| , |q| , |r| , |s| ≤ m+ 1

}
.

The set W(n, `,m) is defined as the set of representative of orbits of BSM combined

with S̃ in this finite set having a non-zero value of Θ. With this definition we rewrite
the degeneracies of negative discriminant states for 0 ≤ ` ≤ m as

(8.111) c̃m(n, `) =
∑

γ∈W(n,`,m)

(−1)`γ+1 |`γ| d(mγ) d(nγ) .

In Appendix C, we present a large amount of relevant data that supports the
analysis and in particular shows that (8.108) corresponds to the degeneracies of negative
discriminant states in ψFm(τ, z).

8.8. Conclusions

In this chapter, we presented an exact formula for the count of negative discrim-
inant states in (7.24) defined via (8.8). The exact formula is (8.108). This formula
matches with the prediction of the Igusa cusp form and clears up an ambiguity with
the localization answer as studied in [MR16]. The implications of this formula are as
follows:

14Recall that the c̃m(n, `) are coefficients of a (mock) Jacobi form of index m, and as such they
are a function of ∆ = 4mn− `2 and ` mod (2m). Recall also that the modular properties imply that
this can be further reduced to 0 ≤ ` ≤ m.
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(a) The single centered black hole degeneracies are controlled by the degeneracies
of the world sheet instantons by utilization of the Rademacher circle method
for mock Jacobi forms (7.25) [FR17].

(b) Together with the (8.108) and the Rademacher technique, the extraction of
the coefficients to reconstruct the Igusa cusp form can be made numerically
faster.

(c) With regard to the world sheet instantons, the results that we exhibit here im-
ply that the single center black hole degeneracy is controlled by the instanton
partition function [Nek03] of only m+ 1 worldsheet instantons.

(d) The exact formula (8.108) can in principle be generalized for any chamber in
the moduli space by careful redefinition of the theta function defined in (8.30).

A natural extension of this technique would have been to extend it to the cases
of ZN CHL orbifolds, for which the Rademacher technique has been studied from a
black holes context in [Nal19]. This extension has been studied in [CNR20] for certain
cases of N being a prime number.
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[Car94] Élie Cartan, Sur la structure des groupes de transformations finis et continus (thèse),
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APPENDIX A

Superconformal characters

A.1. (Extended) N = 2 characters

For the (extended) N = 2 superconformal algebra with central charge c = 3d, let
|Ω〉 denote a highest weight state with eigenvalues h, ` w.r.t. L0 and J0. Writing Hh,`

for the representation belonging to |Ω〉 we define the (graded) N = 2 characters in the
Ramond sector through

chN=2
d,h− c

24
,`(τ, z) = TrHh,`((−1)F qL0− c

24 e2πizJ0) ,(A.1)

where F is the fermion number and q = e2πiτ . Below we will also use y = e2πiz. In the
Ramond sector unitarity requires h ≥ c

24
= d

8
.

The characters [Oda89, Oda90b, Oda90a] are given by (using the conventions of
[EH10a]1):

• Massles (BPS) representations exist for h = d
8
; ` = d

2
, d

2
− 1, d

2
− 2, . . . ,−(d

2
−

1),−d
2
. For d

2
> ` ≥ 0 they are given by

chN=2
d,0,`≥0(τ, z) = (−1)`+

d
2

(−i)ϑ1(τ, z)

η(τ)3
y`+

1
2

∑
n∈Z

q
d−1

2
n2+(`+ 1

2
)n (−y)(d−1)n

1− yqn
,(A.2)

and for ` = d
2

one has

chN=2
d,0, d

2
(τ, z) = (−1)d

(−i)ϑ1(τ, z)

η(τ)3
y
d+1

2

∑
n∈Z

q
d−1

2
n2+ d+1

2
n (1− q) (−y)(d−1)n

(1− yqn)(1− yqn+1)
.(A.3)

• Massive (non-BPS) representations exist for h > d
8
; ` = d

2
, d

2
− 1, . . . ,−(d

2
−

1),−d
2

and ` 6= 0 for d = even. For ` > 0 we have

chN=2
d,h− c

24
,`>0(τ, z) = (−1)`+

d
2 qh−

d
8
iϑ1(τ, z)

η(τ)3
y`−

1
2

∑
n∈Z

q
d−1

2
n2+(`− 1

2
)n (−y)(d−1)n .(A.4)

In both cases the characters for ` < 0 are given by

chN=2
d,h− c

24
,`<0(τ, z) = chN=2

d,h−c/24,−`>0(τ,−z).(A.5)

The Witten index of a massless representation is given by

chN=2
d,0,`≥0(τ, z = 0) =

{
(−1)`+

d
2 , for 0 ≤ ` < d

2
,

1 + (−1)d, for ` = d
2
.

(A.6)

1Note that our definition of ϑ1(τ, z) differs by a minus sign from the definition used there.
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140 A. SUPERCONFORMAL CHARACTERS

A.2. N = 4 characters

Analogously to theN = 2 case the (graded) characters of theN = 4 superconformal
algebra with central charge c = 3d, and d even, in the Ramond sector are defined as

chN=4
d,h− c

24
,`(τ, z) = TrHh,`((−1)F qL0− c

24 e4πizT 3
0 ),(A.7)

where h and ` are the eigenvalues of L0 and T 3
0 of the highest weight state belonging

to the representation Hh,`. As in the N = 2 case unitarity requires h ≥ d
8
.

The characters [ET88a] are given by (using conventions from [EH10b])

• Massless representation exist for h = d
8
, ` = 0, 1

2
. . . , d

4
and are given by

chN=4
d,0,` (τ, z) =

i

ϑ1(τ, 2z)

ϑ1(τ, z)2

η(τ)3

∑
ε=±1

∑
m∈Z

ε
e4πiε(( d

2
+1)m+`)(z+ 1

2
)

(1− y−εq−m)2
q( d

2
+1)m2+2`m.(A.8)

In particular for ` = 0 this may be written as

chN=4
d,0,0 (τ, z) =

−i
ϑ1(τ, 2z)

ϑ1(τ, z)2

η(τ)3

∑
m∈Z

q(
d
2

+1)m2

y(d+2)m 1 + yqm

1− yqm
.(A.9)

• Massive representation exist for h > d
8
, ` = 1

2
, 1, . . . , d

4
and are given by

chN=4
d,h− c

24
,`(τ, z) = iqh−

2`2

d+2
− d

8
ϑ1(τ, z)2

ϑ1(τ, 2z)η(τ)3

(
ϑ d

2
+1,2`(τ, z +

1

2
)− ϑ d

2
+1,−2`(τ, z +

1

2
)

)
,

(A.10)

where

ϑP,a(τ, z) =
∑
n∈Z

q
(2Pn+a)2

4P y2Pn+a .(A.11)

With the help of the N = 4 characters combinations of massless N = 2 characters
which are even in z can be expressed in the following way

chN=2
d,0, 1

2
(τ, z) + chN=2

d,0,− 1
2
(τ, z) = (−1)

d+1
2 φ0, 3

2
(τ, z)chN=4

d−3,0,0(τ, z) ,(A.12)

chN=2
d,0, 3

2
(τ, z) + chN=2

d,0,− 3
2
(τ, z) = (−1)

d+1
2 φ0, 3

2
(τ, z)

(
chN=4

d−3,0,0(τ, z) + chN=4
d−3,0, 1

2
(τ, z)

)
.

