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Abstract

We study the quantum degeneracies of BPS black holes of octonionic magical supergravity
in five dimensions that is defined by the exceptional Jordan algebra. We define the
quantum degeneracy purely number theoretically as the number of distinct states in the
charge space with a given set of invariant labels of the discrete U-duality group. We argue
that the quantum degeneracies of spherically symmetric stationary BPS black holes of
octonionic magical supergravity in five dimensions are given by the Fourier coefficients
of the modular forms of the arithmetic subgroup of the exceptional group E7(−25) that
had been proposed as a spectrum generating extension of its U-duality group E6(−26).
The arithmetic group E7(−25)(Z) acts as the discrete conformal group of the exceptional

Jordan algebra JO
3 (R) over the integral octonions of Coxeter R. The charges of the black

holes take values in the lattice defined by JO
3 (R). The quantum degeneracies of charge

states of rank one and rank two BPS black holes (zero area) are given by the Fourier
coefficients of singular modular forms E4(Z) of weight 4 and E8(Z) = (E4(Z))

2 of weight
8 of E7(−25)(Z). The quantum degeneracies of charge states of rank 3 BPS (large) black
holes and their automorphic properties will be studied elsewhere. Following the work of
N. Elkies and B. Gross on the embeddings of cubic rings A into the exceptional Jordan
algebra and their actions on the 24 dimensional orthogonal quadratic subspace of JO

3 (R),
we show that the degeneracies of charge states of rank one black holes described by such
embeddings are given by the Fourier coefficients of the Hilbert modular forms of SL(2, A)
which is a discrete subgroup of SL(2,Z)3. If the discriminant of the cubic ring is D = p2

with p a prime number then the isotropic lines in the 24 dimensional quadratic space
define a pair of Niemeier lattices which can be taken as charge lattices of some BPS black
holes. For p = 7 they are the Leech lattice with no roots and the lattice A4

6 with 168 root
vectors. We also review the current status of the searches for the M/superstring theoretic
origins of the octonionic magical supergravity.
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1 Introduction

U-duality orbits of extremal, spherically symmetric, stationary black holes in N = 2
Maxwell-Einstein supergravity theories (MESGT) defined by Euclidean Jordan algebras
of degree three [1, 2, 3, 4], as well as in maximal N = 8 supergravity in five and four
dimensions were first classified in [5]. They were later studied in greater detail in [6, 7]
and further refined and extended in [8, 9, 10]. 5d MESGTs with symmetric target spaces
G/H such that G is a global symmetry of the Lagrangian are uniquely defined by an
underlying Euclidean Jordan algebra J of degree three [2, 3]. The invariance group of
the cubic norm of J , which is simply the Lorentz group of the Jordan algebra J , is also
the U-duality group of the corresponding 5d MESGT. Since the vector fields in these
theories are in one-to-one correspondence with the elements of the Jordan algebra J , the
charges of stationary, spherically symmetric, extremal black holes can be represented by
elements of the Jordan algebra with integral entries. The entropy of the black holes is
then given by the cubic norm of the corresponding charge matrices that is invariant under
the Lorentz group of J . For small black holes (i.e., black holes with vanishing area ) the
cubic norm vanishes. In addition to invariance under the Lorentz group, the norms of
charge matrices representing small black holes with vanishing area are invariant under the
special conformal transformations, as well as under scaling of the corresponding elements
of the Jordan algebra J . This is similar to the invariance of light-like vectors under
special conformal transformations in 4d Minkowski spacetime whose coordinates can be
represented by Pauli matrices, which in turn form a Jordan algebra under the symmetric
Jordan product. Special conformal transformations act on large black holes with non-
vanishing entropy and change their entropy. Therefore, the conformal groups Conf (J)
of underlying Jordan algebras were proposed as spectrum generating symmetry groups
of black hole solutions of N = 2 MESGTs [5, 11, 12, 13]. The U-duality groups of the
corresponding four dimensional supergravity theories obtained by dimensional reduction
are isomorphic to the respective conformal groups Conf (J) of J . The conformal group
Conf (J) acts linearly on the electric and magnetic charges of the 4d theory, and acts
non-linearly on the complex scalar fields which parameterize the upper half-plane of the
Jordan algebras J [2].

This proposal led to the natural question as to whether the 3d U-duality groups,
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G3, could be interpreted as spectrum generating groups of corresponding 4d supergrav-
ity theories whose scalar fields correspond to symmetric spaces [11]. This investigation
resulted in the discovery of novel geometric realizations of the U-duality groups of 3d
supergravity theories as quasiconformal groups QConf (J) that extend the 4d U-duality
groups [11]. These quasi-conformal groups act on the vector spaces of Freudenthal triple
systems (FTS) F(J) associated with Jordan algebras J of degree 3 extended by an extra
singlet coordinate such that they leave invariant a generalized light-cone with respect
to a quartic distance function. These quasiconformal extensions of 4d U-duality groups
were then proposed as spectrum generating symmetry groups of the 4d supergravity the-
ories [11, 13, 14, 12, 15, 16]. A concrete framework for realization of this proposal for
spherically symmetric stationary BPS black holes of 4d supergravity theories was given in
[15, 16, 17]. This framework uses the fact that the attractor equations of these black holes
are equivalent to the equations of geodesic motion of a fiducial particle on the scalar man-
ifold of the supergravity theory obtained by reduction on a time-like circle whose isometry
group is the U-duality group of the corresponding three dimensional supergravity.

Extremal black holes with non-vanishing entropy exhibit attractor phenomena [18, 19]
and the study of their connection to arithmetic was initiated by Moore [20, 21]. A major
result of Moore is establishing the connection between the numbers of attractor black
holes with a given area in K3 × T 2 compactification of type II superstrings to four
dimensions and the class numbers of binary quadratic forms with negative discriminant.
The corresponding low energy supergravity theories have N = 4 supersymmetry. More
recently it was pointed out that the relation between attractors and arithmetic can be
extended to black holes in N = 2 supergravity and string models whose equivalence
classes involve more general forms under the action of arithmetic subgroups of the U-
duality groups [22]. Most prominent examples involve “magical” supergravities defined
by Euclidean Jordan algebras of degree three and their number theoretic counterparts
are directly related to the work of Bhargava [23, 24].

It is well known that continuous U-duality groups of supergravity theories are broken
down to their arithmetic subgroups when they are embedded into M/superstring theories.
In this paper we study the role of arithmetic subgroups of spectrum generating extensions
of U-duality groups of 5d supergravity theories defined by Euclidean Jordan algebras
of degree three. We will focus mainly on the octonionic magical supergravity whose
continuous U-duality group in 5d is E6(−26) with the maximal compact subgroup F4 and
its spectrum generating conformal group is E7(−25) with the maximal compact subgroup
E6 ×U(1). The main reason for our choice is its connections to some deep mathematical
structures as well as its potential relevance to physics [2, 25]. Even though it is not yet
known whether the quantum completion of the octonionic magical supergravity theory
is a superstring theory or a novel phase of M-theory we assume that, at the quantum
level, its continuous U-duality group is broken down to its maximal arithmetic subgroup.
Furthermore the other magical supergravity theories can be obtained by truncation of
the octonionic theory and it can also be truncated to a MESGT with 10 vector multiplets
that belong to the infinite generic Jordan family of MESGTs defined by reducible Jordan
algebras of degree three. This MESGT with 10 vector multiplets in 5d describes the
vector multiplet sector of the FHSV model[26].

We should stress that we define the quantum degeneracy of charge states of BPS black
holes as a purely number theoretic quantity, and it is not the same as the physical de-
generacy of microstates of stringy black holes (see section 12 for further discussion of
this point). Charge states are represented by matrices that are elements of the underlying
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exceptional Jordan algebra. The charge states with a given set of invariant labels trans-
form in a representation of a finite subgroup of the maximal compact subgroup F4 of the
continuous U-duality group E6(−26).

Small BPS black holes of rank one have one non-zero label given by the linear trace
form of the charge matrix and rank two BPS black holes have non-vanishing quadratic
spur form as well as linear trace form. Charge matrices of large BPS black holes cor-
respond to rank three elements of the Jordan algebra with non-vanishing cubic form in
addition to non-vanishing spur and trace forms. BPS condition forces the non-vanishing
labels to be positive. This constrains the elements of the underlying Jordan algebra that
represent the charge states to lie in the exceptional cone defined over the exceptional
Jordan algebra.

1.1 Outline of the Paper

In section 2, we review the 5d, N = 2 MESGTs coupled to an arbitrary number of
vector multiplets. These theories are uniquely determined by a symmetric tensor CIJK

of rank 3. MESGTs with symmetric scalar manifolds G/H such that G is a global
symmetry of their Lagrangians are in one-to-one correspondence with Euclidean Jordan
algebras of degree three. In section 3, we review the symmetries of Euclidean Jordan
algebras. In section 4, we review the magical supergravity theories that are defined by
simple Euclidean Jordan algebras of degree three which are realized by 3× 3 Hermitian
matrices over the four division algebras. The largest magical supergravity is defined by
the exceptional Jordan algebra of 3× 3 Hermitian matrices over the octonions, which we
call octonionic magical supergravity. The section 5 discusses the question of embedding
of the magical supergravity theories into M/superstring theory. In section 6, we review
the orbits of the spherically symmetric stationary extremal black hole solutions of the 5d
octonionic magical supergravity under the action of its U-duality group E6(−26). Section 7
reviews the proposal that the conformal groups of the Jordan algebras that underlie the
MESGTs must act as their spectrum generating symmetry groups. The relation between
these spectrum generating symmetries and U-duality groups of dimensionally reduced
theories is also explained. In section 8, we review the construction of the exceptional cone
over the exceptional Jordan algebra following N. Elkies and B. Gross [27] and introduce
the concept of polarizations that will play a key role in distinguishing between different
orbits of the quantum BPS black holes under the discrete U duality group E6(−26)(Z).
Section 9 reviews exceptional modular forms defined over the exceptional tube domain and
their relation to the exceptional Jordan algebra over integral octonions R. In particular,
section 9.1 reviews the derivation of the degeneracy of rank one elements with a given trace
form obtained by N. Elkies and B. Gross in [27] and section 9.3 gives a brief discussion
of the relations between cubic rings and binary cubic forms. In section 10, we provide
a brief interlude into the Springer decomposition of Jordan algebras of degree three. In
section 11, following [27, 28], we review the embeddings of cubic rings into JO

3 (R) and
their action on the 24 dimensional orthocomplement with a natural quadratic form. We
discuss the theta functions of the Niemeier lattices that are defined by the isotropic lines
in the 24 dimensional orthocomplement of the cubic rings inside JO

3 (R). The signature
of a Niemeier lattice, as we shall see, is determined by the number of root vectors.
These classical theta functions arise from Hilbert modular forms over the exceptional
domain that were studied in [29]. In section 12, we show how the Fourier coefficients of
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singular modular forms over the exceptional tube domain1 of weight 4 i.e., E4(Z) and
of weight 8 i.e., E8(Z) = E4(Z)

2 of Kim [29] describe the degeneracies of charge states
of rank one and rank two BPS black holes. We also discuss the Hilbert modular forms
that describe the quantum degeneracies of charge states of rank one BPS black holes
whose charge lattices are given by Niemeier lattices. We then review a reconstruction
of the singular modular forms E4(Z) and E8(Z) using Fourier Jacobi expansion over
the upper half-plane of integral octonions as well as over the upper half-plane of the
Jordan algebra of 2× 2 Hermitian matrices over the integral octonions following [30, 31].
Charge states of large BPS black holes are described by rank three elements of the
exceptional Jordan algebra over the integral octonions that lie in the exceptional cone.
In connection with the discussion of large BPS black holes we emphasize again that
our number theoretic definition of quantum degeneracy is not to be confused with the
degeneracy of microscopic states of large stringy BPS black holes. Quantum degeneracies
of the charge states of rank three BPS black holes are related to higher powers E4(Z)

n

of the singular modular form E4(Z) for n > 2. The study of the relation between higher
powers of E4(Z) and modular forms of higher weight over the exceptional domain studied
by mathematicians and the quantum degeneracies of charge states of rank 3 BPS black
holes that exhibit attractor phenomena is left to future studies. Finally, in section 13, we
use various results and interpretations to make an educated guess regarding the properties
of a Calabi-Yau threefold that can embed the octonionic magical supergravity into M-
theory/string theory. Although the Borcea-Voisin threefolds can be ruled out there are
intricate subtleties that one must consider before realizing this Calabi-Yau as a variation
of Hodge structure (VHS) or as a hypersurface in a toric variety. The issues pertaining
to both are explained. We conclude the main part of the paper with discussions and
comments of future directions of work in section 14.
In Appendix A, we list the theta functions of all the Niemeier lattices as well as the
theta function of integral octonions R for the sake of the reader. We then provide an
introduction to modular forms over the exceptional domain and their Fourier coefficients
in Appendix C. Relevant information regarding the discrete subgroups of exceptional
groups and their lattices is provided in Appendix D. In Appendix E, we review the
commutative subrings of the exceptional Jordan algebra. Finally, we provide a brief
introduction to the theory of Hilbert modular forms in Appendix F.

2 5d, N = 2 Maxwell-Einstein Supergravity Theories

and Jordan Algebras

N = 2 MESGTs in 5d that describe the coupling of an arbitrary number (nV − 1) of
N = 2 vector multiplets to N = 2 supergravity were constructed in [1, 2, 3, 4]. The
bosonic parts of their Lagrangians have a very simple form given by

e−1Lbosonic = −1

2
R − 1

4

◦
aIJF

I
µνF

Jµν − 1

2
gxy(∂µϕ

x)(∂µϕy) +

+
e−1

6
√
6
CIJKε

µνρσλF I
µνF

J
ρσA

K
λ , (2.1)

where e is the determinant of the fünfbein and R is the scalar curvature of 5d spacetime.
F I
µν denote the field strengths of the vector fields AI

µ including the graviphoton. gxy is

1We refer to modular forms over the exceptional tube domain as exceptional modular forms for brevity.
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the metric of the scalar manifold M5.
◦
aIJ is the “metric” appearing in the kinetic energy

term of the vector fields that depends on the scalar fields ϕx. The range of indices are

I = 1, . . . , nV

a = 1, . . . , (nV − 1)

x = 1, . . . , (nV − 1)

µ, ν, ... = 0, 1, 2, 3, 4.

The N = 2 MESGTs in five dimensions have the remarkable feature that they are
uniquely determined by the constant tensor CIJK describing the cubic couplings of vector
fields [2]. In particular, it was shown that the scalar manifold M5 can be interpreted as a
hypersurface in an nV dimensional ambient space CnV

whose metric aIJ(h) is determined
by CIJK as follows [2] :

aIJ(h) := −1

3

∂

∂hI
∂

∂hJ
lnV(h) , (2.2)

where V(h) is a cubic polynomial in nV real variables hI (I = 1, . . . , nV ),

V(h) := CIJKh
IhJhK . (2.3)

The (nV − 1)-dimensional scalar manifold, M5, of scalar fields ϕ
x is then simply the

hypersurface in this ambient space defined by the constraint [2]

V(h) = CIJKh
IhJhK = 1 . (2.4)

The ambient space CnV
is the domain of positivity (positive cone) as required by the

positivity of the kinetic energy terms of scalars and vectors. The metric gxy of the scalar
manifold is simply the pullback of (2.2) to M5

gxy(ϕ) = hIxh
J
yaIJ |V=1 , (2.5)

where hIx = −
√

3
2

∂
∂φxh

I and the “metric”
◦
aIJ(ϕ) of the kinetic energy term of the vector

fields is simply the restriction of the ambient metric aIJ to the hypersurface M5:

◦
aIJ(ϕ) = aIJ |V=1 .

The Riemann tensor of the scalar manifold M5 takes on a very simple form

Kxyzu =
4

3

(
gx[ugz]y + Tx[u

wTz]yw
)
, (2.6)

where Txyz is the pullback of the symmetric tensor CIJK

Txyz = hIxh
J
yh

K
z CIJK = −

(
3

2

)3/2

hI,xh
J
,yh

K
,zCIJK . (2.7)

Conversely we have

CIJK =
5

2
hIhJhK − 3

2

◦
a(IJ hK) + Txyzh

x
Ih

y
Jh

z
K . (2.8)

Hence, if the T−tensor is covariantly constant i.e., Txyz;w = 0 we have

Kxyzu;w = 0 (2.9)
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i.e., the scalar manifold is a locally symmetric space. Remarkably, the covariant constancy
of Txyz implies the “adjoint identity” [2]:

CIJKCJ(MNCPQ)K = δI(MCNPQ) (2.10)

and conversely2 and the N = 2 MESGT’s that satisfy the adjoint identity are in one-to-
one correspondence with Euclidean Jordan algebras of degree 3 [2]. This correspondence
follows from the identification of cubic norms defined by the CIJK tensor with the norms
of degree three Jordan algebras. Furthermore, cubic forms that satisfy the adjoint identity
are also in one-to-one correspondence with Legendre invariant cubic forms studied in [32].

Scalar manifolds of N = 2 MESGTs defined by Euclidean Jordan algebras of degree
three are symmetric spaces of the form

M =
Str0 (J)

Aut (J)
, (2.11)

where Str0 (J) and Aut (J) are the reduced structure group and automorphism group of
the Jordan algebra J , respectively. Following established convention, we will refer to the
reduced structure and automorphism groups as Lorentz and rotation groups of the un-
derlying Jordan algebra J , respectively. Their vector fields including the graviphoton are
in one-to-one correspondence with elements of J and transform linearly under Str0 (J).

3 Rotation, Lorentz and Conformal groups of Gen-

eralized Spacetimes Coordinatized by Jordan Al-

gebras

Generalized spacetimes coordinatized by Jordan algebras were first introduced in [33].
For the 4d Minkowski spacetime, the underlying Jordan algebra JC

2 is generated by Pauli
matrices including the identity matrix with the Jordan product defined as 1/2 the anti-

commutator i.e.,
1

2
{·, ·}. Then the rotation SU(2), Lorentz SL(2,C) and conformal group

SU(2, 2) in four dimensions are simply the automorphism, reduced structure and Möbius
(linear fractional) groups of the Jordan algebra JC

2 , respectively [33, 34]. For generalized
spacetimes coordinatized by Jordan algebras J , their rotation Rot (J), Lorentz Lor (J)
and conformal Conf (J) groups correspond to the automorphism Aut (J), reduced struc-
ture Str0 (J) and Möbius Möb (J) groups of J , respectively [33, 34, 35, 36]. The norm
of a coordinate vector remains invariant under the action of the Lorentz group Lor (J).
Light-like coordinate vectors X in these generalized spacetimes have vanishing norms
N (X) = 0.3 They remain light-like under the action of generalized special conformal
transformations and light-like separations between any two vectors X, Y with respect to
the norm N , N (X − Y ) = 0 are left invariant under the full conformal group Conf (J)
of the Jordan algebra.