(A.13)

Likewise the even-z combination of the massive N = 2 characters can be written as

chN=2
d,n,l (τ, z) + chN=2

d,n,−l(τ, z) = (−1)2l+ d−1
2 φ0, 3

2
(τ, z)chN=4

d−3,n, 1
2

(l− 1
2

)(τ, z) .(A.14)



APPENDIX B

Character table of M12 and M24

Table 3. The character table of M12 where we use the notation e11 =
1
2
(−1 + i

√
11).

[g] 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
[g2] 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
[g3] 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
[g5] 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b
[g11] 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 11 -1 3 2 -1 -1 3 1 -1 0 -1 1 -1 0 0
χ3 11 -1 3 2 -1 3 -1 1 -1 0 1 -1 -1 0 0
χ4 16 4 0 -2 1 0 0 1 1 0 0 0 -1 e11 ē11

χ5 16 4 0 -2 1 0 0 1 1 0 0 0 -1 ē11 e11

χ6 45 5 -3 0 3 1 1 0 -1 0 -1 -1 0 1 1
χ7 54 6 6 0 0 2 2 -1 0 0 0 0 1 -1 -1
χ8 55 -5 7 1 1 -1 -1 0 1 1 -1 -1 0 0 0
χ9 55 -5 -1 1 1 3 -1 0 1 -1 -1 1 0 0 0
χ10 55 -5 -1 1 1 -1 3 0 1 -1 1 -1 0 0 0
χ11 66 6 2 3 0 -2 -2 1 0 -1 0 0 1 0 0
χ12 99 -1 3 0 3 -1 -1 -1 -1 0 1 1 -1 0 0
χ13 120 0 -8 3 0 0 0 0 0 1 0 0 0 -1 -1
χ14 144 4 0 0 -3 0 0 -1 1 0 0 0 -1 1 1
χ15 176 -4 0 -4 -1 0 0 1 -1 0 0 0 1 0 0
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142 B. CHARACTER TABLE OF M12 AND M24
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.
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ch
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of
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otation

e
n

=
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+

i √
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ē
1
5

e
1
5

0
0

1
1

χ
7

2
5
2

2
8

1
2

9
0

4
4

0
2

1
0

0
0

0
2

-1
1

0
0

0
-1

-1
0

0
-1

-1
χ
8

2
5
3

1
3

-1
1

1
0

1
-3

1
1

3
-2

1
1

1
-1

-1
0

0
1

-1
-1

0
0

1
1

0
0

χ
9

4
8
3

3
5

3
6

0
3

3
3

-2
2

0
0

0
-1

-2
-1

0
0

0
0

1
1

0
0

0
0

χ
1
0

7
7
0

-1
4

1
0

5
-7

2
-2

-2
0

1
1

0
0

0
0

0
-1

1
0

0
0

0
0

0
e
2
3

ē
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ē
2
3

e
2
3

χ
1
2

9
9
0

-1
8

-1
0

0
3

6
2

-2
0

0
-1

e
7

ē
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ē
7

0
0

e
7

ē
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ē
7

e
7

1
1

χ
1
4

1
0
3
5

2
7

3
5

0
6

3
-1

3
0

0
2

-1
-1

1
0

1
0

0
-1

-1
0

0
-1

-1
0

0
χ
1
5

1
0
3
5

-2
1

-5
0

-3
3

3
-1

0
0

1
2
e
7

2ē
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APPENDIX C

Check of degeneracies

We now present checks of (8.108). Table 5 lists negative discriminant states for
m = 1, . . . , 5. Column I lists the charge invariants (m,n, `) with discriminant ∆ =
4mn− `2 < 0. Note that we have changed the order of the charge invariants here with
respect to the rest of the chapter. The organization is as follows: we first list m which
is the index of the mock Jacobi form, followed by n and `. The range of ` is m, . . . , 0
which covers all the cases and n runs over all values that produce a negative dis-
criminant with non-zero coefficient for ψF

m. Column II lists the walls γ ∈ W(n, `,m)
which contribute to the degeneracy of states with these charge invariants. These
walls have been discussed in Sections 8.5 and 8.6. The walls in Column II, as stated

in (8.27), are semicircles from q/s → p/r, where

(
p q
r s

)
is a PSL(2,Z) matrix.

Column III shows the transformed charges at the wall γ. In the γ-transformed S-
duality frame the decay products are (Qγ, 0) and (0, Pγ) with invariants (mγ, nγ, `γ)
(cf. (8.24) and (8.26)). Cases with either mγ = −1 or nγ = −1 correspond, respec-
tively, to magnetic and electric metamorphosis. An example is (m,n, `) = (1,−1, 0)
where we have the walls (mγ, nγ, `γ) = (−1, 0, 2) and (−1, 0,−2) (with contribu-
tion 48) are identified due to magnetic BSM as shown in the table. According to
the discussion around (8.109), we also need to identify these walls with (0,−1, 2)
and (0,−1,−2) (which we have not explicitly displayed in the table). In a similar
manner, we have only displayed pure magnetic, but not pure electric BSM phenomena
in the table. The cases with mγ = nγ = −1 correspond to dyonic metamorphosis,
in which case an infinite number of walls must be identified (see Section 8.6.3). An
example is (m,n, `) = (1,−1, 1). Here we have exhibited four walls corresponding to
the first two solutions to the Brahmagupta–Pell equation (8.89) (the trivial solution
with p = 0 and the first non-trivial one with p = 1) and their respective first metamor-
phic duals (γ̃ built with M1 in Definition 8.6.3). Column IV is the index contribution
of each wall and Column V is the total index c̃m(n, `) according to (8.111). This agrees
with with a direct calculation of the polar degeneracies of ψF

m(τ, z).
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144 C. CHECK OF DEGENERACIES

I. II. III. IV. V.
Charges Walls Transf. charges Contribution Net Index

(m,n, ` ; ∆) γ = q/s → p/r (mγ, nγ, `γ) from wall c̃m(n, `)

(1,−1, 1 ;−5)

−1/2 → 0/1 (−1, −1, 3)

3 3
−1/− 1 → 0/1 (−1, −1, −3)

0/1 → 1/1 (−1, −1, 3)
−3/− 2 → 1/1 (−1, −1, −3)

...
...