The conformal groups of spacetimes defined by Euclidean Jordan algebras all ad-
mit positive energy unitary representations [37]. They were shown to describe causal
spacetimes with a unitary time evolution as in 4d Minkowski spacetime [38]. For these

2Note that the indices are raised by the inverse
◦

aIJ of
◦

aIJ .
3We use N (∗) to denote the norm of an element and N = · · · to denote the number of supersymme-

tries.
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spacetimes, the maximal compact subgroups of their conformal groups are simply the
compact real forms of their Lorentz groups times dilatations.

The conformal group Conf (J) of a Jordan algebra J is generated by translations Ta,
a ∈ J , special conformal generators Ka, dilatations and Lorentz transformations Mab

(a,b ∈ J) [33, 35, 36]. Its Lie algebra conf(J) admits a 3-grading with respect to the
generator D of dilatations.

Given a basis eI and a conjugate basis ẽI of a Jordan algebra J , one can expand a
general element x ∈ J as

x = eIq
I = ẽIqI .

The generators of conf(J) act as differential operators on the “coordinates” qI which can
be twisted by a unitary character λ, and take the form

TI =
∂

∂qI

RI
J = −ΛIK

JLq
L ∂

∂qK
− λδIJ

KI =
1

2
ΛIK

JLq
JqL

∂

∂qK
+ λqI ,

(3.1)

where ΛIJ
KL are the structure constants of the Jordan triple product (eK , e

I , eL) defined
as

(eK , e
I , eL) = ΛIJ

KLeJ = (eK ◦ eI) ◦ eL + (eL ◦ eI) ◦ eK − (eK ◦ eL) ◦ eI . (3.2)

Here, ◦ denotes the Jordan product i.e. X ◦ Y =
1

2
{X, Y }. The generators of conf(J)

satisfy the commutation relations

[TI , K
J ] = −RJ

I (3.3)

[RJ
I , TK ] = ΛJL

IKTL (3.4)

[RJ
I , K

K ] = −ΛJL
IKK

L . (3.5)

The generators of the rotation subgroup are simply

AIJ = RJ
I −RI

J , (3.6)

and the generator of scaling transformations is proportional to RI
I . For Jordan algebras

of degree 3, the tensor ΛIJ
KL can be expressed in terms of the C tensor as follows:

ΛIJ
KL = δIKδ

J
L + δILδ

J
K − 4

3
CIJMCKLM . (3.7)

For discrete arithmetic subgroups of the conformal groups of Jordan algebras we must
work with their global actions. Such an action was given by Koecher [39] who showed
that the linear fractional (conformal) group Conf (J) action on an element X ∈ J can
always be represented as follows:

Conf (J) : X −→ ξ(X) =W · tA · j · tB · j · tC (X) = W (A− [B − (X + C)−1]−1) , (3.8)

where A,B,C ∈ J . The operator tA represents translation by A

tA(X) = X + A . (3.9)
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j represents inversion
j(X) = −X−1 , (3.10)

and W is an element of the structure group Str (J) which is the direct product of the
reduced structure (Lorentz) group and dilatations of J .

Of relevance to us is the case of the non-linear action of the arithmetic subgroup of the
conformal group E7(−25) of the exceptional Jordan algebra JO

3 on the exceptional domain

D in C27 corresponding to the upper half-plane of JO
3 which was studied later by Baily Jr.

in [40, 41]. The subsequent work on modular forms defined over the exceptional domain
D will play a major role in our work.

4 Magical Supergravity Theories

Among the supergravity theories defined by Euclidean Jordan algebras of degree 3, four of
them are distinguished by the fact that they are unified theories. Their underlying Jordan
algebras are simple and are realized by 3× 3 Hermitian symmetric matrices JA

3 over the
four division algebras A, namely the real numbers R, complex numbers C, quaternions
H and octonions O. They are referred to as magical supergravity theories.

We shall follow the conventions of [42] in labelling the elements of JA
3 . For JR

3 a
general element Q has the form

Q =




q1 q6 q5
q6 q2 q4
q5 q4 q3


 ∈ JR

3 (4.1)

where q1, ..., q6 are real numbers and its cubic norm is given by the determinant4

N (Q) = CIJKqIqJqK =
{
q1q2q3 −

[
q1(q4)

2 + q2(q5)
2 + q3(q6)

2
]
+ 2q4q5q6

}
(4.2)

For the Jordan algebras JA
3 , where A = C, H or O coordinates q4, q5 and q6 become

elements of A, which we will denote by capital letters Q4, Q5 and Q6. Thus for Q ∈ JA
3

we have

Q =




q1 Q6 Q̄5

Q̄6 q2 Q4

Q5 Q̄4 q3


 (4.3)

which we will denote as Q = J(q1, q2, q3;Q4, Q5, Q6) The cubic norm of Q is given by the
“determinant”:

N (J(q1, q2, q3;Q4, Q5, Q6)) = {q1q2q3 −
(
q1|Q4|2 + q2|Q5|2 + q3|Q6|2

)
+ Tr(Q4Q5Q6)}

(4.4)
where Tr(X) := X + X̄ denotes twice the real part of X ∈ A and |X|2 = XX̄ . If we

4We should note that for MESGTs defined by Jordan algebras of degree 3 the tensor CIJK is an
invariant tensor of Str0 (J) and CIJK = CIJK .
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expand the elements Q4, Q5 and Q6 in terms of their real components, we find

Q4 = q4 + q(4+3A)jA

Q̄4 = q4 − q(4+3A)jA

Q5 = q5 + q(5+3A)jA

Q̄5 = q5 − q(5+3A)jA (4.5)

Q6 = q6 + q(6+3A)jA

Q̄6 = q6 − q(6+3A)jA ,

where the index A is summed over and using the fact that the imaginary units satisfy

jAjB = −δAB + ηABCjC . (4.6)

We can express the cubic norm as

N (J(q1, q2, q3;Q4, Q5, Q6)) =
(
q1q2q3 − q1[(q4)

2 + q(4+3A)q(4+3A)]

− q2[(q5)
2 + q(5+3A)q(5+3A)]− q3[(q6)

2 + q(6+3A)q(6+3A)]

+ 2[q4q5q6 − q4q(5+3A)q(6+3A) − q5q(4+3A)q(6+3A) − q6q(4+3A)q(5+3A)]

− 2ηABCq(4+3A)q(5+3B)q(6+3C)

)
.

(4.7)

The indices A,B,C take on the single value 1 for complex numbers C, range from 1 to 3
for quaternions H and from 1 to 7 for octonions O. Note that ηABC vanishes for C. For
a real quaternion X ∈ H we have

X = X0 +X1j1 +X2j2 +X3j3

X̄ = X0 −X1j1 −X2j2 −X3j3 (4.8)

XX̄ = X2
0 +X2

1 +X2
2 +X2

3 ,

where the imaginary units ji satisfy

jijj = −δij + ǫijkjk . (4.9)

For a real octonion X ∈ O, we have

X = X0 +X1j1 +X2j2 +X3j3 +X4j4 +X5j5 +X6j6 +X7j7

X̄ = X0 −X1j1 −X2j2 −X3j3 −X4j4 −X5j5 −X6j6 −X7j7 (4.10)

XX̄ = X2
0 +

7∑

A=1

(XA)
2 .

The seven imaginary units of real octonions satisfy

jAjB = −δAB + ηABCjC , (4.11)

where ηABC is completely antisymmetric and, in the conventions of reference [43], take
on the values

ηABC = 1 ⇔ (ABC) = (123), (471), (572), (673), (624), (435), (516) . (4.12)
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The scalar manifolds of the 5d magical supergravity theories defined by the simple Eu-
clidean Jordan algebras of degree three are the following symmetric spaces

M(JR
3 ) =

SL(3,R)

SO(3)

M(JC
3 ) =

SL(3,C)

SU(3)

M(JH
3 ) =

SU∗(6)

USp(6)

M(JO
3 ) =

E6(−26)

F4
.

(4.13)

The magical supergravity theories can be truncated to theories belonging to the so-
called generic Jordan family. To achieve this, one simply restricts the elements of JA

3 to
its non-simple subalgebra J = R⊕ JA

2 . The U-duality symmetry groups of the truncated
theories are as follows:

J = R⊕ JR
2 : SO(1, 1)× SO (2, 1) ⊂ SL (3,R)

J = R⊕ JC
2 : SO(1, 1)× SO (3, 1) ⊂ SL (3,C)

J = R⊕ JH
2 : SO(1, 1)× SO (5, 1) ⊂ SU ∗(6)

J = R⊕ JO
2 : SO(1, 1)× SO (9, 1) ⊂ E6(−26) .

(4.14)

The truncation of the octonionic magical supergravity defined by R ⊕ JO
2 is simply

the 5d supergravity that reduces to the Maxwell-Einstein sector of the FHSV model in
4d describing the coupling of 10 vector multiplets to N = 2 supergravity. The full FHSV
model has 12 hypermultiplets coupled to this Maxwell-Einstein supergravity theory [26].
The cubic form describing the Maxwell-Einstein sector of FHSV model in five dimensions
can be obtained from the cubic norm (4.7) of the octonionic magical supergravity by
setting two out the of the three octonions Q4, Q5 and Q6 equal to zero. Setting Q5 =
Q6 = 0 the cubic norm of the FHSV model is given by the determinant of

J(q1, q2, q3;Q4, 0, 0) =




q1 0 0
0 q2 Q4

0 Q̄4 q3


 , (4.15)

which is simply
N (J(q1, q2, q3;Q4, 0, 0)) = q1{q2q3 − |Q4|2} . (4.16)

Let q1 = X and q2 = (Y0 + Y1) , q3 = (Y0 − Y1) , q4 = Y2 and q4+3A = Y2+A where
A = 1, 2, .., 7. Then we have

N (J(q1, q2, q3;Q4, 0, 0)) = X

(
(Y0)

2 −
9∑

i=1

(Yi)
2

)

that is invariant under SO(9, 1) × SO(1, 1) which is the global symmetry group of the
Maxwell-Einstein sector of the FHSV model in five dimensions [26].

5 M/Superstring Theory Embedding of Octonionic

Magical Supergravity

The N = 2 supersymmetric octonionic magical supergravity and the maximal N = 8
supergravity share certain common features. They are both unified theories and have the
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exceptional groups of the E series as U-duality groups in five , four and three dimensions.
However their real forms are different. Furthermore they have the same number of vector
fields in five and four dimensions. They have a common sector which is the N = 2
quaternionic magical supergravity defined by the Jordan algebra JH

3 . Whether there
exists a larger theory that can be truncated to both N = 8 supergravity and octonionic
magical supergravity was posed as an open problem in [25]. After the discovery of Green-
Schwarz anomaly cancellation mechanism in string theory [44], this question evolved into
the question whether octonionic magical supergravity can arise as a low energy effective
theory of superstring theory compactified on some exceptional5 Calabi-Yau (CY) manifold
[4]. A necessary condition for this is that the intersection numbers of the Calabi-Yau
manifold must coincide with the ones given by C−tensor corresponding to the cubic norm
of the underlying exceptional Jordan algebra JO

3 . Pure octonionic magical supergravity
without hypermultiplets would require a rigid CY manifold. We should note that the
supergravity theory withN = 2 supersymmetry and 15 vector multiplets in 4d as obtained
by Sen and Vafa [45] via the dual pair method from type II string theory describes the
quaternionic magical supergravity without any hypermultiplets as was first pointed out
by one of the current authors in [46]. Quaternionic magical supergravity is the largest
common sector of the octonionic magical supergravity and the maximal supergravity.
It was later realized that there exists an anomaly free supergravity theory in 6d which
reduces to the octonionic magical supergravity theory coupled to 28 hypermultiplets in
five dimensions [47]. This led one of the authors to suggest that octonionic magical
supergravity coupled to 28 hypermultiplets could arise as low energy effective theory of
M/superstring theory on a self-mirror CY manifold [46]. In 5d, this theory would have
the scalar manifold

MV ×MH =
E6(−26)

F4
× E8(−24)

E7 × SU(2)
(5.1)

as its moduli space. In 4d this scalar manifold/moduli space would be the product
manifold

MV ×MH =
E7(−25)

E6 × U(1)
× E8(−24)

E7 × SU(2)
(5.2)

and in 3d the moduli space would be a doubly exceptional symmetric space

MV ×MH =
E8(−24)

E7 × SU(2)
× E8(−24)

E7 × SU(2)
(5.3)

The FHSV model could be obtained as a truncation of this theory since moduli space of
the FHSV model in the corresponding dimensions are

5d : MV ×MH =
SO(9, 1)× SO(1, 1)

SO(9)
× SO(12, 4)

SO(12)× SO(4)
(5.4)

4d : MV ×MH =
SO(10, 2)× SU(1, 1)

SO(10)× U(1)× U(1)
× SO(12, 4)

SO(12)× SO(4)
(5.5)

3d : MV ×MH =
SO(12, 4)

SO(12)× SO(4)
× SO(12, 4)

SO(12)× SO(4)
. (5.6)

In four dimensions, the scalar manifold of the vector fields of the octonionic magical su-
pergravity is the symmetric space E7(−25)/E6 × U(1). Remarkably on the mathematics

5We use the term exceptional here only to describe Calabi-Yau manifolds that could embed exceptional
supergravities into M-theory/string theory.
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side Benedict Gross posed it as an open problem whether this particular Hermitian sym-
metric space could arise as the moduli space of variations of Hodge structures of a CY
manifold [48] with a number theoretic counterpart related to Néron-Severi groups posed
in [49].

A candidate CY manifold would therefore have to reproduce the above. We however
remark here that searching for this candidate CY manifold is not straightforward for
reasons that are explained in section 13.

6 Orbits of Extremal Black Holes of 5d Octonionic

Magical Supergravity

The orbits of the extremal black holes of 5d N = 2 MESGTs defined by Jordan algebras
of degree three were first classified in [5] and studied in further detail in [6, 8]. Here we
shall review the orbits of the octonionic magical supergravity defined by the exceptional
Jordan algebra JO

3 . We should first note that in five dimensions, asymptotically flat
dyonic solutions do not exist; they are either purely electric black holes with charges
charges qI or their magnetic duals which describe black strings with purely magnetic
charges pI .Therefore we shall restrict our study to extremal black hole solutions that are
asymptotically flat, static, and spherically symmetric[5, 6, 8]. The near horizon geometry
of such black holes are of the form AdS2×S3 and their magnetic duals have the geometry
AdS3 × S2.

The attractor mechanism for 5d, N = 2 MESGTs in an extremal black hole back-
ground is described by the positive definite effective black hole potential [19, 50]

V (φ, q) = qI
◦
a
IJ
qJ , (6.1)

where
◦
a
IJ

is the inverse of the metric
◦
aIJ of the kinetic energy term of the vector fields,

and qI is the (n + 1) dimensional charge vector

qI =

∫

S3

HI =

∫

S3

◦
aIJ ∗F J (I = 0, 1, ...n) .

The metric
◦
aIJ is related to the metric gxy of the scalar manifold as follows

◦
aIJ = hIhJ +

3

2
hI,xhJ,yg

xy

◦
a
IJ

= hIhJ +
3

2
hI,xh

J
,yg

xy
(6.2)

and

gxy =
3

2
hI,xhJ,y

◦
a
IJ
. (6.3)

In terms of the central charge Z = qIh
I the potential takes the form

V (q, φ) = Z2 +
3

2
gxy∂xZ∂yZ , (6.4)

where ∂xZ = qIh
I
,x =

√
2/3 qI h

I
x. Using the identity

hI,x;y =
2

3
(gxyh

I −
√

3

2
Txyzg

zwhI,w) , (6.5)
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J OBPS = Str0 (J) /Aut (J)
JR
3 SL(3,R)/SO(3)
JC
3 SL(3,C)/SU(3)
JH
3 SU∗(6)/USp(6)

JO
3 E6(−26)/F4

R⊕ Γ(1,n−1) SO(n− 1, 1)× SO(1, 1)/SO(n− 1)

Table 1: Orbits of spherically symmetric stationary BPS black holes with non-vanishing
entropy in 5D MESGTs defined by Euclidean Jordan algebras J of degree three.

the critical points of the potential are determined by the solutions of

∂xV = 2(2Z∂xZ −
√

3/2Txyzg
yy′gzz

′

∂y′Z∂z′Z) = 0 . (6.6)

The BPS critical points are then given by

Zx ≡ ∂xZ = 0 (6.7)

and the non-BPS critical points are given by the equation

2Z∂xZ =

√
3

2
Txyz∂

yZ∂zZ =

√
3

2
TxyzZ

y Zz , (6.8)

where

Zx ≡ ∂xZ = gxyZy .

Using the identity

qI = hIZ − 3

2
hI,x∂

xZ (6.9)

that follows from (6.2), one finds that for BPS critical points ∂xZ = 0 one has

qI = hIZ , (6.10)

and for non-BPS critical points ∂xZ 6= 0 one has

qI = hIZ − (3/2)3/2
1

2Z
hI,xT

xyzZyZz . (6.11)

The BPS orbit with non-vanishing entropy given by Zx = 0 is simply the symmetric

space
Str0 (J)

Aut (J)
. Table 1 lists these moduli spaces for theories defined by Euclidean Jordan

algebras of degree three. The corresponding black hole potentials take the value

V |Zx=0 = Z2 (6.12)

at the horizon in terms of the central charge.
For the non-BPS black hole solutions with non-vanishing entropy given by (6.8), the

orbits are of the form
G/H̃ = Str0 (J) / ˜Aut (J)) , (6.13)
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J Onon−BPS = Str0 (J) / ˜Aut (J)) K̃ ⊂ Ãut (J)
JR
3 SL(3,R)/SO(2, 1) SO(2)
JC
3 SL(3,C)/SU(2, 1) SU(2)× U(1)
JH
3 SU∗(6)/USp(4, 2) USp(4)× USp(2)

JO
3 E6(−26)/F4(−20) SO(9)

R⊕ Γ(1,n−1) SO(n− 1, 1)× SO(1, 1)/SO(n− 2, 1) SO(n− 2)

Table 2: The orbits of non-BPS extremal black holes of N = 2 MESGT’s with non-
vanishing entropy. The first column lists the underlying Jordan algebras of degree 3 .

The third column lists their maximal compact subgroups K̃ of Ãut (J). These non-BPS

black holes have moduli described by the symmetric spaces Ãut (J)/K̃.

where Ãut (J) is a non-compact real form of the automorphism group of J and are listed
in Table 2. For the non-BPS extremal black holes with non-vanishing entropy one finds
that the black hole potential at the corresponding critical point takes the value

V |non-BPS = 9Z2 . (6.14)

Since the black hole potential is determined by the metric
◦
a
IJ

of the kinetic energy term
of the vector fields, it is positive definite and vanishes only when all the charges qI vanish.
Hence, the attractor mechanism that leads to the criticality condition for the black hole
potential is valid only for the black holes with non-zero entropy. So-called small black
holes with vanishing entropy do not exhibit the attractor mechanism and it is generally
believed that their description requires going beyond the supergravity approximation to
their quantum completions.

In MESGTs describing the coupling of an arbitrary number of vectors multiplets to
pure N = 2 supergravity, one has to distinguish the bare graviphoton A0

µ field strength
F 0
µν from the physical or “dressed” graviphoton field strength. This is given by the linear

combination hIF
I
µν since it is this combination that is related by supersymmetry to the

gravitino Ψi
µ in the interacting theory

δemµ =
1

2
ε̄iΓmΨµi (6.15)

δΨµi = ∇µ(ω)εi +
i

4
√
6
hI(Γ

νρ
µ − 4δνµΓ

ρ)F I
νρεi (6.16)

δAI
µ = −1

2
hIaε̄

iΓµλ
a
i +

i
√
6

4
hIΨ̄i

µεi (6.17)

δλai = − i

2
fa
xΓ

µ(∂µϕ
x)εi +

1

4
haIΓ

µνεiF
I
µν (6.18)

δϕx =
i

2
fx
a ε̄

iλai , (6.19)

where λai are the spinor fields in the vector multiplets and fx
a is the n-bein on the scalar

manifold. Hence the central charge Z = qIh
I is simply the dressed charge associated with

the physical graviphoton. Similarly one can interpret Zx as dressed charges with respect
to the dressed vector field strengths hxIF

I
µν .

The C−tensor CIJK that defines the N = 2 MESGT uniquely is a constant tensor
and is given by the intersection numbers of the Calabi-Yau threefolds for those theories
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that descend from M-theory. The tensor CIJK obtained by raising the indices by the

metric
◦
a
IJ

CIJK =
◦
a
II′ ◦
a
JJ ′

◦
a
KK ′

CI′J ′K ′ (6.20)

depends on the scalar fields in general. However, for those theories defined by the Eu-
clidean Jordan algebras J of degree three, the C−tensor is an invariant tensor of the
U-duality group Str0 (J) and one has [2]

CIJK = CIJK . (6.21)

Given a black hole solution of the 5d N = 2 MESGT defined by the Jordan algebra J
with (electric) charges qI , we associate an element Q = eIqI of J , where e

I , I = 1, 2, ..., nV

form a basis of J . The entropy S of an extremal black hole solution is then determined
by the cubic norm N (Q) of Q. More specifically

S = π
√

|N (Q)| (6.22)

where N (Q) = CIJKqIqJqK . Using the fact that CIJK = CIJK one can write the cubic
norm in terms of the dressed charges Z,Zx as follows:

N (Q) = CIJKqIqJqK = Z3 − (3/2)2ZZxZyg
xy − (3/2)3/2TxyzZ

xZyZz . (6.23)

Here we should stress the fact that while the bare charges qI take integer values the
dressed charges need not be integrally charged.

Specializing to the case of exceptional supergravity, the orbits of extremal black hole
solutions under the action of U-duality group E6(−26) fall into three categories depending
on the rank of the charge matrix Q = J(q1, q2, q3;Q4, Q5, Q6)[5, 6]. Firstly, we should
note that by the action of the compact automorphism group F4, any element J ∈ JO

3 can
be diagonalized:6

F4 : J ⇒ (λ1E1 + λ2E2 + λ3E3) (6.24)

where λi are the eigenvalues of J and Ei, (i = 1, 2, 3) are the irreducible idempotents of
JO
3 defined as

E1 = J(1, 0, 0; 0, 0, 0), E2 = J(0, 1, 0; 0, 0, 0), E3 = J(0, 0, 1; 0, 0, 0) . (6.25)

The cubic norm of J is then simply given by N (J) = λ1λ2λ3. The rank one elements can
be brought to a multiple of an irreducible idempotent [5]

Λi = λEi i = 1, 2, 3 , λ ∈ R . (6.26)

The corresponding extremal black holes have vanishing entropy i.e., small black holes and
their orbits are

E6(−26)

SO(9, 1)sT 16
, (6.27)

where SO(9, 1)sT 16 represents the semi-direct product of SO(9, 1) with translations
in its 16 dimensional (Majorana-Weyl) spinor representation. They were called critical
light-like orbits in [5] and describe 1/2 BPS black holes whose moduli spaces are [8]

SO(9, 1)

SO(9)
sR16 (6.28)

6See [51] and the references therein.
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The rank 2 elements can be brought to the form

Sij = λ(Ei + Ej) (i 6= j)

or to the form

Aij = λ(Ei − Ej)

by the action of E6(−26)[5, 6] and describe black holes with vanishing entropy. The orbits
of black holes described by Sij are given by the coset space

E6(−26)

SO(9)sT 16
(6.29)

They are 1/2 BPS black holes with moduli R16 [8]. The black holes described by Aij are
non-BPS and their orbits are given by the coset space

E6(−26)

SO(8, 1)sT 16
(6.30)

with moduli spaces SO(8,1)
SO(8)

sR16. The orbits defined by Sij and Aij were called light-like

orbits in [5]. The elements of JO
3 with non-vanishing cubic norm ( rank 3) can be brought

to either of the following forms by the action of E6(−26):

Sijk = (Ei + Ej + λEk) (6.31)

or the form
Aijk = (−Ei − Ej + λEk) , (6.32)

where i 6= j, j 6= k, i 6= k. The black holes whose charge matrix can be brought to the
form Sijk with λ > 0 describe 1/2 BPS extremal black holes with non-vanishing entropy.
They belong to the orbit

E6(−26)

F4

(6.33)

and have no moduli. The extremal black holes described by charge matrices of the form
Aijk with λ > 0 are non-BPS extremal black holes with orbits [5]

E6(−26)

F4(−20)

(6.34)

and moduli spaces
F4(−20)

SO(9)
. (6.35)

We should note that the black holes with vanishing entropy are commonly referred to
as small black holes whereas those with non-vanishing entropy as large black holes in the
literature and we shall adopt this convention.
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7 Conformal group E7(−25) of the Exceptional Jor-

dan Algebra as Spectrum Generating Symmetry

Group of 5d Octonionic Magical Supergravity

The U-duality group of 5d supergravity theory defined by a Euclidean Jordan algebra J
of degree 3 is simply the Lorentz group Lor (J) of J which is also the invariance group of
the norm. Hence the entropy of a large extremal black hole in these supergravity theories
given by the norm form of J is invariant under the action of Str0 (J). However, the small
extremal black holes with vanishing entropy have a larger symmetry, namely they remain
light-like under the action of the semidirect product group (Lor (J)× SO(1, 1)) ⋊ SJ ,
where SJ represents the Abelian group of special conformal transformations labelled by
the elements of J . Under the action of the full conformal group Conf (J), reviewed in
section 3, that include translations TJ as well as special conformal generators SJ , the
light-like vectors do not remain light-like in general. Conformal group Conf (J) changes
the norm of a general element Q ∈ J representing the charges and hence the corresponding
entropy of extremal black hole solution coordinatized by Q. Therefore conformal groups
Conf (J) of Jordan algebras were proposed as spectrum generating symmetry groups of
the solutions of the 5d supergravity theories defined by them [5, 11, 13, 12, 52].

The conformal group Conf (J) is isomorphic to the U-duality symmetry group of the
corresponding 4d supergravity theory obtained by dimensional reduction (R-map) from
five dimensions. The one-to-one correspondence between vector fields and the elements
of the underlying Euclidean Jordan algebra J of degree three in five dimensions go over
to the correspondence between vector field strengths and their magnetic duals and the
Freudenthal triple system associated with the Jordan algebra J [2, 11, 5, 12, 53, 52].

Elements X of a Freudenthal triple system (FTS) F(J) [54, 55] associated with J can
be represented formally as a 2× 2 “matrix”:

X =




α x

y β



 ∈ F(J) , (7.1)

where α, β ∈ R and x,y ∈ J .
Labelling the 4d graviphoton field strength and its magnetic dual as F 0

µν and F̃ µν
0 ,

respectively, one has the correspondence




F 0
µν F I

µν

F̃ µν
I F̃ µν

0


⇐⇒




e0 eI

ẽI ẽ0


 ∈ F(J),

where eI(ẽ
I) are the basis elements of J (its dual J̃). Therefore, given a black hole solution

with electric and magnetic charges (fluxes)
(
q0, qI , p

0, pI
)
of the 4d MESGT defined by

J , we can associate an element of the FTS F (J) to it:




p0e0 pIeI

qI ẽ
I q0ẽ

0



 ∈ F(J) . (7.2)

The U-duality group of the 4d MESGT is simply the automorphism group of the FTS
F(J). The FTS admits an invariant symmetric quartic form and a skew-symmetric
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bilinear form. The entropy of an extremal black hole solution of the four dimensional
theory with charges (p0, pI , q0, qI) is determined by the quartic invariant Q4(q, p) of F(J).
The orbits of extremal black holes of 4dN = 2 MESGT’s with symmetric scalar manifolds
were classified in [5, 7].

The automorphism group Aut (F(J)) of the FTS F(J) defined by J is isomorphic
to the conformal group Conf (J) of J . There are two different actions of the conformal
group Conf (J) in the 4d theory. Conf (J) acts linearly on the vector field strengths
and their magnetic duals and non-linearly on the complex scalar fields. The manifold of
complex scalar fields of the 4d theory can be mapped into the upper half plane of the
corresponding Jordan algebra and the conformal group Conf (J) acts holomorphically
on the corresponding tube domain[1, 2].

The proposal that the 4d U-duality group acts as a spectrum generating symmetry of
the 5d supergravity raises the question whether the U-duality group of the corresponding
3d supergravity can act as spectrum generating symmetry group of the 4d theory. This
question was first investigated in [11] where it was shown in that the 3d U-duality groups
of supergravity theories defined by Jordan algebras all have novel geometric realizations
as quasi-conformal groups. These quasiconformal groups act non-linearly on the vec-
tor spaces of the corresponding FTSs extended by an extra singlet coordinate and leave
light-like separations with respect to a quartic distance function invariant. These quasi-
conformal actions of 3d U-duality groups act as spectrum generating symmetry groups
of corresponding 4d supergravity theories [11, 13, 14, 12, 15, 16, 42]. The quasiconformal
groups defined over FTS’s F are denoted as QConf (F). When the corresponding FTS is
defined over a Jordan algebra J of degree three they are denoted either as QConf (F) or
simply as QConf (J). The construction given in [11] is covariant under the 4d U-duality
group of the corresponding supergravity. For N = 2 MESGTs defined by Euclidean
Jordan algebras of degree three, quasiconformal realizations of their 3d U-duality groups
were given in a basis covariant with respect to their 6d duality groups in [53] and with
respect to their 5d U-duality groups in [42].

For the octonionic magical supergravity, the 3d U-duality group is the group E8(−24)

with maximal compact subgroup E7 × SU(2) and the corresponding FTS is 56 dimen-
sional. Its quasiconformal realization as a spectrum generating symmetry group of black
hole solutions acts on a 57 dimensional space labelled 28 electric and 28 magnetic charges
and the extra singlet coordinate was interpreted as entropy of the 4d blackholes in [11].

8 The Exceptional Cone

In this section we shall review the exceptional cone defined by the exceptional Jordan
algebra JO

3 following the formulation given in [27] where the lattices defined by elements
of JO

3 over the integral octonions were studied. We shall denote the division algebra of
octonions as O and, following [27], label J(a, b, c; x, y, z) as the elements of JO

3 of the form

J =




a z ȳ
z̄ b x
y x̄ c


 , (8.1)
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where a, b, c ∈ R and x, y, z ∈ O. The exceptional cone C in JO
3 is defined by those

elements J which are positive semidefinite i.e., they satisfy the conditions

a, b, c ≥ 0

(bc−N(x)) , (ca−N(y)) , (ab−N(z)) ≥ 0

N (J) ≥ 0

(8.2)

and are denoted as J ≥ 0, where N is the norm over the octonions. The group of
all invertible linear transformations of JO

3 that preserve the cubic norm is the reduced
structure (Lorentz) group Str0

(
JO
3

)
= Lor

(
JO
3

)
which is E6(−26). The group E6(−26) also

leaves the symmetric trilinear form (J1, J2, J3), defined as

(J1, J2, J3) := N (J1 + J2 + J3)−N (J1 + J2)−N (J2 + J3)−N (J1 + J3)

+N (J1) +N (J2) +N (J3) , (8.3)

invariant. The cubic norm of J is then related to the trilinear form as

N (J) = det(J) =
1

6
(J, J, J) (8.4)

The rank of an element J ∈ JO
3 is preserved by the action of E6(−26). Furthermore the

exceptional cone C ∈ JO
3 is stabilized by E6(−26) which acts transitively on the set of

elements J ≥ 0 with unit cubic norm N (J) = 1. The stabilizer of an element in C with
unit norm is simply the maximal compact subgroup F4 of E6(−26).

The elements E belonging to the exceptional cone C with N (E) = 1 are called polar-
izations. Given a polarization E one can define a linear form that maps the elements of
JO
3 into R:

TE : JO
3 =⇒ R (8.5)

TE(J) =
1

2
(E,E, J) , ∀ J ∈ JO

3 (8.6)

as well as a quadratic form

RE : JO
3 =⇒ R (8.7)

RE(J) =
1

2
(E, J, J) , ∀ J ∈ JO

3 (8.8)

which is associated with the bilinear form

(A,B)E = RE(A +B)−RE(A)− RE(B) = (E,A,B) (8.9)

The bilinear form (A,B)E has signature (1, 26). One can also define another bilinear
form 〈A,B〉E [27], where

〈A,B〉E = TE(A)TE(B)− (A,B)E (8.10)

and has signature (27,0). The linear form TE as well as the bilinear forms are invari-
ant under the subgroup of the reduced structure group E6(−26) of JO

3 that leaves the
polarization E invariant.
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The Jordan product A ◦E B depends on the choice of polarization E and is defined
by the identity [27]

(2(A ◦E B), C)E = (A,B,C) + TE(A)〈B,C〉E + TE(B)〈C,A〉E + TE(C)〈A,B〉E
−TE(A)TE(B)TE(C) (8.11)

= (A,B,C)− TE(A)(B,C)E − TE(B)(C,A)E − TE(C)(A,B)E

+2TE(A)TE(B)TE(C) (8.12)

Under the Jordan product ◦E the polarization E acts as the identity element

A ◦E E = E ◦E A = A (8.13)

TE(A ◦E B) = 〈A,B〉E (8.14)

TE(A ◦E (B ◦E C)) = TE((A ◦E B) ◦E C) . (8.15)

The Jordan algebra defined by the product ◦E with the identity element E is referred
to as the isotope of the Jordan algebra with respect to the product ◦I , with the identity
element I given by the 3×3 unit matrix. For a Jordan algebra J with the Jordan product
◦I one defines a Jordan triple product

{ABC} ≡ (A ◦I B) ◦I C + (C ◦I B) ◦I A− (A ◦I C) ◦I B = {CBA} . (8.16)

Given an element B of the Jordan algebra J with an inverse B−1 such that B ◦I B−1 = I,
one can define an isotope of J with the Jordan product ◦B

A ◦B C ≡ {AB−1C} = C ◦B A (8.17)

with the identity element B since

A ◦B B = B ◦B A = {AB−1B} = A . (8.18)

Hence the Jordan algebra with the product ◦E is simply the isotope of the Jordan algebra
with the product ◦I and one has

A ◦E B = {AE−1B} , (8.19)

where E−1 is the inverse of the polarization E with respect to the Jordan product ◦I .
If the identity matrix I = (1, 1, 1; 0, 0, 0) is chosen as the polarization then TI coin-

cides with the ordinary matrix trace and the Jordan product is simply given by 1/2 the
anticommutator

A ◦I B =
1

2
(AB +BA) (8.20)

The E-adjoint A#
E of an element A ∈ JO

3 is defined as

A#
E = A ◦E A− TE(A)A+RE(A)E , (8.21)

and satisfies the following identities:

E#
E = E (8.22)

A ◦E A#
E = N (A)E (8.23)

(A#
E)

#
E = N (A)A (8.24)

2TE(A ◦E B#
E ) = (A,B,B) . (8.25)
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9 Exceptional Jordan Algebra over the Integral Oc-

tonions and Exceptional Modular Forms

The real octonions with integer coefficients O(Z) form a ring. However, as was shown by
Coxeter, the ring O(Z) is not maximal. There is a maximal order R which has O(Z) as a
subring [56]. It is generated by O(Z) and four additional octonions with all half-integer
coefficients which can be chosen to be

1

2
(1 + j1 + j2 + j3)

1

2
(1 + j1 + j6 + j5)

1

2
(1 + j1 + j4 + j7)

1

2
(j1 + j2 + j4 + j6) .

(9.1)

The order R contains the element [27]:

β =
1

2
(−1 + j1 + j2 + j3 + j4 + j5 + j6 + j7) (9.2)

which satisfies

Tr(β) = −1

N (β) = ββ̄ = 2

β2 + β + 2 = 0 .

(9.3)

Trace and norm take on integral values on R and hence its elements were called integral
Cayley numbers (octonions) by Coxeter [56]. Following [27], we define a Z lattice JL
inside JO

3 by considering 3× 3 Hermitian matrices over integral octonions:

J(a, b, c; x, y, z) =




a z ȳ
z̄ b x
y x̄ c


 (9.4)

where a, b, c ∈ Z and x, y, z ∈ R. The cubic norm of elements in JL take on integral
values and its invariance group is the discrete arithmetic subgroup E6(−26)(Z) of E6(−26)

[49]. A remarkable fact that was proven in [49] is that while E6(−26) acts transitively
on positive polarizations with determinant 1, its arithmetic subgroup E6(−26)(Z) does
not act transitively on the polarizations E > 0 in JL with determinant 1. There are
precisely two orbits under the action of E6(−26)(Z) represented by the identity matrix
I = J(1, 1, 1, 0, 0, 0) and the “indecomposable” polarization Eind

Eind = J(2, 2, 2; β, β, β) =




2 β β̄
β̄ 2 β
β β̄ 2


 , (9.5)

with N (Eind) = 1. There exist three rank 1 elements A ∈ JL with respect to the identity
polarization I with TI(A) = 1. On the other hand there are no rank 1 elements A ∈ JL
that satisfy TEind

(A) = 1 [49].
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9.1 Integral Jordan Roots

Given a polarization E we may define Jordan roots associated with E as those elements
S in the exceptional cone C which have rank one and satisfy [27]

T (S) = 2

(S, S) = 0

〈S, S〉 = (T (S))2 = 4

S ◦ S = 2S .