(1,−1, 0 ;−4)
−1/1 → 0/1 (−1, 0, 2)

48 48−1/− 1 → 0/1 (−1, 0, −2)

(1, 0, 1 ;−1)
0/1 → 1/1 (0, 0, 1) 576

6000/1 → 1/2 (−1, 0, 1)
24−1/− 1 → 1/2 (−1, 0, −1)

(2,−1, 2 ;−12)

−1/3 → 0/1 (−1, −1, 4)

4 4
−1/− 1 → 0/1 (−1, −1, −4)

0/1 → 1/1 (−1, −1, 4)
−4/− 3 → 1/1 (−1, −1, −4)

...
...

(2,−1, 1 ;−9)
−1/2 → 0/1 (−1, 0, 3)

72 72−1/− 1 → 0/1 (−1, 0, −3)

(2,−1, 0 ;−8)
−1/1 → 0/1 (−1, 1, 2)

648 648−1/− 1 → 0/1 (−1, 1, −2)
(2, 0, 2 ;−4) 0/1 → 1/1 (0, 0, 2) 1152 1152

(2, 0, 1 ;−1)

0/1 → 1/1 (1, 0, 1) 7776

8376
0/1 → 1/2 (0, 0, 1) 576
0/1 → 1/3 (−1, 0, 1)

24−1/− 2 → 1/3 (−1, 0, −1)

(3,−1, 3 ;−21)

−1/4 → 0/1 (−1, −1, 5)

5 5
−1/− 1 → 0/1 (−1, −1, −5)

0/1 → 1/1 (−1, −1, 5)
−5/− 4 → 1/1 (−1, −1, −5)

...
...

(3,−1, 2 ;−16)
−1/3 → 0/1 (−1, 0, 4)

96 96−1/− 1 → 0/1 (−1, 0, −4)

(3,−1, 1 ;−13)
−1/2 → 0/1 (−1, 1, 3)

972 972−1/− 1 → 0/1 (−1, 1, −3)

(3,−1, 0 ;−12)

−1/1 → 0/1 (−1, 2, 2)
6400

6404

−1/− 1 → 0/1 (−1, 2, −2)
−1/2 → 0/1 (−1, −1, 4)

4
−1/− 2 → 0/1 (−1, −1, −4)

0/1 → 1/2 (−1, −1, 4)
−4/− 7 → 1/2 (−1, −1, −4)

...
...

(3, 0, 3 ;−9) 0/1 → 1/1 (0, 0, 3) 1728 1728

(3, 0, 2 ;−4)
0/1 → 1/1 (1, 0, 2) 15552

156000/1 → 1/2 (−1, 0, 2)
48
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−2/− 3 → 1/2 (−1, 0, −2)

(3, 0, 1 ;−1)

0/1 → 1/1 (2, 0, 1) 76800

85176
0/1 → 1/2 (1, 0, 1) 7776
0/1 → 1/3 (0, 0, 1) 576
0/1 → 1/4 (−1, 0, 1)

24−1/− 3 → 1/4 (−1, 0, −1)

(4,−1, 4 ;−32)

−1/5 → 0/1 (−1, −1, 6)

6 6
−1/− 1 → 0/1 (−1, −1, −6)

0/11 → 1/1 (−1, −1, 6)
−6/− 5 → 1/1 (−1, −1, −6)

...
...

(4,−1, 3 ;−25)
−1/4 → 0/1 (−1, 0, 5)

120 120−1/− 1 → 0/1 (−1, 0, −5)

(4,−1, 2 ;−20)
−1/3 → 0/1 (−1, 1, 4)

1296 1296−1/− 1 → 0/1 (−1, 1, −4)

(4,−1, 1 ;−25)
−1/2 → 0/1 (−1, 2, 3)

9600 9600−1/− 1 → 0/1 (−1, 2, −3)

(4,−1, 0 ;−16)

−1/1 → 0/1 (−1, 3, 2)
51300

51396
−1/− 1 → 0/1 (−1, 3, −2)
−1/2 → 0/1 (−1, 0, 4)

96−1/− 2 → 0/1 (−1, 0, −4)
(4, 0, 4 ;−16) 0/1 → 1/1 (0, 0, 4) 2304 2304
(4, 0, 3 ;−9) 0/1 → 1/1 (1, 0, 3) 23328 23328

(4, 0, 2 ;−4)
0/1 → 1/1 (2, 0, 2) 153600

154752
0/1 → 1/2 (0, 0, 2) 1152

(4, 0, 1 ;−1)

0/1 → 1/1 (3, 0, 1) 615600

700776

0/1 → 1/2 (2, 0, 1) 76800
0/1 → 1/3 (1, 0, 1) 7776
0/1 → 1/4 (0, 0, 1) 576
0/1 → 1/5 (−1, 0, 1)

24−1/− 4 → 1/5 (−1, 0, −1)

(5,−1, 5 ;−45)

−1/6 → 0/1 (−1, −1, 7)

7 7
−1/− 1 → 0/1 (−1, −1, −7)

0/1 → 1/1 (−1, −1, 7)
−7/− 6 → 1/1 (−1, −1, −7)

...
...

(5,−1, 4 ;−36)
−1/5 → 0/1 (−1, 0, 6)

144 144−1/− 1 → 0/1 (−1, 0, −6)

(5,−1, 3 ;−29)
−1/4 → 0/1 (−1, 1, 5)

1620 1620−1/− 1 → 0/1 (−1, 1, −5)

(5,−1, 2 ;−24)
−1/3 → 0/1 (−1, 2, 4)

12800 12800−1/− 1 → 0/1 (−1, 2, −4)

(5,−1, 1 ;−21)

−1/2 → 0/1 (−1, 3, 3)
76950

76955

−1/− 1 → 0/1 (−1, 3, −3)
−1/3 → 0/1 (−1, −1, 5)

5
−1/− 2 → 0/1 (−1, −1, −5)

0/1 → 1/2 (−1, −1, 5)
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−5/− 9 → 1/2 (−1, −1, −5)
...

...

(5,−1, 0 ;−20)

−1/1 → 0/1 (−1, 4, 2)
352512

353808
−1/− 1 → 0/1 (−1, 4, −2)
−1/2 → 0/1 (−1, 1, 4)

1296−1/− 2 → 0/1 (−1, 1, −4)
(5, 0, 5 ;−25) 0/1 → 1/1 (0, 0, 5) 2880 2880
(5, 0, 4 ;−16) 0/1 → 1/1 (1, 0, 4) 31104 31104

(5, 0, 3 ;−9)
0/1 → 1/1 (2, 0, 3) 230400

2304720/1 → 1/2 (−1, 0, 3)
72−3/− 5 → 1/2 (−1, 0, −3)

(5, 0, 2 ;−4)

0/1 → 1/1 (3, 0, 2) 1231200

1246800
0/1 → 1/2 (1, 0, 2) 15552
0/1 → 1/3 (−1, 0, 2)

48−2/− 5 → 1/3 (−1, 0, −2)

(5, 0, 1 ;−1)

0/1 → 1/1 (4, 0, 1) 4230144

4930920

0/1 → 1/2 (3, 0, 1) 615600
0/1 → 1/3 (2, 0, 1) 76800
0/1 → 1/4 (1, 0, 1) 7776
0/1 → 1/5 (0, 0, 1) 576
0/1 → 1/6 (−1, 0, 1)

24−1/− 5 → 1/6 (−1, 0, −1)

(5, 1, 5 ;−5)

0/1 → 1/1 (1, 1, 3) 314928

315255

0/1 → 1/2 (−1, 1, 1)
324−1/− 1 → 1/2 (−1, 1, −1)

1/3 → 1/2 (−1, −1, 3)

3
−2/− 3 → 1/2 (−1 − 1, −3)

1/2 → 2/3 (−1, −1, 3)
−5/− 7 → 2/3 (−1, −1, −3)

...
...

Table 5. Table of examples detailing original charge vector, contribut-
ing walls, associated charge breakdowns at walls and index contributions.

We now present more data to establish agreement between the formula (8.111)
and the polar coefficients of ψF

m. The first column in the table below gives the value
of (m,n, `) charges while the second column shows the degeneracy (corresponding to
Columns I and V of Table 5).
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(m,n, `) Degeneracy

(8,-1,-8) 10
(8,-1,-7) 216
(8,-1,-6) 2592
(8,-1,-5) 22400
(8,-1,-4) 153900
(8,-1,-3) 881280
(8,-1,-2) 4295024
(8,-1,-1) 17807488
(8,-1,0) 61062180
(8,0,-8) 4608
(8,0,-7) 54432
(8,0,-6) 460800
(8,0,-5) 3078000
(8,0,-4) 16922880
(8,0,-3) 77538312
(8,0,-2) 293278848
(8,0,-1) 897317904
(9,-1,-9) 11
(9,-1,-8) 240
(9,-1,-7) 2916
(9,-1,-6) 25600
(9,-1,-5) 179550
(9,-1,-4) 1057536
(9,-1,-3) 5368607
(9,-1,-2) 23723928
(9,-1,-1) 90663975
(9,-1,0) 290663024
(9,0,-9) 5184
(9,0,-8) 62208
(9,0,-7) 537600
(9,0,-6) 3693600
(9,0,-5) 21150840
(9,0,-4) 103108224
(9,0,-3) 428844240
(9,0,-2) 1501356960
(9,0,-1) 4333733904
(10,-1,-10) 12
(10,-1,-9) 264
(10,-1,-8) 3240
(10,-1,-7) 28800
(10,-1,-6) 205200
(10,-1,-5) 1233792
(10,-1,-4) 6442320
(10,-1,-3) 29652648
(10,-1,-2) 120733500

(10,-1,-1) 430433280
(10,-1,0) 1302222528
(10,0,-10) 5760
(10,0,-9) 69984
(10,0,-8) 614400
(10,0,-7) 4309200
(10,0,-6) 25380864
(10,0,-5) 128849280
(10,0,-4) 569634816
(10,0,-3) 2185571160
(10,0,-2) 7166110848
(10,0,-1) 19675717080
(11,-1,-11) 13
(11,-1,-10) 288
(11,-1,-9) 3564
(11,-1,-8) 32000
(11,-1,-7) 230850
(11,-1,-6) 1410048
(11,-1,-5) 7516040
(11,-1,-4) 35582984
(11,-1,-3) 150895143
(11,-1,-2) 572889900
(11,-1,-1) 1923116507
(11,-1,0) 5530963260
(11,0,-11) 6336
(11,0,-10) 77760
(11,0,-9) 691200
(11,0,-8) 4924800
(11,0,-7) 29611008
(11,0,-6) 154615824
(11,0,-5) 711698400
(11,0,-4) 2899605696
(11,0,-3) 10386786312
(11,0,-2) 32185323360
(11,0,-1) 84598473624
(12,-1,-12) 14
(12,-1,-11) 312
(12,-1,-10) 3888
(12,-1,-9) 35200
(12,-1,-8) 256500
(12,-1,-7) 1586304
(12,-1,-6) 8589760
(12,-1,-5) 41513472
(12,-1,-4) 181071642
(12,-1,-3) 715942400
(12,-1,-2) 2558054736
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(12,-1,-1) 8144997288
(12,-1,0) 22401525768
(12,0,-12) 6912
(12,0,-11) 85536
(12,0,-10) 768000
(12,0,-9) 5540400
(12,0,-8) 33841152
(12,0,-7) 180384960
(12,0,-6) 853994880
(12,0,-5) 3621813000
(12,0,-4) 13762586880
(12,0,-3) 46454793840
(12,0,-2) 137011625088
(12,0,-1) 346542096264
(13,-1,-13) 15
(13,-1,-12) 336
(13,-1,-11) 4212
(13,-1,-10) 38400
(13,-1,-9) 282150
(13,-1,-8) 1762560
(13,-1,-7) 9663480
(13,-1,-6) 47443968
(13,-1,-5) 211250034
(13,-1,-4) 859106592
(13,-1,-3) 3196426050
(13,-1,-2) 10826901840
(13,-1,-1) 32893848945
(13,-1,0) 86937677136
(13,0,-13) 7488
(13,0,-12) 93312
(13,0,-11) 844800
(13,0,-10) 6156000
(13,0,-9) 38071296
(13,0,-8) 206154240
(13,0,-7) 996323496
(13,0,-6) 4345761456
(13,0,-5) 17185158000
(13,0,-4) 61471041024
(13,0,-3) 196953842520
(13,0,-2) 556072584192
(13,0,-1) 1359097488264
(14,-1,-14) 16
(14,-1,-13) 360
(14,-1,-12) 4536
(14,-1,-11) 41600
(14,-1,-10) 307800