(9.6)

The automorphism group F4 that leaves a given polarization E invariant acts transitively
on the set of Jordan roots associated with E. The subgroup of F4 that leaves a given
Jordan root S invariant is Spin(9) and the symmetric space F4/Spin(9) can be identified
with the Moufang plane.7 This subgroup contains the involution τS of JO

3 defined by

τS(A) = A− 2(A ◦ S) + 〈A, S〉S . (9.7)

A root triple is defined as three mutually orthogonal Jordan roots S1, S2 and S3 that
satisfy:

2E = S1 + S2 + S3 (9.8)

〈Si, Sj〉 = 0 i 6= j (9.9)

Si ◦ Sj = 0 i 6= j , (9.10)

where i, j = 1, 2, 3. The automorphism group F4 acts transitively on the root triples
associated with E and the subgroup of F4 that leaves invariant a given root triple is the
semi-direct product group Spin(8)⋊S3 where S3 is the group of permutations of the root
triple.

In the rest of this paper we shall adopt the convention to denote the indecomposable
polarization Eind given in equation 9.5 simply as E. The linear form TE defined by the
polarization E maps the lattice JL into Z. In [27], the possible values TE(A) for A ≥ 0
in JL with rank(A)=1 were studied. All such elements satisfy TE(A) ≥ 2. A formula for
the number N(n) of such rank 1 elements A such that TE(A) = n with n ∈ N turns out
to depend on the values of the divisor sigma function [27]

σ11(n) =
∑

d|n

d11 (9.11)

where d|n indicates the sum over positive divisors of n including 1, and the Ramanujan
τ function defined by the q−series of the 24th power of the Dedekind eta function

∆ = η(τ)24 = q
∏

m≥1

(1− qm)24 =
∑

n≥1

τ(n)qn, q := e2πiτ . (9.12)

Let c(A) denote the largest integer such that for any rank 1 element A ∈ JL one still
has A/c(A) ∈ JL. Then the number of linearly independent rank one elements with

7We should note that Jordan roots can be identified with the points in the octonionic projective plane
(Moufang plane) and correspond to pure states in the octonionic quantum mechanics defined over JO

3 [51].

The idempotents P of JO

3 corresponding to pure states in octonionic quantum mechanics are normalized
such that P ◦I P = P .
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TE(A) = n is given by [27]

N(n) =
∑

TE(A)=n; rank(A)=1



∑

d|c(A)

d3


 =

3 · 7 · 13
691

(σ11(n)− τ(n)) . (9.13)

If n = p is a prime number, one has c(A) = 1 and the formula for N(p) simplifies

N(p) =
3 · 7 · 13
691

(
p11 − τ(p) + 1

)
. (9.14)

We refer to N(n) as the multiplicity of a rank one element with trace form TE(A) = n.
Correspondingly we define the quantum degeneracy of a rank one black hole whose charge
matrix A satisfies TE(A) = q to be given by N(q) with the adjective ”quantum” deriving
from the fact that the discrete U-duality group is expected to be a symmetry of the
quantum completion of the octonionic magical supergravity. The rank 1 elements with
TE(A) = 2 correspond to integral Jordan roots and their number is N(2) = 819 [27] .
Hence a BPS black hole whose charge matrix A satisfies TE(A) = 2 can be in any one
these 819 charge states.

The proof of the formulas above giving the multiplicity N(n) of rank 1 elements uses
the theory of modular forms of weight 12 on the upper half-plane and on the exceptional
tube domain [29]. The space of modular forms of weight 12 for SL(2,Z) is two dimensional
spanned by ∆ and the Eisenstein series E12. They have the Fourier expansions

∆(τ) = q
∏

n≥1

(1− qn)24 = q − 24q2 + 252q3 + · · · (9.15)

E12(τ) = ζ(−11)/2 +
∑

m≥1

σ11(m) qm =
691

65520
+ q + 2049q2 + · · · . (9.16)

The unique holomorphic modular f(q) form of weight 12 for SL(2,Z) whose Fourier series
begins as f(q) = 1 + 0q + · · · is given by

f(q) =
65520

691
(E12 −∆) = 1 +

24 · 32 · 5 · 7 · 13
691

∑

n≥1

(σ11(n)− τ(n))

= 1 + 0q + 196560q2 +O(q)3 . (9.17)

The modular form f(q) is the theta function of the Leech lattice Λ ⊂ R24 which is an
even unimodular lattice with minimal norm > 2 [49, 57].8

On the other hand, the “upper half-plane” of the exceptional Jordan algebra JO
3 is

spanned by elements of the form Z = (X + iY ) where X is an arbitrary element of JO
3

and Y > 0. This upper half-plane is in fact the exceptional tube domain D of complex
dimension 27. The conformal group E7(−25) of J

O
3 acts holomorphically on the exceptional

tube domainD and it was proposed as a spectrum generating symmetry group of extremal
black holes of the octonionic magical supergravity in 5d [5, 11, 14, 13, 12].

Since the conformal group Conf (J) includes translations TJ by the elements of J
the Fourier coefficients of the modular forms of the arithmetic subgroup E7(−25)(Z) of
E7(−25) are expected to describe the degeneracies of charge states of quantum extremal
black holes of the octonionic magical supergravity theory whose bare charges are labelled

8See Appendix A and Table 4 for relevant details on theta functions of Niemeier lattices.

24



by the elements of the exceptional Jordan algebra with integral coefficients. The above
results show that this is the case for rank one charge states which act as building blocks of
higher rank charge states as will be explained later in section 12. In the next subsection we
shall review the work of N. Elkies and B. Gross that establish the connections between the
exceptional modular form of Kim[29] on the exceptional tube domain, rank one elements
of the exceptional Jordan algebra over the integral octonions and the Leech lattice [27].

9.2 Exceptional Modular Forms and Integral Jordan Roots

Let F (Z) be an holomorphic function that maps the exceptional tube domain D into
complex numbers C. F (Z) is a modular form of level 1 and weight k of E7(−25)(Z) if it
satisfies the following conditions [29]:

(i) Invariance under translations by elements of JL

F (Z +B) = F (Z) , ∀B ∈ JL (9.18)

(ii) Invariance under the action of E6(−26)(Z)

F (gZ) = F (Z) , ∀g ∈ E6(−26)(Z) (9.19)

(iii) Under inversions, it satisfies the following identity

F (−Z−1) = (N (Z))kF (Z) , (9.20)

where the inversions are defined with respect to the identity polarization

Z−1 =
Z#

I

(N (Z))
. (9.21)

F (Z) has a Fourier expansion of the form

F (Z) =
∑

T∈JO

3
, T≥0

a(T )e2πiTr(T◦Z) . (9.22)

Given a holomorphic modular form F (Z) of weight k on the tube domain D, then
the function f(τ) = F (τE#), where τ = x + iy is a complex number taking values in
the upper half-plane and E# is the adjoint of the indecomposable polarization E, is a
holomorphic modular form of weight 3k of SL(2,Z) ⊂ E7(−25)(Z). The singular modular
form F (Z) = E4,0(Z) of weight 4 studied by Kim has the Fourier expansion

E4(Z) = 1 + 240
∑

A≥0 inJL ; rank(A)=1



∑

d|c(A)

d3


 e2πiTr(A◦IZ) . (9.23)

where the Jordan product A ◦I Z is with respect to the identity polarization I of JO
3 .

Choosing Z = E# and using the identity

Tr(A ◦I E#) =
1

2
(A,E,E) = T (A) ,
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one finds

f(τ) = F (τE#) = 1 + 240
∑

n≥1



∑

T (A)=n



∑

d|c(A)

d3




 qn , (9.24)

where q = e2πiτ and rank(A) = 1 with A ≥ 0. Since T (A) > 1 for rank one elements
A ∈ JL in the polarization E, the coefficient of q is zero in the above series which is
simply the q-expansion of the holomorphic form of weight 12 of SL(2,Z) given in (9.17)
and is also the theta function of the Leech lattice.

As was shown in [27], the bilinear product (A,B) is even and has discriminant 2 on
JL. On the other hand, the pairing 〈A,B〉 is positive definite and unimodular on JL.
The polarization E satisfies the identities [27]

〈E,E〉 = 3

〈E,A〉 = 〈A,A〉 mod 2 ,
(9.25)

which implies that
2(A ◦E B) ∈ JL ∀ A,B ∈ JL . (9.26)

Involutions τS with respect to Jordan roots S map JL into itself. The groupAut (JL,N , E)
that leaves JL,N and the polarization E invariant is a discrete subgroup of the compact
group F4 and, hence, is finite. It leaves invariant the submodule ZE and acts faithfully
on its orthogonal complement JL0 of rank 26.

The subgroup Γ of Aut (JL,N , E) generated by involutions with respect to 819 Jor-
dan roots has order 211341312 and was shown to be isomorphic to the twisted Chevalley
group 3D4(2) [27]

9. The subgroup of 3D4(2) that leaves a given Jordan root S invariant
is a maximal parabolic subgroup isomorphic to 21+8

+ · L2(8). There are 2457 integral root
triples and the group Γ acts transitively on them. The subgroup of Γ that leaves a given
root triple invariant is the maximal parabolic subgroup 22+3+6 · (7 × L2(2)). The group
3D4(2) acts transitively also on the set of rank one elements A with T (A) = 3 with the
stabilizer being isomorphic to the maximal subgroup L2(2)× L2(8) [27].

9.3 Cubic Rings and Binary Cubic Forms

In [59] it was shown that the isomorphism classes of cubic rings A over a local ring R
correspond to the orbits of the action of GL(2, R) on binary cubic polynomials over R.
Given a binary cubic polynomial over R of the form

p(x, y) = ax3 + bx2y + cxy2 + dy3 (9.27)

with coefficients a, b, c.d in R and discriminant

∆(p) = b2c2 + 18abcd− 4ac3 − 4db3 − 27a2d2 (9.28)

the twisted action of g =

(
α β
γ δ

)
∈ GL(2, R) on (x, y) is defined as

g :

(
x
y

)
=⇒

(
x′

y′

)
=

1

(αδ − βγ)

(
α β
γ δ

) (
x
y

)
. (9.29)

9We use the conventions of the Atlas [58] in labelling finite groups.
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Under GL(2, R), the discriminant ∆ changes as follows :

∆(g · p(x.y)) = (det g)2∆(p(x, y)) . (9.30)

We should note that the discriminant ∆ corresponds to the quartic invariant of an
extremal black hole solution in 4d supergravity obtained by dimensional reduction of
the pure N = 2 supergravity in five dimensions whose electric and magnetic charges
are related to (a, b, c, d) if the ring R is chosen to be the ring of integers Z [17]. It is
invariant under the 4d U-duality group SL(2, R) and its relation to binary cubic forms
and extremal black holes were studied in [22].

As was shown in [59], given a binary cubic form p(x, y) and corresponding four di-
mensional R−module M , one can always define a cubic ring over R with basis (1, I, J)
with multiplication rules

I J = −ad1 (9.31)

I2 = −ac1 + bI − aJ (9.32)

J2 = −bd1 + dI − cJ . (9.33)

Such a basis is referred to as a good basis. The fact that the multiplication rules involve
the constants of a binary cubic polynomial p(x, y) over M establishes a map from cubic
rings to binary cubic forms over R. The most general transformation from a good basis
(1, I, J) to another good basis (1, I ′, J ′) has the form




1
I ′

J ′


 =




1 0 0
u α β
v γ δ






1
I
J


 . (9.34)

10 Springer Decomposition of Jordan Algebras of

Degree Three

We now give a brief review of the Springer decomposition of Jordan algebras JA
3 of degree

three over a field F with A representing a composition algebra following [60, 61]. We
will restrict ourselves to the case when A is the division algebra O of octonions. Let
A = F × F × F denote the subalgebra of diagonal matrices

Λ =




λ1 0 0
0 λ2 0
0 0 λ3



 , (10.1)

where λi ∈ F . We shall denote the matrix Λ simply as Λ = (λ1, λ2, λ3) ∈ A. The
orthogonal complement Lc of A with respect to the trace form are given by the matrices

Ω =




0 ō3 o2
o3 0 ō1
ō2 o1 0


 , (10.2)

where oi ∈ O. We shall denote the matrix Ω as (o1, o2, o3) ∈ Lc. Springer defines the
action ‘·’ of the three dimensional subalgebra A on the orthogonal complement Lc as

Λ · Ω ≡ −Λ× Ω = (λ1o1, λ2o2, λ3o3) ∈ Lc , (10.3)
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where × is the Freudenthal product. Hence Lc is an A module under this action. Rep-
resenting a general element of JO

3 as (Λ,Ω), we have

(Λ,Ω)# = (Λ# −Q(Ω), β(Ω)− Λ · Ω) ∈ (A⊕ Lc) , (10.4)

where (Λ# −Q(Ω)) ∈ A and (β(Ω)− Λ · Ω) ∈ Lc. For our example we have

Q(Ω) = (o1ō1, o2ō2, o3ō3) (10.5)

and
β(Ω) = (ō2ō3, ō3ō1, ō1ō2) . (10.6)

Therefore, the entire Jordan algebra (∆,Ω) can be viewed as a quadratic space over A
under the above action.

11 Embeddings of Cubic Rings in the Exceptional

Jordan Algebra and Niemeier Lattices

In their subsequent work [28], Elkies and Gross consider the embeddings of cubic rings
into the Z lattice JL of rank 27 defined by the 3× 3 Hermitian symmetric matrices over
the Coxeter’s ring of integral octonions R. Their work uses some of the results of earlier
work by Gross and Gan [62] on commutative subrings of certain non-associative rings
which include the exceptional Jordan algebra which we summarize in Appendix E. The
cubic rings A considered are commutative rings which are isomorphic to Z3 as additive
groups and their cubic norms are integral i.e.,10

N : A→ Z . (11.1)

An embedding of A in JL is a mapping f such that

N (f(a)) = N(a) ∀a ∈ A (11.2)

f(1) = E , (11.3)

and such that JL/f(A) is torsion-free. These conditions imply that

f(a · b) = f(a) ◦E f(b) , (11.4)

where ◦E denotes Jordan product with respect to the polarization E and

N (xE − f(a)) = N(x− a) . (11.5)

Furthermore one has

T (f(a)) = Tr(a) (11.6)

〈f(a), f(b)〉 = T (f(a) ◦E f(b)) = Tr(a · b) , (11.7)

where Tr is the trace form over the cubic ring A and · refers to the product in A.

10We use N to denote the norm in a cubic ring, as in (11.1). However we also use this to denote norms
of elements over a given field F . The usage should be clear from context.
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The cubic ring A regarded as an integral lattice admits a dual lattice A∨ ⊂ A⊗Q with
respect to the bilinear form 〈a, b〉 = Tr(a · b) where Q denotes the rationals. Discriminant
D of A considered as a lattice is given by the order of the module A∨/A. Orthogonal
complement of the image f(A) of A inside the 27 dimensional lattice JL is a rank 24
even lattice Lc such that

JL = f(A)⊕ Lc. (11.8)

Since the cubic ring has a unit which maps into the polarization vector E the lattice
Lc is also a sublattice of JL0 generated by traceless elements of JL. The lattice JL0 is
generated by vectors A0 in JL which satisfy the condition

〈A0, E〉 = TE(A0) = 0 . (11.9)

It is an even lattice with a positive definite quadratic form q(v) ≡ 1
2
〈v, v〉 which maps the

elements v of JL0 into Z. Since detJL0 = 3 it has index 3 inside its dual lattice JL∨
0 .

The rank 24 sublattice Lc = f(A)⊥ can be given an A-module structure as was shown
by Springer [60, 61] and summarized in previous section. Elkies and Gross [28] implement
this decomposition using the adjoint map in the indecomposable polarization E11

B → B# (11.10)

B ◦E B# = N (B)E . (11.11)

The quadratic form q(v) on JL0 is then given by

q(v) = −〈v#, E〉 (11.12)

for all v ∈ JL0. Furthermore they define the A-module structure on the lattice Lc with
a positive definite quadratic map of A-modules

qA : Lc → A∨ (11.13)

such that Tr(qA) = q on Lc as defined in (11.12). They also define a quadratic map on the
cubic ring A: a→ a# such that a · a# = N(a) and f(a#) = f(a)# for a given embedding
f . In the polarization E, the Freudenthal product of two elements of the exceptional
Jordan algebra can be written in terms of the Jordan product as follows

B × C = (B + C)# −B# − C# = 2(B ◦E C)− T (B)C − T (C)B + (B,C)E . (11.14)

As reviewed in section 10 Lc becomes an A module under the action

a · v = −f(a)× v , ∀a ∈ A . (11.15)

That a · v lies in Lc = f(A)⊥ follows from the identities:

〈f(b), a · v〉 = −〈f(b), f(a)× v〉 = −〈f(b× a), v〉 = 0 . (11.16)

One can also define tA : J → A∨ so that tA(B) lies in A∨ in the decomposition JL ⊂
A∨ + L∨

c [61]. We then have

Tr(tA(B)) = 〈1, tA(B)〉 = 〈E,B〉 = T (B) ∈ Z . (11.17)

11In the previous section we reviewed the Springer decomposition in the identity polarization for
simplicity.
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The adjoint of an element v ∈ Lc has a component in A∨ which can be used to define a
quadratic map qA:

v# = −qA(v) + β(v) , (11.18)

where qA(v) takes values in dual A∨ of A and β(v) takes values in the dual L∨
c of Lc. One

finds that
Tr(qA(v)) = −T (v#) = −〈v#, E〉 = q(v) . (11.19)

Thus L∨
c is also an A module inside Lc ⊗Q. Furthermore

β(a · v) = a# · β(v) ∈ L∨
c (11.20)

and
N (v) = 〈v, β(v)〉A , (11.21)

where
〈v, w〉A ≡ qA(v + w)− qA(v)− qA(w) . (11.22)

Note that even though β(v) lies in L∨
c , the bilinear product (11.21) takes values over the

integers Z and
N (a · v) = N(a) · N (v) . (11.23)

Given a totally real cubic ring A, an element of A⊗R is said to be totally positive if each
of its three R3 coordinates is non-negative and denoted as (A⊗R)+ representing the self-
dual cone of such elements [28]. An embedding f : A→ JL maps totally positive α in A
to positive-semidefinite matrices B = f(α) in JL. Conversely if B is positive-semidefinite
then α = tA(B) belongs to A∨

+.

11.1 Hilbert Modular Forms and Cubic Rings

Denoting the complex upper half plane as H, Elkies and Gross define a holomorphic
function from H3 into C which has the convergent Fourier series

F (τ) = f(τ1, τ2, τ3) =
∑

α∈A∨

+

c(α)e2πı(α1τ1+α2τ2+α3τ3) (11.24)

where c(0) = 1 and

c(α) = 240
∑











S ∈ JL
rank(S) = 1
tA(S) = α













∑

d|c(S)

d3


 , (11.25)

and show that it is a Hilbert modular form of weight (4, 4, 4) for SL(2, A) which is a
discrete subgroup of SL(2,R)3 i.e.,

F

(
aτ + b

cτ + d

)
= N(cτ + d)4F (τ) (11.26)

for all

(
a b
c d

)
in SL(2, A)12. c(S) is the largest positive integer that divides S such

that S/c(S) ∈ JL. When α is primitive in A∨ then c(S) = 1 and c(a) simplifies to

c(a) = 240#{S : rankS = 1, tA(S) = 2}. (11.27)

12See Appendix F for a review on Hilbert modular forms.
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Note that the sum is over rank one elements S which satisfy S# = 0. In general, a rank
one element can be decomposed as

S = α + v, (11.28)

where α = tA(S) and v ∈ Lc. Since

S# = (α# − qA(v)) + (β(v)− α · v) = 0, (11.29)

this implies qA(v) = α# and β(v) = α · v.
These results are proven using the singular form F (Z) of Kim on the exceptional tube

domain as seen in subsection 9.2 and Appendix C.13 Recall that F (Z) has the Fourier
expansion

F (Z) = 1 + 240
∑

S≥0,rank(S)=1



∑

d|c(S)

d3


 e2πi〈S,Z〉. (11.30)

The function F (τ) given in (11.24) corresponds to the restriction of Kim’s form F (Z)
to the sub-tube-domain

H3 = (A⊗ R) + ı(A⊗ R)+ (11.31)

which embeds into the exceptional tube domain D under the action of the embedding
function of the cubic ring A into the exceptional Jordan algebra over the integral octonions
R . The function F (τ) satisfies

F (τ + b) = F (τ) ∀ b ∈ A

F (α2 · τ ) = F (τ) ∀ α ∈ A∨

F

(
−1

τ

)
= (N(τ))4F (τ ) .

(11.32)

The corresponding matrices of SL(2, A) are

(
1 b
0 1

)
,

(
α 0
0 α−1

)
,

(
0 −1
1 0

)
, (11.33)

where b ∈ A and α ∈ A∨. F (τ) has weight (4, 4, 4) with respect to the discrete subgroup
SL(2, A) with Fourier expansion

F (Z) = 1 + 240
∑

S≥0,rank(S)=1




∑

d|c(S)

d3



 e2πıTr(tA(S)·τ) (11.34)

= 1 + 240
∑

α∈A∨

+
,α6=0




∑

rank(S)=1,tA(S)=α



∑

d|c(S)

d3




 e2πıTr(α·τ). (11.35)

13Note that the work of Kim uses the identity matrix as the polarization. However any polarization
E determines an isomorphic discrete subgroup of the automorphisms of the tube domain [28].
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11.2 Cubic Rings with Discriminant D = p2 and Niemeier Lat-
tices

Recall that Lc = f(A)⊥. We also have

A⊕ Lc ⊂ JL ⊂ A∨ ⊕ L∨
c . (11.36)

Using the fact that the projections onto first and second components above

α : J/(A⊕ Lc) ≃ A∨/A , β : J/(A⊕ Lc) ≃ L∨
c /Lc

define isomorphisms as finite Abelian groups, Elkies and Gross in [28] prove that

〈γa, γb〉 ≡ −〈a, b〉 (modZ) , ∀ a, b ∈ A∨ , (11.37)

where

γ ≡ β ◦ α−1 : A∨/A ≃ L∨
c /Lc .

Using these results, Elkies and Gross analyze, in particular, the cases when the dis-
criminant of the cubic ring A is D = p2 with p prime and the cubic ring A is maximal.
This analysis requires that p ≡ 1 mod 3, p ≥ 7, and A consists of integers in the cubic
subfield of the pth cyclotomic field14 [28]. The quadratic space A∨/A is split over the
integers mod p and has two isotropic lines N̄ and N̄ ′ which define unimodular lattices
N and N ′ as sublattices in A∨. The two unimodular lattices N and N ′ both have rank
3 and are isomorphic to Z3. For the embeddings of these rings f : A → JL they prove
that there exist two even, integral unimodular lattices M and M ′ of rank 24 which lie
between Lc and L

∨
c such that M/Lc and M

′/Lc are the isotropic lines corresponding to
N/A and N ′/A, respectively. These are precisely the Niemeier lattices of rank 24.

11.2.1 Case D = 49

Among the examples of cubic ring embeddings studied by Elkies and Gross with D =
p2, p = 7 is the Dedekind domain Z[cos(2π/7)] = Z[α]/(α3+α2−2α−1). This corresponds
to a particular binary cubic form given in (9.27) with coefficients

a = b = 1 , c = −2 , d = −1 (11.38)

Hence the discriminant given by (9.28) is 49. In this case there are 293413 possible
embeddings of the ring f : A → JL which are conjugate under the finite automorphism
group

Aut (JL,E) = 3D4(2).3 (11.39)

of order 212357213 [63]. For a given embedding, the stability group is the finite group
72 : 2A4 of order 233 · 72 . The normalizer of the stabilizer is the maximal subgroup
72 : 2A4 × 3. Their quotient is the cyclic group Aut (A) = C3 of order 3.

One particular realization of the embedding with D = 49 studied explicitly in [28] is
given by

f(α) =




−1 1 −β̄
1 −1 −β
−β −β̄ −1


 (11.40)

14The pth cyclotomic field is generated by extending the rational numbers Q by p-th root of unity ζ

such that ζp = 1. Galois group of a cyclotomic field is the multiplicative group Zp of integers mod p.

32



with the identity 1 of the cubic ring mapping into the polarization E

f(1) = E =




2 β β̄
β̄ 2 β
β β̄ 2


 . (11.41)

The full image f(A) of the cubic ring is a Z-module parametrized by three integers (f, p, r)

f(A) =




(f + p+ r) (p− r + pβ) (f − r − rβ)
(p− r + pβ̄) (f + p+ r) (f + rβ)
(f − r − rβ̄) (f + rβ̄) (f + p+ r)


 . (11.42)

Defining a mapping tA from JL into the dual A∨ by requiring that tA(B) is the first
component in the decomposition JL ⊂ A∨ + L∨

c , one finds

Tr(tA(B)) = 〈1, tA(B)〉 = 〈E,B〉 = T (B) ∈ Z . (11.43)

This implies that the embedding f(A∨) of A∨ leads to matrices of the form (11.42) with
the (f, p, r) taking values in the rational numbers of the form Z/7 such that T (f(A)) =
(4f +2p+ r) takes integer values. The trace form of the square of a general element f(A)
is given by

T (f(A)2) = 10f 2 + 10fp+ 6p2 − 2fr − 8pr + 5r2 , (11.44)

which take on values 0, 3, 5, 6, · · · . The cubic norm of f(A) is

N (f(A)) = f 3 + p3 + r3 − 2p2r − pr2 − f 2(2p+ r)− f(p2 + pr + 2r2) (11.45)

The number of roots λ of the Niemeier lattice M is equal to twice the number of Jordan
roots S ∈ JL that satisfy

tA(S) = (1− n) ∈ A∨
+ , (11.46)

where n is any short vector in N with Tr(n) = 1 [28]. Conversely given a short vector
n ∈ N with Tr(n) = 1 and the corresponding totally positive element a = (1− n) in A∨

+,
one has

#{roots λ ∈M} = 6 ·#{Jordan roots S ∈ JL , with tA(S) = a} . (11.47)

Similar results hold for the lattices M ′ and N ′ with λ, n , a replaced by λ′, n′ , a′. Fur-
thermore, the above numbers can be calculated using the Hilbert modular form F (τ) of
weight (4, 4, 4) under SL(2, A) [28]. The space of such forms is two dimensional and can
be expanded in terms of the forms E4 and (E2)

2 where Ek here is the weight-(k, k, k)
Hilbert modular form whose Fourier expansions can be written in the form

Ek =
1

23
ζA(1− k) +

∑

a>0 ,a∈A∨



∑

c|(a)p2

(Nc)k−1


 qa , (11.48)

where ζA is the zeta function valued over the ideal class A.15 Substituting the values of

15For an ideal class A, its zeta function ζA(k) =
∑

c∈A,
c∈O(A)

(Nc)−k, where O(A) is the ring of integers over

A and N is the Q-norm.
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the zeta function for k = 2 and k = 4 [64, 28], one has

E2 = − 1

23 · 3 · 7 +
∑

a>0 ,a∈A∨




∑

c|(a)p2

(Nc)



 qa, and

E4 = − 79

24 · 3 · 5 · 7 +
∑

a>0 ,a∈A∨




∑

c|(a)p2

(Nc)3



 qa .

(11.49)

Under the action of Aut (A) there is a unique orbit of elements a > 0 in A∨ with
Tr(a) = 1. They are represented by the squares n2 of short vectors in N . Since the
relevant space of modular forms is spanned by (E2)

2 and E4 one finds that there exists
a unique modular form F (τ) with constant Fourier coefficient c(0) = 1 and c(n2) = 0
which is

F (τ) = 24 · 3 · 5 · 7E2(τ)
2 + 22 · 5E4(τ) . (11.50)

The corresponding form F (τ) coincides with the form given in (11.35) since it satisfies
the conditions c(0) = 1 and c(n2) = 0. Under the action of Aut (A) on elements a > 0 in
A∨ with Tr(a) = 2, it was found that (11.50) has five different orbits [28]. Two of these
orbits as given below correspond to the theta functions of Niemeier lattices. The Fourier
coefficients c(a) of F (τ ) on these orbits were given in [28, Table 1] which we reproduce
in Table 3. Therefore we can read off the Fourier coefficients c(a) for elements a with
Tr(a) = 2 :

c(a) = 240#{S = Jordan roots of JLwith tA(S) = a .} (11.51)

For the lattice N from the third row of Table 3 one can read off 6 · 28 = 168 roots and
for the lattice N ′ from the fourth row of Table 3, one reads off 6 · 0 = 0 roots. Thus the
corresponding Niemeier lattices are

N ≃ (A6)
4 (11.52)

N ′ = Leech lattice , (11.53)

which are unique Niemeier lattices with 168 roots and Coxeter number h = 7, and no
roots and Coxeter number h = 0, respectively. A table of theta functions of Niemeier
lattices can be found in Appendix A in Table 4. In the below table, p is the unique prime
in the ring of integers in the pth cyclotomic field.

a > 0 in A∨ ,Tr(a) = 2 (a) p2 c(a) of F (τ)
2 · n2 (2) 240 · 49
(1− n) p 240 · 28
(1− n′) 1 0
(1− n2) a prime of norm 13 240 · 196

(1− 2n+ n2) 1 0

Table 3: Orbits of Aut (A) on elements a > 0 in A∨ with Tr(a) = 2 and their Fourier
coefficients c(a) in F (τ)[28]
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11.2.2 Case D = 16

AlthoughD = 16 is not of the p2 type as studied in the previous subsection, it nevertheless
is an interesting case to study since it corresponds to the case where the two orbits that
give rise to Niemeier lattice theta functions coincide, i.e., there is only one Niemeier
lattice defined by the isotropic lines [28].
In this case, the embedding of a cubic ring in JL studied in [28] is the ring of triples of
integers (a, b, c) with a ≡ b ≡ c (mod 2) which has discriminant D = 16. This embedding
is also unique modulo the conjugacy by the automorphism group Aut (JL,N , E). A
particular embedding maps the triples (2, 0, 0), (0, 2, 0) and (0, 0, 2) into the rank one
elements S1, S2 and S3 in the polarization E:

f(2, 0, 0) = S1, f(0, 2, 0) = S2 , f(0, 0, 2) = S3 , (11.54)

such that they satisfy

S2
i = 2Si i, j = 1, 2, 3 (11.55)

SiSj = 0 i 6= j (11.56)

S1 + S2 + S3 = 2E . (11.57)

These rank 1 elements form a root triple. The group Aut (JL,N , E) = 3D4(3).3 of order
212 · 35 · 72 · 13 acts transitively on root triples. The subgroup that leaves invariant a
particular set of root triples is 22+3+6 ·7 ·3 which means that there are 14742 inequivalent
embeddings f : A→ JL.

For a particular embedding with Lc = A⊥, one has L∨
c /Lc ≃ A∨/A where A∨ is

the subgroup of ((1/2)Z)3 formed by triples (a, b, c) such that (a + b + c) ∈ Z . Hence
A∨/A ≃ (Z/4Z)2. The corresponding Niemeier lattice M between Lc and L∨

c turns out
to be isomorphic to root system of A24

1 with 48 roots vectors [28]. To establish this fact
Elkies and Gross, first determine the modular form F (τ) of weight (4, 4, 4) for SL(2, A).
For this cubic form the relevant modular form turns out to be of weight (4, 4, 4) with
respect to the congruence subgroup SL(2, A) = Γ(2)3 of SL(2,Z)3.

12 Modular Forms of Spectrum Generating Symme-

try E7(−25) and Quantum Degeneracies of Charge

States of BPS Black Holes of the 5d Octonionic

Magical Supergravity

The continuous U-duality groupG of any supergravity theory that arises as the low energy
effective theory of M-/superstring theory gets broken down to its discrete arithmetic
subgroup G(Z) by the stringy corrections [65]. Therefore, we shall assume that the
quantum completion of the octonionic magical supergravity lies within M-/superstring
theory framework or an extension thereof and its continuous U-duality group E6(−26) gets
broken down to its arithmetic subgroup E6(−26)(Z). The arithmetic subgroup E6(−26)(Z)
was first studied by Benedict Gross in [49].

The orbits of extremal black hole solutions of the octonionic magical supergravity
in 5d under the continuous U-duality group E6(−26) were studied earlier and has been
reviewed in previous sections. Here we will try to extend those results to the orbits under
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the discrete arithmetic subgroup of E6(−26). If the octonionic magical supergravity can be
obtained from a compactification of M-theory over a Calabi-Yau (CY) threefold then the
exceptional cone C can be identified with the Kähler cone of that CY manifold and the
Kähler moduli get identified with the scalar fields of the octonionic magical supergravity.
If we choose a basis JI of the 27 (1, 1) forms, the Kähler form J can be expanded as

J = hIJI , (12.1)

where hI are 27 functions of the 26 scalars of the octonionic magical supergravity that
satisfy16

CIJKh
IhJhK = 1 . (12.2)

Kähler moduli are given by the volumes of the 2-cycles ΩI of the CY manifold

hI =

∫

ΩI

J , (12.3)

and the intersection numbers CIJK are defined as

CIJK =

∫

V ol

JI ∧ JJ ∧ JK . (12.4)

The cohomology lattice of the CY threefold as well as the bare charge lattice of black
holes in 5d are lattices with integer valued coordinates. On the other hand, the lattice
JL defined over the Coxeter order of integral octonions involve integer as well as half-
integer coefficients. We will identify the lattice JL with the lattice of dressed charges
and hI as the vector that determines the polarization. Note that hI depends on the
scalar fields. If the bare charges are denoted as qI , then h

IqI corresponds to the central
charge as explained in section 6. Recall that the physical (dressed) graviphoton is given
by the linear combination hIAIµ, and in a given vacuum of the theory, the physical
graviphoton is given by 〈hI〉AIµ where 〈hI〉 is the VEV of hI . If we choose the identity
polarization 〈hI〉JI = I3 then the graviphoton is the bare graviphoton of the theory [1].
Under the action of the continuous U-duality group E6(−26), the identity polarization
can be mapped into any other polarization. However, as we previously explained, under
the action of the arithmetic subgroup E6(−26)(Z) we have two distinct orbits namely the
polarizations in the orbit of the identity polarization I3 and the polarizations that are
in the orbit of the indecomposable polarization E [49]. Physically what that means is
that at the quantum level we have two distinct families of vacua , separated possibly by
some sort of a phase transition, that are not connected by the arithmetic subgroup of the
continuous U-duality group of the classical theory. One could interpret the vacua in the
orbit of the identity polarization as the perturbative vacua since the vacuum with the bare
graviphoton belongs to it , and the family defined by the indecomposable polarization E
as the non-perturbative vacua.

12.1 Rank 1 BPS Black Holes

Black holes of supergravity described by rank one elements given in (6.26) of JO
3 have

vanishing entropy (area) and their orbits, which were called critical light-like, under the

16Here we are assumimg a definite value of the volume of the CY threefold which is associated with
the universal hypermultiplet which will not play any role in the dicussion of extremal black holes.
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continuous duality group is

E6(−26)

SO(9, 1)sT 16
.

In addition to rank one condition, they are uniquely labelled by the trace (linear) form
T (A). Only those rank one elements A with positive T (A) lie in the exceptional cone.
For quantum black holes described by rank one elements A of the exceptional Jordan
algebra over the integral octonions, T (A) takes on integral values. We interpret the
number of rank 1 elements with a given value of T (A) as the degeneracy of charge states
of critical light-like ( small) 1/2 BPS black holes with the ”quantum number” T (A). The
number N(n) of rank one elements A in the positive cone with T (A) = n (n ∈ N) in the
indecomposable polarization E as obtained by Elkies and Gross was given in (9.13)17.
For n = p prime it simplifies to

N(p) =
3 · 7 · 13
691

(
p11 − τ(p) + 1

)
.

For p = 2 corresponding to Jordan roots, we have N(2) = 819. The group 3D4(2)
acts transitively on the 819 Jordan roots and the stabilizer of a given Jordan root is
the subgroup 21+8

+ · L2(8). According to [28] the group 3D4(2) is also expected to act
transitively on the set of A ≥ 0 in JL with rank(A)=1 and T (A) = 3 and the stabilizer
is a maximal subgroup of 3D4(2) isomorphic to L2(2)× L2(8).