(14,-1,-9) 1938816
(14,-1,-8) 10737200
(14,-1,-7) 53374464
(14,-1,-6) 241428600
(14,-1,-5) 1002288216
(14,-1,-4) 3835521400
(14,-1,-3) 13526808192
(14,-1,-2) 43692854720
(14,-1,-1) 127285376000
(14,-1,0) 324594560640
(14,0,-14) 8064
(14,0,-13) 101088
(14,0,-12) 921600
(14,0,-11) 6771600
(14,0,-10) 42301440
(14,0,-9) 231923520
(14,0,-8) 1138655232
(14,0,-7) 5070004632
(14,0,-6) 20618956800
(14,0,-5) 76731066840
(14,0,-4) 260260663296
(14,0,-3) 796217677560
(14,0,-2) 2162122562688
(14,0,-1) 5124308778264
(15,-1,-15) 17
(15,-1,-14) 384
(15,-1,-13) 4860
(15,-1,-12) 44800
(15,-1,-11) 333450
(15,-1,-10) 2115072
(15,-1,-9) 11810920
(15,-1,-8) 59304960
(15,-1,-7) 271607175
(15,-1,-6) 1145472010
(15,-1,-5) 4474748016
(15,-1,-4) 16230894480
(15,-1,-3) 54579105710
(15,-1,-2) 168940316442
(15,-1,-1) 473847914250
(15,-1,0) 1169926333888
(15,0,-15) 8640
(15,0,-14) 108864
(15,0,-13) 998400
(15,0,-12) 7387200
(15,0,-11) 46531584
(15,0,-10) 257692800
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(15,0,-9) 1280987136
(15,0,-8) 5794286592
(15,0,-7) 24054966432
(15,0,-6) 92055592800
(15,0,-5) 324742634880
(15,0,-4) 1050674127360
(15,0,-3) 3084121200240
(15,0,-2) 8086496395392
(15,0,-1) 18639106298136
(16,-1,-16) 18
(16,-1,-15) 408
(16,-1,-14) 5184
(16,-1,-13) 48000
(16,-1,-12) 359100
(16,-1,-11) 2291328
(16,-1,-10) 12884640
(16,-1,-9) 65235456
(16,-1,-8) 301785750
(16,-1,-7) 1288656000
(16,-1,-6) 5113994640
(16,-1,-5) 18935832960
(16,-1,-4) 65487317652
(16,-1,-3) 210990569472
(16,-1,-2) 628394424192
(16,-1,-1) 1702877026944
(16,-1,0) 4082520834912
(16,0,-16) 9216
(16,0,-15) 116640
(16,0,-14) 1075200
(16,0,-13) 8002800
(16,0,-12) 50761728
(16,0,-11) 283462080
(16,0,-10) 1423319040
(16,0,-9) 6518572200
(16,0,-8) 27491332608
(16,0,-7) 107394420000
(16,0,-6) 389561923584
(16,0,-5) 1310429850480
(16,0,-4) 4063984462080
(16,0,-3) 11492589559320
(16,0,-2) 29191726062720
(16,0,-1) 65602046750496
(17,-1,-17) 19
(17,-1,-16) 432
(17,-1,-15) 5508
(17,-1,-14) 51200

(17,-1,-13) 384750
(17,-1,-12) 2467584
(17,-1,-11) 13958360
(17,-1,-10) 71165952
(17,-1,-9) 331964325
(17,-1,-8) 1431840000
(17,-1,-7) 5753243711
(17,-1,-6) 21640922280
(17,-1,-5) 76400456388
(17,-1,-4) 253147456960
(17,-1,-3) 784630397034
(17,-1,-2) 2256302479736
(17,-1,-1) 5924949883415
(17,-1,0) 13827634468992
(17,0,-17) 9792
(17,0,-16) 124416
(17,0,-15) 1152000
(17,0,-14) 8618400
(17,0,-13) 54991872
(17,0,-12) 309231360
(17,0,-11) 1565650944
(17,0,-10) 7242858000
(17,0,-9) 30927744216
(17,0,-8) 122735927808
(17,0,-7) 454463609040
(17,0,-6) 1571816398320
(17,0,-5) 5066399157000
(17,0,-4) 15122318663424
(17,0,-3) 41340622927608
(17,0,-2) 102012428838672
(17,0,-1) 223992784956192
(18,-1,-18) 20
(18,-1,-17) 456
(18,-1,-16) 5832
(18,-1,-15) 54400
(18,-1,-14) 410400
(18,-1,-13) 2643840
(18,-1,-12) 15032080
(18,-1,-11) 77096448
(18,-1,-10) 362142900
(18,-1,-9) 1575024000
(18,-1,-8) 6392493000
(18,-1,-7) 24346034184
(18,-1,-6) 87314575472
(18,-1,-5) 295330264704
(18,-1,-4) 941350420368
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(18,-1,-3) 2816585986136
(18,-1,-2) 7843391931420
(18,-1,-1) 20009850636672
(18,-1,0) 45558952912136
(18,0,-18) 10368
(18,0,-17) 132192
(18,0,-16) 1228800
(18,0,-15) 9234000
(18,0,-14) 59222016
(18,0,-13) 335000640
(18,0,-12) 1707982848
(18,0,-11) 7967143800
(18,0,-10) 34364160000
(18,0,-9) 138077853984
(18,0,-8) 519382671360
(18,0,-7) 1833635023920
(18,0,-6) 6076186807680
(18,0,-5) 18843244686000
(18,0,-4) 54319467663360
(18,0,-3) 143973019865160
(18,0,-2) 345973487137920
(18,0,-1) 743623865859192
(19,-1,-19) 21
(19,-1,-18) 480
(19,-1,-17) 6156
(19,-1,-16) 57600
(19,-1,-15) 436050
(19,-1,-14) 2820096
(19,-1,-13) 16105800
(19,-1,-12) 83026944
(19,-1,-11) 392321475
(19,-1,-10) 1718208000
(19,-1,-9) 7031742300
(19,-1,-8) 27051148812
(19,-1,-7) 98228864970
(19,-1,-6) 337518746100
(19,-1,-5) 1098196469280
(19,-1,-4) 3378941866104
(19,-1,-3) 9788426044191
(19,-1,-2) 26463967407252
(19,-1,-1) 65738606045634
(19,-1,0) 146300834984220
(19,0,-19) 10944
(19,0,-18) 139968
(19,0,-17) 1305600
(19,0,-16) 9849600