Degeneracies of charge states of critical light-like 1/2 BPS black holes with T (A) = n
with n ≥ 2 are given by the Fourier coefficients of the singular modular form of weight
4 over the exceptional domain. As was summarized in section 9 and reviewed further in
Appendix C, the singular modular form of weight 4 over the exceptional domain D as
studied in [29, 66] has the Fourier expansion

E4(Z) = 1 + 240
∑

T≥0, T∈JL,
rank(T )=1

σ3(c(T ))e
2πiTr(T◦IZ) , Z ∈ D (12.5)

where

σk(m) :=
∑

d∈N,d|m

dk , m ∈ N,

and

c(T ) = max(r ∈ N) such that
1

r
T ∈ JL .

Under the action of the arithmetic subgroup E6(−26)(Z), there are two orbits: one charac-
terized by the identity polarization I3 and the other orbit is characterized by the indecom-
posable polarization E. If we choose Z = τE# where τ is the complex coordinate in the
upper half-plane, then we obtain the modular form of weight 12 of SL(2,Z) discussed in
subsection 9.1. Since all rank one elements A in the polarization E have TE(A) > 1, the
resulting modular form of weight twelve of SL(2,Z) turns out to be the theta function of

17Since the rank one elements with T (A) = −n differ from those with T (A) = n by an overall sign
their countings coincide.
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the Leech lattice. Its Fourier expansion coefficients count the number of distinct critical
light-like BPS black holes with TE(A) = n with n > 1

N(n) =
3 · 7 · 13
691

(σ11(n)− τ(n)) .

If we choose Z = τI then the coefficients of the resulting modular form of SL(2,Z)
would count the number N(n) of distinct BPS black holes with TI(A) = n and n ≥ 1,
where N(n) is generated by the series

f(q) := 1 + 240
∑

r≥1

(σ11(r)− τ(r))qr = 1 +
∑

r≥1

N(r)qr .

Under the continuous U-duality group E6(−26) action on the exceptional Jordan al-
gebra, there is a single orbit corresponding to 1/2 BPS black holes with non-vanishing
entropy, namely E6(−26)/F4 with the compact automorphism group F4 acting as stabilizer.

Any element J of JO
3 can be brought to the diagonal form

J = λ1P1 + λ2P2 + λ3P3 , (12.6)

where Pi are the idempotents of rank one such that the identity polarization has the
decomposition

I = P1 + P2 + P3 .

For the exceptional Jordan algebra over the Coxeter’s order of integral octonions we have
two distinct polarizations, namely I and E, that belong to different orbits. If J belongs
to the orbit of the indecomposable polarization then the analog of the decomposition
(12.6) for the indecomposable polarization E is

J = µ1S1 + µ2S2 + µ3S3 , (12.7)

where Si are the Jordan roots such that

2E = S1 + S2 + S3 .

The Hilbert modular forms defined and studied by Elkies and Gross [28] are related to
this decomposition. When extended to the exceptional domain D the element J goes
over to

Z = τ1S1 + τ2S2 + τ3S3 (12.8)

When substituted into (12.5), one obtains the Hilbert modular form of weight (4, 4, 4) of
SL(2,Z)3. Modular form of weight 12 of SL(2,Z) corresponds to setting

τ = τ1 = τ2 = τ3 (12.9)

and restricting to a diagonal subgroup of SL(2,Z). For each embedding of cubic ring A
in JL, the rank 1 elements S decompose as (α + v) with α ∈ A and v ∈ Lc. When the
discriminant of the cubic ring is p2 with p prime, the charges of the critical light-like black
holes in the orthogonal complement of A take values in a Niemeier lattice and restriction
of the Z ∈ D to the subdomain τ ·S leads to the Hilbert modular forms studied by Elkies
and Gross [28] and reviewed in Appendix F and Appendix C. For the choice p = 7 the
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Niemeier lattices are the Leech lattice and the lattice A4
6 with 4 · 48 = 168 root vectors.

These two lattices coresponding to the two isotropic lines lead to different modular forms.
They are uniquely distinguished by the coefficient of the first order term which is given
by the number of root vectors. For the Leech lattice this coefficient is zero. This is true
in general for embeddings of cubic rings with discriminant D = p2 with p prime whose
two isotropic lines define two different Niemeier lattices. For the embedding of cubic ring
with D = 16 studied by Elkies and Gross and reviewed above the rank one black hole
charges lie on the Niemeier lattice A24

1 .

12.2 Rank 2 BPS Black Holes

Rank 2 black holes that were called light-like in [5] are characterized the conditions that
the element A of the Jordan algebra representing the charges has vanishing norm and,
hence, vanishing area :

N (A) = 0

and

A# 6= 0 .

They are characterized by trace ( linear) form T (A) and spur ( quadratic) form S(A) =
T (A#) following the definition of McCrimmon [67]. The rank 2 elements can be brought
to the form

Sij = λ(Pi + Pj) (i 6= j)

or to the form

Aij = λ(Pi − Pj)

under the action of E6(−26) [5, 6] as explained previously.
Sij satisfies

T (Sij) = 2λ , S(Sij) = 2λ2 (12.10)

and Aij satisfies
T (Aij) = 0 , S(Aij) = −2λ2 (12.11)

For λ > 0, Sij lie in the exceptional cone and describe 1/2 BPS black holes18. Their
orbits Sij are given by the coset space

E6(−26)

SO(9)sT 16
.

Over the integral octonions R rank two elements Sij of the exceptional Jordan algebra
in the exceptional cone can be written as a linear combination of two mutually orthogonal
rank one elements

Sij = Si + Sj (12.12)

with positive trace forms TE(Si) and TE(Sj). Then

18In this paper we will restrict ourselves to BPS black holes.
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TE(Sij) = TE(Si) + TE(Sj) , S(Sij) = T (S#
ij ) (12.13)

By squaring the exceptional singular modular form of weight 4, we get the exceptional
singular modular form of weight 8 [66] whose rank two terms in its Fourier expansion
involve such sums of two rank one elements in the exceptional cone. Rank two terms of
the form Aij = Si − Sj which correspond to charge states of non-BPS rank two extremal
black holes do not appear in the expansion of E2

4(Z).
19 Hence we expect the singular

modular form of weight 8 of E7(−25) to describe the quantum degeneracies of charge states
of rank 2 BPS black holes. In the formulation of Krieg [66], it takes the form

E8(Z) = E4(Z)
2 =

∑

T∈JL , T≥0

α(T ) e2πiTr(T◦IZ) , Z ∈ D, (12.14)

where

α(T ) =





1 if T = 0

480 · σ7(c(T )) if rank(T ) = 1

240 · 480 ·
∑

d∈N,d|c(T )

d7σ3(c(T
#/d2)) if rank(T ) = 2

0 if rank(T ) = 3

. (12.15)

The Fourier coefficients α(T ) in (12.14) and (12.15) are all rational integers. Coefficients
of rank 2 elements T with T# 6= 0 count the quantum degeneracies of charge states of
rank 2 BPS black holes.

Krieg’s derivation of these results used the Fourier-Jacobi expansion of E4(Z)[30] by
decomposing the coordinates Z of the exceptional domain over the integral octonions as

Z =

(
Z1 W
W † z3

)
(12.16)

where Z1 lies in the upper half plane of the Jordan algebra of 2 × 2 Hermitian matrices
over the integral octonions R , W is a (2 × 1) matrix over complex integral octonions
and z3 is a complex variable in the upper half-plane. We shall summarize this derivation
following [31]. The Fourier-Jacobi expansion of E4(Z) takes the form

E4(Z) = f4(Z1) +
∞∑

m=1

φm(Z1,W )e2πimz3 (12.17)

where f4(Z1) is a modular form of weight 4 on H2 and φm(Z1,W ) is a Jacobi form of
weight 4 and index m on H2 ×O2

C. The coefficient α(T ) is given by

α(

(
T1 0
0 0

)
) = 240



∑

d|ǫ(T1)

d3




if det(T1) 6= 0 and T1 6= 0. When we square the modular form E4(Z) the Fourier
coefficients β(T ) in its expansion

E2
4(Z) =

∑

T∈JL

β(T )e2πi(T,Z) (12.18)

19Rank two element with both TE(S1) and TE(S2) negative differ by an overall sign from those with
both of them positive and their quantum degeneracies will also be given by the Fourier coefficients of
E2

4(Z).

40



are of the form β(T ) = α(T1)α(T2) where α(Ti) are the Fourier coefficients of E4(Z)
and hence clearly vanish unless the rank of T = T1 + T2 is less than or equal to two.
Fourier-Jacobi expansion of E2

4(Z)

E2
4(Z) = g8(Z1) +

∞∑

m=1

ψm(Z1,W )e2πimz3 (12.19)

then follows from that of E4(Z) and one has[31]

g8(Z1) = [f4(Z1)]
2 =

∑

T1

b

(
T1 0
0 0

)
e2πi(T1,Z1) = lim

λ→∞
E2

4

((
Z1 0
0 iλ

))
(12.20)

where

b

([
T1 0
0 0

])
= #{h1, h2 ∈ R2 | h1h†1 + h2h

†
2 = T1} (12.21)

If T1 is of the form

(
n 0
0 0

)
where n ∈ N then

b

(
T1 0
0 0

)
= #{o1, o2 ∈ R |N(o1) +N(o2) = n} = 480

∑

d|n

d7 (12.22)

and when T1 =

[
n t
t̄ 1

]
then

b

(
T1 0
0 0

)
= #{o1, o2, o3 ∈ R |N(o3) = 1, N(o1) +N(o2) = n, o1ō3 = t}

= 240 · 480
∑

d|(n−N(t))

d3 (12.23)

where N(t) = tt̄.

12.3 Rank 3 Large BPS Black Holes

E4(Z) and E8(Z) = (E4(Z))
2 are the only two singular modular forms over the excep-

tional domain [66]. The Fourier coefficients of non-singular higher weight forms were
obtained by Kim and Yamauchi in [68, 69] based on work by Karel [70]. Using the nota-
tion of [68] and [66], the Fourier coefficients in full generality are given below. Consider
a weight k ∈ 4Z modular form over the exceptional domain with the Fourier expansion

F (Z)k, k≥12, k∈4Z =
∑

T≥0,T∈JL

αk(T )e
2πiTr(T◦IZ) . (12.24)

The Fourier coefficients αk(T ) above are detailed in Appendix C. We only quote the
main results here, and we refer the reader to the appendix for more details. For a higher
weight exceptional modular form, the Fourier coefficients are given by

αk(T ) =






1 if T = 0

− 2k
Bk

· σk−1(c(T )) if rank(T ) = 1
4k(k−4)
BkBk−4

·
∑

d∈N,d|c(T )

dk−1σk−5(c(T
#/d2)) if rank(T ) = 2

215 k
Bk

· k−4
Bk−4

· k−8
Bk−8

· det(T )(k−9)/2 ·
∏

p|det T

f p
T (p

(k−9)/2) if rank(T ) = 3

,

(12.25)
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where f p
T is a monic Laurent polynomial that depends only on T and p, and mostly

evaluates to unity [69, 68].
Rank 3 extremal black holes exhibit attractor phenomena and their analysis is more

subtle. For rank three elements T , the entropy (area) of the large extremal black hole
is given by the squareroot of the cubic form det(T ).20 A rank 3 element of the Jordan
algebra element J can be written as a linear combination of the three rank one elements.
Over the reals R every element of the exceptional Jordan algebra with non-zero cubic
form can be brought to a diagonal form under the action of the compact automorphism
group F4 of the exceptional Jordan algebra. Over the integral octonions of Coxeter, not
all the elements can be brought to a diagonal form by the action of a finite subgroup of
the compact group F4. This is due to the fact that the arithmetic group E6(−26)(Z) does
not act transitively on positive polarizations E in the exceptional cone with det(E) = 1.
It has two distinct orbits. One is the identity polarization I = I3 which corresponds to the
perturbative vacuum of the theory and the other one is the indecomposable polarization E
that corresponds to the non-perturbative vacuum of the octonionic magical supergravity
at the quantum level. The little group of the identity polarization I = I3 is 2

2 ·O+
8 (2) ·S3,

whereas the little group of the indecomposable polarization E is the finite group 3D4(2)·3.
We should stress that in this paper we are interested in the quantum degeneracies of
charge states of BPS black holes whose charges lie in the positive cone of the exceptional
Jordan algebra. The charge states of large extremal non-BPS black holes do not lie in
the exceptional cone. The little groups of rank two and rank 3 elements corresponding
to non-BPS extremal black holes are non-compact discrete subgroups of E6(−26)(Z) .

By squaring the singular modular form E4(Z) one obtains a singular modular form
E8(Z) whose Fourier coefficients give the degeneracies of rank two BPS black holes.
Taking higher powers of E4(Z) does not lead to any new singular modular forms.

When taking the third power of E4(Z) we will get three different types of terms. First
terms of the form

∑

T≥0,T∈JL

αk(T )e
2πiTr(T◦IZ) (12.26)

that are relevant for charge states of rank 1 BPS black holes, while terms of the form
∑

T>0,T∈JL

αk(T )e
2πiTr(T◦IZ)

∑

S>0,S∈JL

αk(S)e
2πiTr(S◦IZ) (12.27)

are relevant to the degeneracies of charge states of rank 2 BPS black holes, and terms of
the form

∑

T>0,T∈JL

αk(T )e
2πiTr(T◦IZ)

∑

S>0,S∈JL

αk(S)e
2πiTr(S◦IZ)

∑

U>0,U∈JL

αk(U)e
2πiTr(U◦IZ) (12.28)

are relevant to the degeneracies of charge states of rank 3 BPS black holes. The Fourier
coefficients of terms of the form

αk(S)αk(T )αk(U)e
2πiTr(T◦IZ)e2πiTr(U◦IZ)e2πiTr(S◦IZ) = αk(S)αk(T )αk(U)e

2πiTr((S+T+U)◦IZ)

for S, T, U all distinct describe the degeneracies of charge states of rank 3 BPS black holes
since the cubic norm of (S + T + U) is non-vanishing for such terms. Furthermore sums

20We should note that the trilinear form in Kim and Yamauchi [68] given by the determinental form
differs by a factor six from the one used by Elkies and Gross. In particular det(J) = (J, J, J)KY =
1
6 (J, J, J)EG.
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of rank one elements in the exceptional cone lie in the exceptional cone and are relevant
for BPS black holes.

Higher powers En
4 (Z) for n > 2 also contain terms of the forms (Tr

∑n
i Ti) · Z which

describe rank 3 as well as rank 2 and rank 1 elements in the exceptional cone. A rank
3 element with a given cubic norm can occur in En

4 (Z) for different values of n. Unlike
the rank 1 and 2 cases norms of rank 3 elements are not invariant under discrete special
conformal transformations. To our knowledge the relationship between higher powers of
E4(Z) and the higher weight k modular forms or cusp forms of [70, 68, 69] have not yet
been studied by mathematicians.

At this point we should stress the difference between our definition of quantum degen-
eracy of a given charge state represented by an element of the exceptional Jordan algebra
over integral octonions and the degeneracy of microstates that underlie extremal black
holes solutions in string theory. For spherically symmetric large 5d extremal black holes
in string theory the microscopic degeneracy dmicro is related to the entropy Sstring in the
limit of large charges via a formula of the form

Sstring = ln (dmicro) = N3(Qi) (12.29)

where N3(Qi) is the cubic norm determined by the charges. This shows that the micro-
scopic degeneracy dmicro grows exponentially as a function of the cubic norm defined by
the charges. In our case quantum degeneracy of a rank 3 BPS black hole charge state J
depends not only on the cubic norm but also on the quadratic spur form as well as the
linear trace form. This is a purely number theoretic calculation as in the case of rank
one and rank two black holes. The only physical assumption we are making is that the
quantum completion of the octonionic magical supergravity breaks the U-duality group
to its maximal arithmetic subgroup and the charges take values in the lattice defined by
the exceptional Jordan algebra over the integral octonions. The BPS condition restricts
the charge states to lie in the exceptional cone. What makes the analysis of rank three
BPS black holes harder is the non-uniqueness of non-singular modular forms in contrast
to unique singular modular forms describing the degeneracies of rank one and rank two
BPS black holes.

From the physics point of view rank 3 BPS black holes are distinguished by the fact
that they exhibit attractor phenomena. We shall leave the investigation of quantum
degeneracies of charge states of large rank three BPS black holes to future investigations.

13 The Geometric Embedding of Octonionic Magical

Supergravity

Consider D, a bounded symmetric domain. It was shown by Deligne in [71] that D is the
moduli space of Hodge structures (canonical). Consider a simply-connected, simple real
algebraic group G which has a transitive action on D and let K be its maximally compact
subgroup such that D = G/K. The tube domain is then classified by pairs (D, v) where
D is a connected Dynkin diagram and v is a special vertex of D. For the case that we
considere here, D is a tube domain [48]. We are interested in the case where the group
E7 acts transitively on D. In this case, we have G = E7(−25) ≡ E7,3, K = U(1)×E6. The
positive cone is the exceptional cone C defined over the exceptional Jordan algebra. This

gives us D =
E7,3

E6 × U(1)
with rank(D) = 3, dim(D) = 27. The vertex v then determines a
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fundamental irreducible representation of E7,3 over R, which is in fact just the 56 dimen-
sional unique miniscule representation of E7,3, which we denote as V . This fundamental
representation gives rise to the canonical variation of Hodge structures on D, in the sense
of Deligne [71]. While we omit the details here, the variation of real Hodge structure V
can be obtained as the tensor product of the unique miniscule representation of E7,3 with
an equivariant holomorphic vector bundle on D. The Hodge structures here are all of
weight 3. Now, given any tube domain D, we may ask if and how the variation of Hodge
structures V arises geometrically. This requires the existence of a reduction of the pair
(E7,3, V ) onto the field Q from R. Generically, the reduction of the variation of Hodge
structure might arise from a sub-Hodge structure on a dimension 3 projective primitive
cohomology [48]. For the case of when G = Spin(2, 10), the positive cone associated to
the domain is defined over JO

2 . Note that the octonions have a unique reduction to Q. In
this case, the descent of the Hodge structure is of type (1, 10, 1) and can be realized as
the pull back of a suitable sub-Hodge structure of polarized K3 surfaces with an Enriques
involution.
If one expects to realize the variation of Hodge structures from geometry, one there-
fore needs an analogous setup for the case when G = E7,3. In the case of the E7

tube domain, there are no variations of Hodge structure of abelian variety type [72],
which makes the problem more intricate. The Hodge numbers of the descent onto Q
in this case are expected to be (1, 27, 27, 1). If there is a Calabi-Yau threefold that
satisfies these criteria, the Hodge numbers ensure consistency with the physical require-
ments with respect to the number of vector-multiplets and the hyper-multiplets of the
dimensionally reduced octonionic magical supergravity. However, it is unlikely due to
mirror symmetry that the descent of the variation of Hodge structure onto Q is the
pullback of the entire cohomology of a smooth complex projective variety. Since the
Hodge structures do not admit Picard-Lefschetz degenerations, it excludes most com-
plete intersection Calabi-Yau manifolds (CICYs) in weighted projective spaces. In fact,
such a Calabi-Yau does not exist in the current database of CICY threefolds available at
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/cicylist/.

One may also approach this question from a more bottom up approach where the Lie
algebras associated to projective varieties are analyzed. This was done by Looijenga and
Lunts in [73], where it was demonstrated that classical Jordan algebras arise geometri-
cally and that the E7 algebra that we have discussed thus far arise topologically. This
happens if there exists a 27 dimensional K−vector space (where K is a field of charac-
teristic zero) endowed with a cubic form c : W 3 → K that does not factor through the
proper linear quotient of W such that the cubic form only takes even integral values. If
these conditions are satisfied, then there exists a closed oriented 6-manifold for which the
integral cohomology ring is isomorphic to the integral algebra associated to the the vector
space and the integral structure endowed on it [74, 75]. This question is posed in [48],
[27] and [73] in various avatars. We reiterate the question in a more unified manner here.
Is there a (Calabi-Yau) threefold with a Picard group of rank 27 whose Néron-Severi21

group contains the Leech lattice, and whose Lie algebra is the E7 Lie algebra?
If octonionic magical supergravity can be embedded canonically in M-theory (and F-
theory) by a(n) (elliptically fibered) Calabi-Yau threefold, it must have Hodge numbers

21The Néron-Severi group of a CY manifold is the group of divisors of the CY manifold modulo
algebraic equivalence. It is an Abelian group (and hence often referred to as a lattice). The rank of the
Néron-Severi group is the Picard rank or number.
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h11 = h21 = 27 and its Néron-Severi lattice must be defined in terms of the exceptional
Jordan algebra such that it admits the action of the E7 group. The ample cone22 [76] cor-
responds then to the positive cone of the Jordan algebra. Furthermore, the intersection
polynomial of this threefold is the cubic norm (4.7), following the discussion in section 5.
It is important to note that although there are physical reasons to search for a Calabi-
Yau threefold with elliptic fibration (the reason here being that there is also an F-theory
embedding of the model), there is no requirement a-priori that the threefold required
has to be Calabi-Yau. The possibility of the case where the manifold does not satisfy
the Calabi-Yau conditions might have some important implications in string theory, the
starkest one being that there might be an(other) additional phase(s) of M-theory that
describes the quantum completion of octonionic magical supergravity.

13.1 Search for Candidate Calabi–Yau Threefolds

As was explained in section 5 magical supergravity theories were discovered before the
so-called first string revolution. Whether the octonionic magical supergravity can be ob-
tained from M/superstring theory by compactification on some exceptional Calabi-Yau
manifold was posed as an open problem in [4] shortly thereafter. Since the quaternionic
magical supergravity without any hypermultiplets can be obtained from superstring the-
ory suggests that it might be possible to obtain the octonionic magical supergravity
without hyper multiplets from M/superstring theory on some rigid Calabi-Yau manifold.
However to this date no such rigid Calabi-Yau manifold has been found. The focus even-
tually shifted to look for a self-mirror Calabi-Yau manifold with h11 = h12 = 27 after it
was realized that there exists an anomaly free supergravity theory in six dimensions that
reduce to the octonionic magical supergravity theory coupled to 28 hypermultiplets with
the target space E8(−24)/E7 × SU(2) in five and four dimensions.

To search for Calabi-Yau threefolds with h11 = h21 = 27 such that they have intersec-
tion numbers given by the cubic norm (4.7) of the exceptional Jordan algebra that defines
the octonionic magical supergravity we detail certain ‘experimental’ approaches. The two
most plausible approaches are the Borcea–Voisin threefolds which have been completely
classified, and those Calabi-Yau manifolds that are realizable as hypersurfaces in a toric
variety.

13.1.1 Ruling out Borcea–Voisin Threefolds

The Borcea–Voisin (BV) threefolds are one of the best known examples of mirror pairs of
Calabi–Yau threefolds that are constructed by acting with an involution on the product
of a K3 surface and an elliptic curve [77, 78, 79]. These manifolds have also been studied
in the context of F-theory compactification [80, 81].

BV manifolds are a class of elliptically fibered threefolds with base K3/σ, where σ is
an anti-holomorphic involution on K3 that flips the sign of the holomorphic 2−form as

22For any projective variety X with an inclusion, a line bundle is very ample if it can be obtained
by the pulling back the natural line bundle on X via a closed immersion. A line bundle ℓ is said to be
ample if ∃ n ∈ Z+ such that ℓ ⊗ · · · ⊗ ℓ︸ ︷︷ ︸

n times

is very ample. The ample cone is then simply the convex cone

in H
2(X ;Q) generated by c1(ℓ). The case in question here is when X is a CY variety whose ample cone

is the positive cone of the Jordan algebra.
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σ : ω2,0 → −ω2,0. From this involution, one may construct a CY threefold as

CY3 ∼=
K3× T 2

σ × σ̂
(13.1)

where the involution σ̂ acts on the torus coordinate T as σ̂ : T → −T and the holomorphic
3−form of the threefold is given by ω3,0 = ω2,0 ∧ dT . Such BV Calabi-Yau threefolds are
determined by three integers (r, a, δ), where δ = 1, 2 represents the canonical class parity,
r ∈ [1, 20] is the rank of the sublattice of H2(K3,Z) that is invariant under the involution
σ, and a ∈ [1, 11] is the rank of the Néron-Severi group of K3/σ [82]. Thus, given a
triple (r, a, δ), one may determine the Hodge numbers of the Calabi-Yau threefolds in a
straightforward manner:

h11(K3/σ) = r; h11(K3× T 2/σ′) = 3r − 2a+ 5; h21 = 65− 3r − 2a. (13.2)

One may also construct mirror pairs of threefolds as

(r, a, δ)
Mirror−−−→ (20− r, a, δ). (13.3)

Since we are interested in models with h11 = h21 = 27 for the threefold K3 × T 2/σ′, we
have (r, a) = (10, 4).

Motivated by the above considerations, Bianchi and Ferrara reconsidered the string
derivation of FHSV model [26] and investigated whether the octonionic magical super-
gravity might also admit a string interpretation along the lines of Enriques model on a
particular self-mirror Calabi-Yau of Borcea–Voisin type [83]. However, it was argued in
[83] that this particular Calabi–Yau threefold cannot realize the octonionic magical su-
pergravity theory since in the six dimensional reduction of this theory one of the SO(8)
(out of the rank 16 SO(8)4) can be broken by the adjoint hypers. In the four dimensional
reduction, a restoration of symmetry amongst the 16 Cartan generators is not likely, de-
spite the theory having the required number of vector- and hyper-multiplets [83]. Here
we also stress on another compelling reason why BV threefolds cannot realize octonionic
magical supergravity that was not mentioned in [83]. The moduli spaces of variation of
Hodge structures of BV threefolds have a direct product form [78] as in generic Jordan
families like the FHSV model [26] and hence cannot include the moduli space of octonionic
magical supergravity [76]. The Néron-Severi group of the FHSV model is given by the
reducible Jordan algebra JO

2 ⊕R whose conformal group is SO(10, 2)×SU(1, 1) ⊂ E7(−25).

13.1.2 CY Threefolds as Hypersurfaces in Toric Varieties

Since the (r = 10, a = 4) BV threefold, despite yielding the right Hodge numbers and mat-
ter content, does not respect the symmetry of the Cartan subgroup, we consider turning
to determining the threefold that results in octonionic magical supergravity using more
brute force techniques. By this, we mean searching for threefolds that are hypersurfaces
in toric varieties. For a review of how this construction works, we refer the reader to
[84]. The construction realized by Kreuzer–Skarke [85, 86] makes use of an important
condition for a hypersurface in a toric variety to be Calabi-Yau viz., the lattice polytope
is reflexive [87]. Inequivalent reflexive polyhedra yield different Calabi-Yau manifolds.
Classification of inequivalent polytopes is therefore a necessary problem and is a problem
in combinatorics. This has been done in the Kreuzer-Skarke (KS) database aka PALP [88].

46



However it is not clear from the work of KS as to how many distinct Calabi–Yau man-
ifolds actually emerge from this. This is due to the fact that different triangulations of
simplices of a given polytope can in principle give rise to different Calabi-Yau manifolds.
This means that there are quite likely more Calabi-Yau manifolds than there are reflex-
ive polytopes. The Kreuzer-Skarke database (KSD) is a construction and classification
of all reflexive polytopes for dimension D ≥ 4. In D = 4, there are 473,800,776 reflexive
polytopes.

We focus our attention to the case of h11 = h21 = 27. These Hodge numbers represent
the case where there are a maximal number of reflexive polyhedra in four dimensional
toric varieties [89].

To ascertain the correct Calabi-Yau threefold, we start with a reflexive polyhedron in
D = 4. For this reflexive polyhedron, we then obtain all possible FRS triangulations and
compute the Mori cone and the Stanley-Reisner ideal. We can then compute the triple
intersection polynomial for all the distinct Calabi-Yau manifolds that can be obtained
from inequivalent triangulations (flops) and compare with (4.7). PALP performs triangu-
lations on polytopes corresponding to small Hodge numbers. A more extended catalogue
of Calabi-Yau threefolds with computations up to and including h11 = 7 has been done in
[84] and [90].23 However, it is difficult to extend the computation of distinct intersection
numbers to much beyond this due to the rapid growth of number of polytopes and their
triangulations, and increased CPU usage in computing the Gröbner basis [91].

The first bottle neck here lies in triangulating these polyhedra and computing the topo-
logical quantities in the same way as [84]. The number of vertices of the Newton polytope
and its dual scale with h11 i.e. all Calabi–Yau threefolds that are constructed from trian-
gulations of hypersurfaces in toric varieties have convex reflexive Newton polytopes whose
number of vertices and faces increase with increasing h11. The number of triangulations
for a higher dimensional convex polytope of n points is the (n−2)th Catalan number [92]
as

Cn =
1

n− 1

(
2n− 4
n− 2

)
. (13.4)

However, we stress here that this is only a coarse argument for lower estimate for the
number of triangulations since the dependence of polytope parameters has only been
observed with respect to h11 and its precise scaling with respect to h22 is unknown. For
example, in considering h11 = 7, the number of points is still reasonable (13 for the
polytope and 12 for the dual polytope). This gives us O(105) triangulations. For the
case of h11 = 27, the number is factorially much larger. A search would have to run
through all triangulation configurations for all possible toric threefold constructions with
h11 = 27, h21 = 27. In the space of toric threefolds, there is a sharp peak in the number of
threefolds for precisely these Hodge numbers, with 910,113 Calabi-Yau threefolds [89].24

If the octonionic magical supergravity threefold coupled to 28 hypermultiplets can indeed

23We thank Andreas Schachner for informing of the reference [90].
24Instead of using TOPCOM https://www.wm.uni-bayreuth.de/de/team/rambau_joerg/TOPCOM/index.html

to triangulate the convex polytopes, one could employ parallelization techniques based on
https://polymake.org/doku.php/mptopcom i.e., modified TOPCOM algorithms (Called MP-
TOPCOM). However, the space of h11 = h21 = 27 threefolds is still quite extensive.
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be obtained from a self-mirror Calabi-Yau manifold that is an hypersurface in a toric
variety, we expect the exact search to be a numerically and computationally challenging
task. A possible avenue is to pursue this problem as one on the interface of computational
complex geometry and machine learning as in [93, 94, 91, 95]. However, due to the
mathematical relevance of the problem, it is our hope that there exist symmetry based
arguments as of yet unclear to us regarding the existence of a Calabi–Yau threefold
satisfying all the physical and mathematical requirements.25

14 Discussions & Conclusions

A summary of our main results was given in the introduction (Section 1). In this section,
we would like to point out how our work can be further developed and extended in various
directions.

The most pertinent extension is the precise determination of the Fourier coefficients
of different rank elements of the exceptional Jordan algebra over integral octonions that
lie in the exceptional cone in the decomposition of higher powers En

4 (n ≥ 3). These
decompositions can then be used to determine the quantum degeneracies of charge states
of rank three (large) BPS black holes.

Secondly, the other magical supergravity theories can be obtained from the octonionic
magical supergravity theory by truncation. Their spectrum generating conformal sym-
metry groups are SO∗(12), SU(3, 3) and Sp(6,R). By restricting the conformal group
E7(−25) to these subgroups one can obtain the corresponding results for the other magical
supergravity theories.

Another obvious question is if and how our work can be extended to rotating black
holes and black rings in five dimensional MESGTs and their relation to 4d/5d uplifts.
A well studied example of the 4d/5d uplift is for the case of N = 4 compactification of
string theory. Extending our results to the quantum degeneracies of N = 4 supergravity
theories in 5d whose underlying Jordan algebras are not Euclidean will be an important
exercise which is currently being investigated [96].

As explained in the introduction (Section 1), quasiconformal groups associated with
Jordan algebras of degree three were proposed as spectrum generating symmetry groups
of 4d supergravity theories. For the octonionic magical supergravity this group is E8(−24)

which acts nonlinearly on a 57 dimensional space coordinatized by the Freudenthal triple
system associated with JO

3 extended by a singlet coordinate. Extension of our work to
the spectra of 4d octonionic magical supergravity requires the extension of the nonlinear
conformal action of E7(−25)(Z) on the exceptional Jordan algebra over the integral oc-
tonions to the nonlinear action of E8(−24)(Z) on the 57 dimensional space coordinatized
by the exceptional Freudental triple system over integral octonions extended by Z which
will be the subject of a separate study [97].

Another direction along which our work can be extended is to maximal supergravity
in 5d whose U-duality group is E6(6) and its spectrum generating conformal group is E7(7).

25Following the appearance of first version of this paper on the arXiv, there has been some remarkable
advancements in the computational study of triangulations and constructions of toric CY manifolds by
the authors of CYTools (https://cy.tools/) [95]. It is therefore work left for the immediate future to
exploit these tools to make more concrete statements regarding the existence of the relevant CY mani-
fold discussed in this section. Furthermore, one of the authors (AK) thanks Liam McAllister, Richard
Nally, Andreas Schachner, Jakob Moritz and Naomi Gendler for extensive discussions and explanations
regarding the CYTools software, as well as hospitality in Cornell.
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In this case, the exceptional Jordan algebra over the real octonions is replaced by the
exceptional Jordan algebra over the split octonions which is not Euclidean[5, 11, 98].

There is a sharp peak in the number of self-mirror Calabi-Yau manifolds with h11 =
h21 = 27, many of which are elliptically fibered. It is also known that there is only one
anomaly free 6d supergravity theory that reduces to the octonionic magical supergravity
in five dimensions. What, if any, are the other anomaly free supergravity theories in 6d
that descend from F-theory on these self-mirror CY manifolds? Does the peak of the
number of CY manifolds at h11 = h21 = 27 correspond to something physical in terms of
a large family of anomaly free theories that descend from F/M/string theory?
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A Theta Functions of Niemeier Lattices

The theta function of degree 1 of a Niemeier lattice is given by the expression

θ(τ) = E4(τ)
3 + (24h− 720)∆ , (A.1)

where h is the Coxeter number of the Niemeier lattice. From this we can write down the
q−series of the theta function (where q := e2πiτ ) as in the Table 4. The n−th coefficient
in q−series of the theta function of a lattice defines how many vectors of norm 2n there
are in the lattice. For example, consider the case of the Leech lattice whose q1 coefficient
is 0, implying that there are no vectors of norm 2 i.e., no roots in the Leech lattice.

B Theta function of integral octonions R of Coxeter

Let Tr and N denote integral valued trace and quadratic norm form of integral octonions
R defined as

Tr(t) = t+ t̄ , N (t) = t t̄ , ∀ t ∈ R (B.1)
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For z ∈ H the theta series for integral octonions R is defined as [31, 30]

θ(z) =
∑

t∈R

e2π iN (t)z (B.2)

This theta function is a modular form of weight 4 and can be expressed as a normalized
Eisenstein series

θ(z) = E4(z) = 1 + 240
∞∑

n=1




∑

d|n

d3



 e2πinz (B.3)

where the factor (240
∑

d|n d
3) counts the number of solutions to the equation

N (t) = n , t ∈ R (B.4)

C Modular Forms on the 27 Dimensional Exceptional

Domain and Theta Functions

Following the pioneering work of Baily Jr. on the the exceptional arithmetic subgroup
of E7(−25) and its Eisentein series [40], Resnikoff showed that the non-constant singular
modular forms defined over the exceptional domain given by the exceptional Jordan
algebra are exactly of weight 4 and 8 [99]. They were first obtained by Kim by analytic
continuation of non-holomorphic Eisenstein series [29]. The exceptional tube domain D
is simply the “upper half-plane” of the exceptional Jordan algebra JO

3 :

D = {Z = X + iY ;X, Y ∈ JO
3 withY > 0} . (C.1)

An exceptional modular form of weight k of E7(−25)(Z) on D is a holomorphic function
F (Z) that satisfies the conditions:

(i)
F (Z +B) = F (Z) ∀ B ∈ L (C.2)

(ii)
F (gZ) = F (Z) ∀ g ∈ E6(−26)(Z) (C.3)

(iii)
F (−Z−1) = (N (Z))kF (Z) , (C.4)

where

Z−1 =
Z#

I

(N (Z))
. (C.5)

Such modular forms have absolutely convergent Fourier expansions of the form

F (Z) =
∑

T∈L, T≥0

a(T )e2πi(T,Z) , (C.6)

and they are called singular if a(T ) = 0 for all T > 0.
The classical theta series associated with the complex upper half-plane

θ(z, u) =
∑

n∈Z

e(πi·zn
2+2πi·nu) (C.7)
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where z ∈ H and u ∈ C has been generalized to theta series associated with the upper
half-planes of all formally real Jordan algebras [99, 100] that do not have the exceptional
Jordan algebra as a direct summand. Further generalizations of classical theta series
were discussed recently and it was shown that the exceptional tube domain does not
admit a theta function [101]. The case of the singular modular forms studied by Kim
[29] cannot be identified with the theta series associated with the exceptional Jordan
algebra. However, it has been noted that the singular modular forms of Kim [29] can be
obtained from theta series on the 10−dimensional boundary component identified with
the Jordan algebra of the 2×2 Hermitian matrices over O [66]. A simpler construction of
the singular modular forms of Kim was obtained by Krieg [66] using the theta series on
the upper half-plane of the Jordan algebra of Hermitian 2× 2 matrices over the integral
octonions R of Coxeter which he refers to as the Cayley half-plane of degree two. The
modular forms in question arise from the theta series on the Cayley half-plane of degree
two via the use of Fourier-Jacobi expansion.