(19,0,-15) 63452160
(19,0,-14) 360769920
(19,0,-13) 1850314752
(19,0,-12) 8691429600
(19,0,-11) 37800576000
(19,0,-10) 153419832240
(19,0,-9) 584304884064
(19,0,-8) 2095553968128
(19,0,-7) 7088068666560
(19,0,-6) 22595617195056
(19,0,-5) 67650739816920
(19,0,-4) 188902539013920
(19,0,-3) 486665231172120
(19,0,-2) 1141276039216272
(19,0,-1) 2405109746076792
(20,-1,-20) 22
(20,-1,-19) 504
(20,-1,-18) 6480
(20,-1,-17) 60800
(20,-1,-16) 461700
(20,-1,-15) 2996352
(20,-1,-14) 17179520
(20,-1,-13) 88957440
(20,-1,-12) 422500050
(20,-1,-11) 1861392000
(20,-1,-10) 7670991600
(20,-1,-9) 29756263680
(20,-1,-8) 109143179628
(20,-1,-7) 379708336000
(20,-1,-6) 1255072397760
(20,-1,-5) 3941870551552
(20,-1,-4) 11741887027420
(20,-1,-3) 33017035944960
(20,-1,-2) 86858448321760
(20,-1,-1) 210502750565336
(20,-1,0) 458681404549752
(20,0,-20) 11520
(20,0,-19) 147744
(20,0,-18) 1382400
(20,0,-17) 10465200
(20,0,-16) 67682304
(20,0,-15) 386539200
(20,0,-14) 1992646656
(20,0,-13) 9415715400
(20,0,-12) 41236992000
(20,0,-11) 168761815200
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(20,0,-10) 649227576960
(20,0,-9) 2357493364944
(20,0,-8) 8100477591552
(20,0,-7) 26357479662696
(20,0,-6) 81109429456896
(20,0,-5) 235139573743080
(20,0,-4) 637627506612480
(20,0,-3) 1600236038494008
(20,0,-2) 3668952120405120
(20,0,-1) 7591703649803592
(21,-1,-21) 23
(21,-1,-20) 528
(21,-1,-19) 6804
(21,-1,-18) 64000
(21,-1,-17) 487350
(21,-1,-16) 3172608
(21,-1,-15) 18253240
(21,-1,-14) 94887936
(21,-1,-13) 452678625
(21,-1,-12) 2004576000
(21,-1,-11) 8310240900
(21,-1,-10) 32461378560
(21,-1,-9) 120057497287
(21,-1,-8) 421898115888
(21,-1,-7) 1411954746750
(21,-1,-6) 4504944653872
(21,-1,-5) 13697803421820
(21,-1,-4) 39602834129040
(21,-1,-3) 108333026537388
(21,-1,-2) 277856236525968
(21,-1,-1) 658114581757941
(21,-1,0) 1406141738400480
(21,0,-21) 12096
(21,0,-20) 155520
(21,0,-19) 1459200
(21,0,-18) 11080800
(21,0,-17) 71912448
(21,0,-16) 412308480
(21,0,-15) 2134978560
(21,0,-14) 10140001200
(21,0,-13) 44673408000
(21,0,-12) 184103798400
(21,0,-11) 714150328584
(21,0,-10) 2619436381920
(21,0,-9) 9113004759600
(21,0,-8) 30121901399040

(21,0,-7) 94608682254744
(21,0,-6) 281869852922640
(21,0,-5) 793264832538480
(21,0,-4) 2093649539418624
(21,0,-3) 5128440969765960
(21,0,-2) 11514494530636224
(21,0,-1) 23423038207991112
(22,-1,-22) 24
(22,-1,-21) 552
(22,-1,-20) 7128
(22,-1,-19) 67200
(22,-1,-18) 513000
(22,-1,-17) 3348864
(22,-1,-16) 19326960
(22,-1,-15) 100818432
(22,-1,-14) 482857200
(22,-1,-13) 2147760000
(22,-1,-12) 8949490200
(22,-1,-11) 35166493440
(22,-1,-10) 130971815208
(22,-1,-9) 464087923512
(22,-1,-8) 1568838332400
(22,-1,-7) 5068052595072
(22,-1,-6) 15654381378840
(22,-1,-5) 46198628812800
(22,-1,-4) 129929592219480
(22,-1,-3) 346438937896704
(22,-1,-2) 867813816151104
(22,-1,-1) 2011941971063040
(22,-1,0) 4220789077979280
(22,0,-22) 12672
(22,0,-21) 163296
(22,0,-20) 1536000
(22,0,-19) 11696400
(22,0,-18) 76142592
(22,0,-17) 438077760
(22,0,-16) 2277310464
(22,0,-15) 10864287000
(22,0,-14) 48109824000
(22,0,-13) 199445781600
(22,0,-12) 779073085440
(22,0,-11) 2881379940912
(22,0,-10) 10125555456000
(22,0,-9) 33886945221696
(22,0,-8) 108119552655360
(22,0,-7) 328764818517912
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(22,0,-6) 950734845149184
(22,0,-5) 2603225425101000
(22,0,-4) 6700276734197760
(22,0,-3) 16046492968302120
(22,0,-2) 35331751082293248
(22,0,-1) 70737970361800440
(23,-1,-23) 25
(23,-1,-22) 576
(23,-1,-21) 7452
(23,-1,-20) 70400
(23,-1,-19) 538650
(23,-1,-18) 3525120
(23,-1,-17) 20400680
(23,-1,-16) 106748928
(23,-1,-15) 513035775
(23,-1,-14) 2290944000
(23,-1,-13) 9588739500
(23,-1,-12) 37871608320
(23,-1,-11) 141886133142
(23,-1,-10) 506277734414
(23,-1,-9) 1725722127612
(23,-1,-8) 5631167703640
(23,-1,-7) 17611124144035
(23,-1,-6) 52797261964950
(23,-1,-5) 151565029757111
(23,-1,-4) 415459643733872
(23,-1,-3) 1081641789325530
(23,-1,-2) 2650308467184860
(23,-1,-1) 6022732288717356
(23,-1,0) 12420476121251904
(23,0,-23) 13248
(23,0,-22) 171072
(23,0,-21) 1612800
(23,0,-20) 12312000
(23,0,-19) 80372736
(23,0,-18) 463847040
(23,0,-17) 2419642368
(23,0,-16) 11588572800
(23,0,-15) 51546240000
(23,0,-14) 214787764800
(23,0,-13) 843995842560
(23,0,-12) 3143323565280
(23,0,-11) 11138110242336
(23,0,-10) 37652125212000
(23,0,-9) 121633447673664
(23,0,-8) 375709524059712

(23,0,-7) 1108843558183200
(23,0,-6) 3119362647531120
(23,0,-5) 8326289827854000
(23,0,-4) 20935339521853920
(23,0,-3) 49094434481327928
(23,0,-2) 106144882725500160
(23,0,-1) 209368905467541240
(24,-1,-24) 26
(24,-1,-23) 600
(24,-1,-22) 7776
(24,-1,-21) 73600
(24,-1,-20) 564300
(24,-1,-19) 3701376
(24,-1,-18) 21474400
(24,-1,-17) 112679424
(24,-1,-16) 543214350
(24,-1,-15) 2434128000
(24,-1,-14) 10227988800
(24,-1,-13) 40576723200
(24,-1,-12) 152800451076
(24,-1,-11) 548467545600
(24,-1,-10) 1882605953136
(24,-1,-9) 6194284177024
(24,-1,-8) 19567904707422
(24,-1,-7) 59396645437056
(24,-1,-6) 173212033569600
(24,-1,-5) 484625396718984
(24,-1,-4) 1296989830173600
(24,-1,-3) 3302150095748352
(24,-1,-2) 7925468517035664
(24,-1,-1) 17675432395547904
(24,-1,0) 35871126696728660
(24,0,-24) 13824
(24,0,-23) 178848
(24,0,-22) 1689600
(24,0,-21) 12927600
(24,0,-20) 84602880
(24,0,-19) 489616320
(24,0,-18) 2561974272
(24,0,-17) 12312858600
(24,0,-16) 54982656000
(24,0,-15) 230129748000
(24,0,-14) 908918599680
(24,0,-13) 3405267195408
(24,0,-12) 12150665632512
(24,0,-11) 41417331806400
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(24,0,-10) 135148059801600
(24,0,-9) 422667976981896
(24,0,-8) 1267154535633408
(24,0,-7) 3637877099930640
(24,0,-6) 9975012086609280
(24,0,-5) 26000696968366920
(24,0,-4) 63963225430391040
(24,0,-3) 147074023262085192
(24,0,-2) 312595646404558848
(24,0,-1) 608014959010161240
(25,-1,-25) 27
(25,-1,-24) 624
(25,-1,-23) 8100
(25,-1,-22) 76800
(25,-1,-21) 589950
(25,-1,-20) 3877632
(25,-1,-19) 22548120
(25,-1,-18) 118609920
(25,-1,-17) 573392925
(25,-1,-16) 2577312000
(25,-1,-15) 10867238100
(25,-1,-14) 43281838080
(25,-1,-13) 163714769010
(25,-1,-12) 590657356800
(25,-1,-11) 2039489782215
(25,-1,-10) 6757400879544
(25,-1,-9) 21524693185035
(25,-1,-8) 65996213108640
(25,-1,-7) 194862258910125
(25,-1,-6) 553836164704200
(25,-1,-5) 1512859258863720
(25,-1,-4) 3959104942633920
(25,-1,-3) 9871029907055100
(25,-1,-2) 23235254202421080
(25,-1,-1) 50912869133641230
(25,-1,0) 101777445949328016
(25,0,-25) 14400
(25,0,-24) 186624
(25,0,-23) 1766400
(25,0,-22) 13543200
(25,0,-21) 88833024
(25,0,-20) 515385600
(25,0,-19) 2704306176
(25,0,-18) 13037144400
(25,0,-17) 58419072000
(25,0,-16) 245471731200

(25,0,-15) 973841356800
(25,0,-14) 3667210825824
(25,0,-13) 13163221094712
(25,0,-12) 45182542960512
(25,0,-11) 148662826021776
(25,0,-10) 469629919909200
(25,0,-9) 1425524443410600
(25,0,-8) 4157177177438208
(25,0,-7) 11632258851459120
(25,0,-6) 31142251091455056
(25,0,-5) 79392136978466280
(25,0,-4) 191354425929177600
(25,0,-3) 431942335951930920
(25,0,-2) 903444520233320160
(25,0,-1) 1734225173395919448
(26,-1,-26) 28
(26,-1,-25) 648
(26,-1,-24) 8424
(26,-1,-23) 80000
(26,-1,-22) 615600
(26,-1,-21) 4053888
(26,-1,-20) 23621840
(26,-1,-19) 124540416
(26,-1,-18) 603571500
(26,-1,-17) 2720496000
(26,-1,-16) 11506487400
(26,-1,-15) 45986952960
(26,-1,-14) 174629086944
(26,-1,-13) 632847168000
(26,-1,-12) 2196373611600
(26,-1,-11) 7320517614952
(26,-1,-10) 23481483155620
(26,-1,-9) 72595822537728
(26,-1,-8) 216513323327952
(26,-1,-7) 623060068761600
(26,-1,-6) 1728896799718812
(26,-1,-5) 4617871223611520
(26,-1,-4) 11833303469013808
(26,-1,-3) 28927854391564800
(26,-1,-2) 66857096102821472
(26,-1,-1) 144080116244186880
(26,-1,0) 283959565200821520
(26,0,-26) 14976
(26,0,-25) 194400
(26,0,-24) 1843200
(26,0,-23) 14158800
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(26,0,-22) 93063168
(26,0,-21) 541154880
(26,0,-20) 2846638080
(26,0,-19) 13761430200
(26,0,-18) 61855488000
(26,0,-17) 260813714400
(26,0,-16) 1038764113920
(26,0,-15) 3929154456240
(26,0,-14) 14175776563200
(26,0,-13) 48947754780288
(26,0,-12) 162177621921792
(26,0,-11) 516592674969624
(26,0,-10) 1583910228695040
(26,0,-9) 4676717174443416
(26,0,-8) 13292433915740160
(26,0,-7) 36313352788636560
(26,0,-6) 95069506315124736
(26,0,-5) 237369235319737200
(26,0,-4) 561228067379036160
(26,0,-3) 1245043890744904728
(26,0,-2) 2565043104771115008
(26,0,-1) 4862869942410503088
(27,-1,-27) 29
(27,-1,-26) 672
(27,-1,-25) 8748
(27,-1,-24) 83200
(27,-1,-23) 641250
(27,-1,-22) 4230144
(27,-1,-21) 24695560
(27,-1,-20) 130470912
(27,-1,-19) 633750075
(27,-1,-18) 2863680000
(27,-1,-17) 12145736700
(27,-1,-16) 48692067840
(27,-1,-15) 185543404878
(27,-1,-14) 675036979200
(27,-1,-13) 2353257441000
(27,-1,-12) 7883634354192
(27,-1,-11) 25438273374915
(27,-1,-10) 79195440627900
(27,-1,-9) 238164591336560
(27,-1,-8) 692287577406900
(27,-1,-7) 1944985498883550
(27,-1,-6) 5277242303494508
(27,-1,-5) 13801676899833342
(27,-1,-4) 34673641296681240