As was summarized in section 9 the singular modular form of degree 4 over the
exceptional domain D has the Fourier expansion

E4(Z) = 1 + 240
∑

T≥0, T∈ JL ; rank(T )=1

σ3(c(T ))e
2πiTr(T◦IZ) , Z ∈ D ,

where

σk(m) :=
∑

d∈N,d|m

dk , m ∈ N,

and

c(T ) = max(r ∈ N) such that
1

r
T ∈ JL .

Squaring the modular form of weight 4 leads to the singular modular form of weight 8.
In the formulation of Krieg it takes the form [66]

E8(Z) = E4(Z)
2 =

∑

T∈JL , T≥0

α(T ) e2πiTr(T◦IZ) , Z ∈ D , (C.8)

where

α(T ) =






1 if T = 0

480 · σ7(c(T )) if rank(T ) = 1

240 · 480 ·
∑

d∈N,d|c(T )

d7σ3(c(T
#/d2)) if rank(T ) = 2

0 if rank(T ) = 3

.

E4(Z) and E8(Z) are the only singular modular forms on the exceptional domain [66].
The general computation of the Fourier coefficients of higher modular forms was given
in [68, 69]. Using the notation of [68] and [66], the Fourier coefficients in full generality
are given as below. Consider a weight k ∈ 4Z modular form over the exceptional domain
with the Fourier expansion

F (Z)k =
∑

T≥0,T∈JL

αk(T )e
2πiTr(T◦IZ) . (C.9)
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The Fourier coefficients αk(T ) above are

αk(T ) =





1 if T = 0

− 2k
Bk

· σk−1(c(T )) if rank(T ) = 1
4k(k−4)
BkBk−4

·
∑

d∈N,d|c(T )

dk−1σk−5(c(T
#/d2)) if rank(T ) = 2

215 k
Bk

· k−4
Bk−4

· k−8
Bk−8

· det(T )(k−9)/2 ·
∏

p|det T

f p
T (p

k−9

2 ) if rank(T ) = 3

, (C.10)

where f p
T above is a monic Laurent polynomial of degree d = ordp(det(T )) such that the

polynomial satisfies the functional equation f p
T (X) = f p

T (X
−1), andBk is the k

th−Bernoulli
number. These polynomials depend only on T and p and are mostly identically equal to 1
except for a finite few cases of p. Following [68], the modular form F̃ (Z)k = Ξk ×F (Z)k,

where Ξk is the numerator of
(∏rank(T )−1

n=0 Bk−4n

)
, has coefficients valued in Z. As can be

seen, for the case of weight 4, the rank 2 and 3 coefficients are zero, while for the case of
weight 8, the rank 3 coefficients are zero.

D Discrete subgroups of exceptional groups.

The groups defined over the integers Z were studied by Gross[49]. In this appendix we will
summarize some of these discrete groups relevant to our work. The automorphism group
Aut (R) of integral octonions is a certain form of the exceptional group G2 . This group
is finite since it describes a compact group over the reals R. It is of order 26 · 33 · 7 and
is denoted as G2(2) [58]. The order of integral octonions R is invariant under octonion
conjugation and the trace form Tr(x) := x + x̄ takes on integer values over it. The
symmetric bilinear 〈x, y〉 defined as

〈x, y〉 := Tr(x̄y) x, y ∈ R

is even, positive-definite and has determinant 1. Hence, it defines a unimodular latticeM
over R which is isomorphic to the E8 root lattice. The sublattice M0 orthogonal to the
identity 1 is isomorphic to the E7 root lattice and has determinant 2[49]. Aut (R) (Z)
has a seven dimensional representation on M0 with determinant 2. It also leaves the
trilinear form defined as

Tr(xyz) = Tr(x(yz)) = Tr((xy)z) x, y, z ∈ R

invariant. On the sublattice M0 this form is completely antisymmetric.
The arithmetic subgroup of E6(−26)(Z) of the U-duality group of octonionic magical

supergravity in five dimensions is defined as the group of transformations acting on the
exceptional Jordan algebra JO

3 defined over the Coxeter order of integral octonions R that
leave the cubic norm invariant. It has two inequivalent 27 dimensional representations
one acting on JO

3 and another one on its dual JO∨

3 .
Groups of type F4 over the integers Z can be obtained as subgroups of E6(−26)(Z) as

invariance groups of elements E with unit norm. If one chooses

E = E0 =




0 0 −1
0 −1 0
−1 0 0


 ,
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its invariance group is F4(−20)(Z). On the other hand if one chooses E to be positive
definite the invariance group is finite over Z since the corresponding group over R is
compact real form of F4. For example if E is the 3 × 3 identity matrix I3 its invariance
group over Z has order 215 · 36 · 52 · 7 and is isomorphic to the finite group 22 ·O+

8 (2) · S3

in the notation of [58]. The corresponding lattice JL0 of rank 26 and determinant 3 is
the root lattice

JL0
∼= E8 ⊕E8 ⊕ E8 ⊕ A2 (D.1)

which has 726 root vectors v satisfying 〈v, v〉 = 2. The corresponding dual lattice is

JL∨
0
∼= E8 ⊕E8 ⊕ E8 ⊕ A∨

2 (D.2)

which has 6 short vectors 〈v, v〉 = 2/3.
The invariance group of the polarization E = E2 = J(2, 2, 2;−β̄,−1, β̄) has order

212 · 35 · 72 · 13 and is isomorphic to the group 3D4(2) · 3 [49]. The corresponding lattice
JL0 does not have any roots and has 117936 short vectors that satisfy 〈v, v〉 = 4. It
is the unique even lattice of rank 26 and determinant 3 with no roots as was shown
independently by Borcherds [102] and Elkies [103].

E Commutative Subrings of the Exceptional Jordan

Algebra

Gross and Gan studied the commutative subrings of integral exceptional Jordan algebra
as well as its subalgebra JO

2 (R) generated by 2× 2 Hermitian matrices over the integral
octonions R [62]. To this end they first determine the number N(A,R) of different
ways the ring A of integers in an imaginary quadratic field K of discriminant D can be
embedded into the Coxeter’s ring R of integral octonions. They prove that it is given by

N(A,R) =
L(ǫA,−2)

ζ(−5)
= −252 · L(ǫA,−2) , (E.1)

where
ǫA : (Z/DZ)× −→ 〈±1〉 (E.2)

is the odd quadratic Dirichlet character associated with K.
The 2× 2 Hermitian matrices of the form

X =

(
a x
x̄ b

)
, (E.3)

where a, b ∈ Z and x ∈ R form a Jordan algebra under the product

X ◦ Y =
1

2
(XY + Y X) . (E.4)

Under addition, such matrices form an Abelian group of rank 10 which we shall label as
JL2. The determinant

det(X) = ab−N(x) (E.5)

defines a quadratic form of signature (1, 9) and discriminant −1.
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If A is the ring of integral elements in a quadratic algebra K with discriminant D
then the number of ways it can be embedded in J2 is given by the formula

N(A, J2) =
L(ǫA,−3)

ζ(−7)
= 240 · L(ǫA,−3) (E.6)

where
ǫA : (Z/DZ)× −→ 〈±1〉 (E.7)

is the even quadratic character of K and L(ǫA,−3) is the Dirichlet L−function [62].
Most interestingly from our point of view, Gross and Gan study the embedding of

the ring of integral elements in an étale cubic algebra K over Q with discriminant D into
the JL considered as an Abelian group generated by 3 × 3 Hermitian matrices over the
integral octonions R. In this case A is either Z3 when D = 1 , Z

⊕
B where B is the

ring of integers in a quadratic field or A is the ring of integers in a totally real cubic
field. They denote the Jordan algebra defined over JL with the polarization I or E as
the identity element as JI or JE , respectively, and derive the formula

91N(A, JI) + 600N(A, JE) = 27 · 33 · 52 · 7 · 13 · L(VA,−3) , (E.8)

where N(A, JI) and N(A, JE) denote the number of embeddings into JI and JE , respec-
tively. They stress that they do not have formulas for N(A, JI) and N(A, JE) separately
in general. However when A is not an integral domain which is the case when A = Z

⊕
B

then N(A, JE) = 0 and one has

N(A, JI) = 27 · 33 · 52 · L(VA,−3) . (E.9)

F Hilbert Modular Forms

This appendix is devoted to summarizing the relevant background information on Hilbert
Modular Forms (HMFs). Standard references on HMFs include [64, 104, 105]. We begin
with the definition of Hilbert modular group.
Consider the upper half plane (H) on which SL(2,R) acts via fractional linear transfor-
mations. Consider a positive integer n ∈ Z+. We consider n copies of the upper half
plane which we denote by Hn. Let F be a totally real number field of degree n over Q
such that F admits n distinct embeddings into R i.e.,

F →֒ R⇒ α 7−→ a(i)∈ ∈

F Rn

, a(i) =
(
a1, · · · , an

)
. (F.1)

The group SL(2, F ) =

{(
a b
c d

) ∣∣∣∣a, b, c, b ∈ F, ad− bc > 0

}
26 can be embedded into

SL(2,R)n n times by means of the embedding F →֒ R. Consider now the ring of integers
in F , which is usually denoted as OF . OF is a Dedekind domain i.e., it is an integral
domain that is an integrally closed Noetherian ring27 in which every non-trivial prime
ideal is maximal i.e., there are no other ideals between the prime ideal and OF .

26Or rather, GL(2, F ).
27It satisfies the ascending chain condition on both left and right ideals.
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Definition F.1 (Hilbert Modular Group) The Hilbert Modular Group for F
is the group ΓF = PSL(2,OF ) = SL(2,OF )/ {+1,−1} ⊂ PGL+(2, F ).

Remark F.1 The classical modular group is the special case when F = Q and n = 1.

Definition F.2 (Hilbert modular variety) A Hilbert modular variety of degree
n is an algebraic variety obtained by quotienting n copies of the upper half plane
(Hn) by the Hilbert modular group ΓF .

The group ΓF acts on Hn as

ΓF ∋
(
a b
c d

)
(τ1, · · · , τn) =

(
a1τ1 + b1
c1τ1 + d1

, · · · , anτn + bn
cnτn + dn

)
. (F.2)

For the sake of convenience, we denote τk := (τ1, · · · , τk).

Definition F.3 (Hilbert Modular Form) A Hilbert Modular Form (HMF) of
weight k = (k1, · · · , kn) and degree n is a function f : Hn → C such that

f(γτn) =

(
n∏

j=1

(cjτj + dj)
kj

)
f(τn), ∀

(
a b
c d

)
∈ ΓF , (F.3)

and the function f is regular at the cusps of ΓF . The HMF is holomorphic if it
is holomorphic on Hn. Similar definition for meromorphic HMFs holds. If for a
HMF of weight k = (k1, · · · , kn) such that k1 = k2 = · · · = kn, then the HMF is
simiply said to have parallel weight k and degree n.

F.1 Fourier expansions of Hilbert Modular Forms

Holomorphic HMFs admit a Fourier expansion at the cusp at ∞. Let use consider a
Z−module M ⊂ F and let V ⊂ O∗

F , where as usual O∗
F is the group of units in OF . V

has an action on M in the following sense. Let G(M,V ) =

{(
e µ
0 e−1

) ∣∣∣∣µ ∈M, e ∈ V

}

be a finite index subgroup of Γ∞, the stabilizer of ∞. This defines the analog of the
“T–transform” as for classical modular forms for the case of HMFs. This gives us the
periodic structure of f as f(τk + µ) = f(τk), ∀µ ∈ M . This periodic property allows us
to write the convergent Fourier expansion of a holomorphic HMF as

f(τn) =
∑

ν∈M∨

aνe
2πiTr(ντn), (F.4)

where M∨ = {λ ∈ F | Tr(µλ) ∈ Z ∀µ ∈M} is the dual lattice toM w.r.t the trace norm
of F . The Fourier expansion of holomorphic HMFs can be expressed at its cusp as

f(τn) = a0 +
∑

ν∈M∨,
ν>0

aνe
2πiTr(ντn) . (F.5)

Holomorphic HMFs for which a0 as above is zero are Hilbert Cusp Forms.
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Theorem F.1 (Götzky–Koecher principle) All non-parallel HMFs are cusp forms.

We will not prove this theorem here, although we do point the reader to any of the
standard references on HMFs for a proof of the Götzky–Koecher principle.

F.2 Hilbert-Eisenstein series

We now introduce the Hilbert theta series and Hilbert-Eisenstein series. Holomorphic
HMF are generated by Hilbert–Eisenstein series of parallel, even integral weight k > 2.
To each non-zero fractional ideal m of F , for k ∈ 2Z+we associate a function E(τn,m, k)
given by

E(τn,m, k) = Nm(m)k
∑

(c,d)∈(m×m)−{0}/O∗

F

(
n∏

j=1

(σj(c)τj + σj(d))

)(−k)

. (F.6)

(F.6) is a Hilbert modular form of parallel weight k on ΓF and admits the following
Fourier expansion:

E(τn,m, k) = ζ(m, k) +
1√
DF

(
(−2πi)k

Γ(k)

)n ∑

ν∈d−1

F

σk−1(ν;m)e2πiTr(ντn) , (F.7)

where DF is the discriminant of F in Z, and d−1
F denotes the inverse of the different

ideal of F . It is straightforward to see that for F = Q, m = Z, we recover the classical
Eisenstein series (such as the ones derived in (9.16)).

F.3 Lattice theta functions and Hilbert modular forms

It is a canonized statement that the theta function of a positive definite lattice of signature
(p, 0) is an elliptic theta function of weight p/2. The lattice theta function can also be
expressed in terms of a quadratic form where the norm of the vector expressed as the
value of a quadratic form Q. This provides an equivalency between quadratic forms and
lattices Λp,0 ⊂ Rp.

Consider now for a positive integer p, Λp,0
F ∈ F p is a lattice of rank p in F and a quadratic

form Q : F p → F . The lattice/quadratic form is even-integral in F if ∀α, β ∈ ΛF ,
Q(α, β) := Q(α + β) − Q(α) − Q(β) ∈ m−1

F . Given such an even, integral lattice with
p ∈ 2Z with Q−1 also even integral and detQ being a square in F − {0}, the function

Θ(τp;Q) :=
∑

ν∈Op
F

e2πiTr(Q(ν)τp) (F.8)

is a Hilbert modular form of weight p/2 in ΓF .

Remark F.2 It is also possible to recover a Hilbert–Eisenstein series from a Hilbert-
theta function in the sense of Siegel–Weil (see [106] and references therein). Siegel-Weil
theorems over the classical modular group (and subgroups thereof) are of interest in string
theory (see [107] from the perspective of BPS attractors, [108](and works that follow) from
the perspective of holography, and [109] from the perspective of topological invariants).
The Hilbert-Eisenstein series obtained via
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h Niemeier Lattice Theta Function of Niemeier Lattice of Degree 1
0 Leech 1 + 196560q2 + 16773120q3 + 398034000q4 + 4629381120q5 + 34417656000q6 +O (q7)
2 A24

1 1 + 48q + 195408q2 + 16785216q3 + 397963344q4 + 4629612960q5 + 34417365696q6 +O (q7)
3 A12

3 1 + 72q + 194832q2 + 16791264q3 + 397928016q4 + 4629728880q5 + 34417220544q6 +O (q7)
4 A8

3 1 + 96q + 194256q2 + 16797312q3 + 397892688q4 + 4629844800q5 + 34417075392q6 +O (q7)
5 A6

4 1 + 120q + 193680q2 + 16803360q3 + 397857360q4 + 4629960720q5 + 34416930240q6 +O (q7)
6 A4

5D4, D
6
4 1 + 144q + 193104q2 + 16809408q3 + 397822032q4 + 4630076640q5 + 34416785088q6 +O (q7)

7 A4
6 1 + 168q + 192528q2 + 16815456q3 + 397786704q4 + 4630192560q5 + 34416639936q6 +O (q7)

8 A2
7D

2
5 1 + 192q + 191952q2 + 16821504q3 + 397751376q4 + 4630308480q5 + 34416494784q6 +O (q7)

9 A3
8 1 + 216q + 191376q2 + 16827552q3 + 397716048q4 + 4630424400q5 + 34416349632q6 +O (q7)

10 A2
9D6, D

4
6 1 + 240q + 190800q2 + 16833600q3 + 397680720q4 + 4630540320q5 + 34416204480q6 +O (q7)

12 A11D7E6, E
4
6 1 + 288q + 189648q2 + 16845696q3 + 397610064q4 + 4630772160q5 + 34415914176q6 +O (q7)

13 A2
12 1 + 312q + 189072q2 + 16851744q3 + 397574736q4 + 4630888080q5 + 34415769024q6 +O (q7)

14 D3
8 1 + 336q + 188496q2 + 16857792q3 + 397539408q4 + 4631004000q5 + 34415623872q6 +O (q7)

16 A15D9 1 + 384q + 187344q2 + 16869888q3 + 397468752q4 + 4631235840q5 + 34415333568q6 +O (q7)
18 A17E7, D10E

2
7 1 + 432q + 186192q2 + 16881984q3 + 397398096q4 + 4631467680q5 + 34415043264q6 +O (q7)

22 D2
12 1 + 528q + 183888q2 + 16906176q3 + 397256784q4 + 4631931360q5 + 34414462656q6 +O (q7)

25 A24 1 + 600q + 182160q2 + 16924320q3 + 397150800q4 + 4632279120q5 + 34414027200q6 +O (q7)
30 D16E8, E

3
8 1 + 720q + 179280q2 + 16954560q3 + 396974160q4 + 4632858720q5 + 34413301440q6 +O (q7)

46 D24 1 + 1104q + 170064q2 + 17051328q3 + 396408912q4 + 4634713440q5 + 34410979008q6 +O (q7)

Table 4: Coxeter numbers h of Niemeier lattices and their associated classical theta functions of degree 1
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