(27,-1,-3) 83203610603616611
(27,-1,-2) 189000944694758304
(27,-1,-1) 400957496404655760
(27,-1,0) 779694352755303520
(27,0,-27) 15552
(27,0,-26) 202176
(27,0,-25) 1920000
(27,0,-24) 14774400
(27,0,-23) 97293312
(27,0,-22) 566924160
(27,0,-21) 2988969984
(27,0,-20) 14485716000
(27,0,-19) 65291904000
(27,0,-18) 276155697600
(27,0,-17) 1103686871040
(27,0,-16) 4191098086656
(27,0,-15) 15188332032000
(27,0,-14) 52712966678736
(27,0,-13) 175692422851296
(27,0,-12) 563555602046880
(27,0,-11) 1742299969375680
(27,0,-10) 5196325294746000
(27,0,-9) 14953541927556384
(27,0,-8) 41494969519648128
(27,0,-7) 110846153846275176
(27,0,-6) 284173034437561104
(27,0,-5) 695762963731149000
(27,0,-4) 1615534614539956320
(27,0,-3) 3525745210824609864
(27,0,-2) 7160827984143392160
(27,0,-1) 13416758631359750064
(28,-1,-28) 30
(28,-1,-27) 696
(28,-1,-26) 9072
(28,-1,-25) 86400
(28,-1,-24) 666900
(28,-1,-23) 4406400
(28,-1,-22) 25769280
(28,-1,-21) 136401408
(28,-1,-20) 663928650
(28,-1,-19) 3006864000
(28,-1,-18) 12784986000
(28,-1,-17) 51397182720
(28,-1,-16) 196457722812
(28,-1,-15) 717226790400
(28,-1,-14) 2510141270400
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(28,-1,-13) 8446751093760
(28,-1,-12) 27395063629674
(28,-1,-11) 85795060339200
(28,-1,-10) 259815905061984
(28,-1,-9) 761516013886848
(28,-1,-8) 2161088903920500
(28,-1,-7) 5936804561617920
(28,-1,-6) 15772153263929136
(28,-1,-5) 40439386120447872
(28,-1,-4) 99715251950596350
(28,-1,-3) 235114568977449864
(28,-1,-2) 525407726939434800
(28,-1,-1) 1098183739370287872
(28,-1,0) 2108577553717385304
(28,0,-28) 16128
(28,0,-27) 209952
(28,0,-26) 1996800
(28,0,-25) 15390000
(28,0,-24) 101523456
(28,0,-23) 592693440
(28,0,-22) 3131301888
(28,0,-21) 15210001800
(28,0,-20) 68728320000
(28,0,-19) 291497680800
(28,0,-18) 1168609628160
(28,0,-17) 4453041717072
(28,0,-16) 16200887500800
(28,0,-15) 56478178584000
(28,0,-14) 189207224508288
(28,0,-13) 610518561879720
(28,0,-12) 1900690617212928
(28,0,-11) 5715951422727744
(28,0,-10) 16614927530496000
(28,0,-9) 46680067516274064
(28,0,-8) 126659296325148672
(28,0,-7) 331300967364332952
(28,0,-6) 832742420812406784
(28,0,-5) 2001575383600482000
(28,0,-4) 4568858142180423936
(28,0,-3) 9818017531894346760
(28,0,-2) 19673137264146020352
(28,0,-1) 36451158307826085264
(29,-1,-29) 31
(29,-1,-28) 720
(29,-1,-27) 9396
(29,-1,-26) 89600

(29,-1,-25) 692550
(29,-1,-24) 4582656
(29,-1,-23) 26843000
(29,-1,-22) 142331904
(29,-1,-21) 694107225
(29,-1,-20) 3150048000
(29,-1,-19) 13424235300
(29,-1,-18) 54102297600
(29,-1,-17) 207372040746
(29,-1,-16) 759416601600
(29,-1,-15) 2667025099800
(29,-1,-14) 9009867833344
(29,-1,-13) 29351853888542
(29,-1,-12) 92394680318784
(29,-1,-11) 281467228195350
(29,-1,-10) 830744673348880
(29,-1,-9) 2377196296605225
(29,-1,-8) 6596424121385200
(29,-1,-7) 17743317844037191
(29,-1,-6) 46212218058735600
(29,-1,-5) 116290474927547335
(29,-1,-4) 281729144330446656
(29,-1,-3) 653323636754864820
(29,-1,-2) 1437507816773977904
(29,-1,-1) 2962568524137557111
(29,-1,0) 5620303105013598000
(29,0,-29) 16704
(29,0,-28) 217728
(29,0,-27) 2073600
(29,0,-26) 16005600
(29,0,-25) 105753600
(29,0,-24) 618462720
(29,0,-23) 3273633792
(29,0,-22) 15934287600
(29,0,-21) 72164736000
(29,0,-20) 306839664000
(29,0,-19) 1233532385280
(29,0,-18) 4714985347488
(29,0,-17) 17213442969600
(29,0,-16) 60243390489600
(29,0,-15) 202722026250600
(29,0,-14) 657481527211824
(29,0,-13) 2059081454991600
(29,0,-12) 6235581971496960
(29,0,-11) 18276390450113400
(29,0,-10) 51866245876932240
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(29,0,-9) 142484952821866704
(29,0,-8) 378551674680916992
(29,0,-7) 970752398446985112
(29,0,-6) 2395018275174684720
(29,0,-5) 5657119342905908040
(29,0,-4) 12706121353852398720
(29,0,-3) 26907185130234258456
(29,0,-2) 53230666599237868560
(29,0,-1) 97588241355399410064
(30,-1,-30) 32
(30,-1,-29) 744
(30,-1,-28) 9720
(30,-1,-27) 92800
(30,-1,-26) 718200
(30,-1,-25) 4758912
(30,-1,-24) 27916720
(30,-1,-23) 148262400
(30,-1,-22) 724285800
(30,-1,-21) 3293232000
(30,-1,-20) 14063484600
(30,-1,-19) 56807412480
(30,-1,-18) 218286358680
(30,-1,-17) 801606412800
(30,-1,-16) 2823908929200
(30,-1,-15) 9572984572928
(30,-1,-14) 31308644147760
(30,-1,-13) 98994300336408
(30,-1,-12) 303118553078000
(30,-1,-11) 899973382487040
(30,-1,-10) 2593304705881944
(30,-1,-9) 7256059956824960
(30,-1,-8) 19714696668645120
(30,-1,-7) 51987444460877112
(30,-1,-6) 132888904085878840
(30,-1,-5) 328541317658460288
(30,-1,-4) 782726769159905520
(30,-1,-3) 1786711012854816640
(30,-1,-2) 3873826859341935240
(30,-1,-1) 7877457636088694664
(30,-1,0) 14774702983837211616
(30,0,-30) 17280
(30,0,-29) 225504
(30,0,-28) 2150400
(30,0,-27) 16621200
(30,0,-26) 109983744
(30,0,-25) 644232000

(30,0,-24) 3415965696
(30,0,-23) 16658573400
(30,0,-22) 75601152000
(30,0,-21) 322181647200
(30,0,-20) 1298455142400
(30,0,-19) 4976928977904
(30,0,-18) 18225998438400
(30,0,-17) 64008602395200
(30,0,-16) 216236828000256
(30,0,-15) 704444493333240
(30,0,-14) 2217472328601600
(30,0,-13) 6755213522446272
(30,0,-12) 19937873507586048
(30,0,-11) 57052739503386000
(30,0,-10) 158314644037023360
(30,0,-9) 425845859881717296
(30,0,-8) 1109163700842332160
(30,0,-7) 2791657574839862400
(30,0,-6) 6767317387211658624
(30,0,-5) 15722850796882492680
(30,0,-4) 34777416386698174464
(30,0,-3) 72630503135639181864
(30,0,-2) 141950626331053105152
(30,0,-1) 257629396750912504608
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