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Abstract

The study of rational conformal field theories in the moduli space of conformal field theories

is of particular interest since these theories correspond to points in moduli space where the

algebraic and arithmetic structure are usually richer, while also being points where non–trivial

physics occurs (such as in the study of attractor black holes and BPS states at rational points).

This has led to various attempts to characterize and classify such rational points. In this

paper, a conjectured characterization by Gukov–Vafa (Commun. Math. Phys. 246 (2004)

181) of rational conformal field theories whose target space is a Ricci flat Kähler manifold

is analyzed carefully for the case of toroidal compactifications. We refine the conjectured

statement as well as making an effort to verify it, using T 4 compactification as a test case.

Seven common properties in terms of Hodge theory (including complex multiplication) have

been identified for T 4-target rational conformal field theories. By imposing a subset of the

seven properties, however, there remain N = (1, 1) SCFTs that are not rational. Open

questions, implications and future lines of work are discussed.
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A Appendix: Additional notation and background 58

1 Introduction

Note to the reader: Although progress reported in this article is in string theory, and not

mathematics, we still adopt the mathematical style of presentation using Theorem, Conjec-

ture, Remark, Lemma etc. This makes it easier to refer to specific facts and/or arguments.

1.1 Relevant Background on String Theory and SCFT

N = (1, 1) supersymmetric non-linear sigma models in 1 + 1 dimensions have a non-trivial

moduli space when the target space M is a Ricci–flat Kähler manifold. These theories, which

are superconformal field theories (SCFTs), define a compactification of Type II string theory.

These SCFTs are rational CFTs (RCFT)1 only at special points in the moduli space. It was

observed (and conjectured) by Gukov–Vafa (GV) in [2] (see also [3, 4] and references therein)

that the points in the moduli space where the SCFTs are rational may be characterized in

terms of the period integrals on M and those on its mirror manifold using Hodge theory and

number fields (to be more concrete, both M and its mirror are CM-type); see section 2.2 for

more on the observation. Our current work presented here is inspired by these observations

and we elaborate on the problem of characterizing these special points in the moduli space

where the SCFTs are rational.

Giving (and establishing) such a characterization is a well-defined question in mathemat-

ical physics, which may be of interest in its own right. Apart from the GV conjecture, and

some association with enhanced symmetry on worldsheet theory and/or effective field the-

ory after compactification, our knowledge of rational SCFTs has been mostly construction

based. Not much is known beyond the Gepner constructions, and lattice vertex operator

algebras and their orbifolds. If the criteria for the SCFTs are proven to be something close

to the one by the GV conjecture, that means that there are more rational SCFTs than those

obtained by these constructional approaches. Those rational SCFTs will include the ones in

the small-volume limit region in the moduli space; rational SCFTs will be an ideal (and a

rare) tool to study how string theory captures geometry at the short-distance (high-energy)

1There are many ways to define a rational CFT. A simple way of explaining what an RCFT is to string
theorists is that they have a finite number of primary fields or that their conformal blocks are finite dimensional
(See [1] and references therein). Classifying and characterizing such rational CFTs is an important open
problem in string theory. See section 2.1 for a dictionary between string theory and vertex operator algebra.
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region in a situation where classical Einstein gravity is not a good approximation.2

Further progress can be expected in a couple of other directions, when the GV [2] ob-

servation is understood better, with more systematically constructed examples of rational

SCFTs with geometric interpretations. For example, on the side of arithmetic geometry, it is

known that complex analytic CM-type manifolds M are known to admit arithmetic models

[5, 6, 7, 8], at least when M is either an abelian variety or a K3 surface, and some of the

L-functions defined for these arithmetic models are expected to have modular transforma-

tion properties. It will be an interesting subject of research to explore relations between

such modular objects in arithmetic geometry and g = 1 chiral correlation functions of the

corresponding RCFTs in string theory. References [9, 10] studied that for the case where the

target space is a CM elliptic curve. To carry out a similar study for abelian varieties and

K3 surfaces, a better understanding of the relation between CM manifolds and RCFTs is

necessary to get started.

Also in particle phenomenology, the work of GV [2] is of significance. In Type IIB Calabi–

Yau orientifold compactifications, the gravitino mass and the cosmological constant are not

generically much smaller than the Planck scale of the effective theory on 3+1−dimensions due

to non-zero fluxes [11]. When the complex structure of the Calabi–Yau threefold has period

integrals characterized by number fields (such as in, [2, 12, 13]), then the gravitino mass

can be much smaller than the Planck scale for a much larger fraction of flux configurations

[14, 12, 15]. If the GV observation is true, then we may attribute particle phenomenologies

such as electroweak gaugino dark matter, gauge coupling unification, and small gravitino

mass, to large chiral algebra on the worldsheet theory, and not to a larger symmetry of the

spacetime field theory.

1.2 Outline and Summary of the Paper

We begin in section 2.2 with a review of the conjectured connection between rational SCFTs

and CM-type Hodge structures (Conj. 2.1) by following Ref. [2]. We do so while highlighting

a few aspects in which the conjecture needs to be refined for its applications to various

Ricci-flat Kähler manifolds. RCFTs among toroidal compactifications have been completely

classified [16, 17, 18], so we use the information as test data in refining the GV conjecture.

Moreover, we can also try to verify/find counter examples within toroidal compactifications.

Results from the work of Meng Chen (MC) [19, Theorem 2.5 & Proposition 3.10] are vital to

2An open problem that is pertinent is here, and for which progress is desirable, is to also understand how
close such rational points are to each other in the moduli space of SCFTs.
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the underlying logic of the analysis performed in this study. The refined version of the GV

conjecture is presented in Theorems 5.8 and 5.9 with auxiliary comments in section 6.

Sections 3 and 4.2 clarify subtleties raised in section 2.2 by studying T 4-target rational

SCFTs. We will learn that RCFTs with T 2n target are associated not with complex tori with

sufficiently many complex multiplications, but with CM-type abelian varieties (in section 3.1).

We also see that we can always find a polarizable complex structure while demanding that

the Hodge (2, 0) component of the B−field is absent (only for T 4, Prop. 3.4), and that

there is always a mirror SCFT that allows a geometric interpretation (for T 4, Thm. 4.6).

An observation that the Kähler form for a T 4-target rational CFT is in the algebraic part

(non-transcendental part) of H2(T 4;Q) (Thm. 4.5) may also be interesting in its own right.

We do not have evidence, however, that this is true for all the rational CFTs that are not

T 4-target.

Sections 2.3–2.5 are, for the most part, review on related materials to be used in this

article. Section 2.1 and Appendix A contain only textbook-level materials. We include them

in this preprint so that readers with math background can get a rough sense from section

2.1 of what the authors mean by jargons such as compactification, CFT and N = (1, 1)

SCFT. Appendix A, on the other hand, collects some definitions, notations and useful facts

in number theory and Hodge theory, for the convenience of some readers with background in

string theory. The authors are happy to follow the advice from the editor/referees whether

to keep Section 2.1 and Appendix A or to drop them from the manuscript.

2 Preliminaries

2.1 A Pertinent String Theory – VOA Dictionary

This subsection is absolutely not for a string theorist, but may be of some use to those who

view themselves as members of the vertex operator algebra community. String theory may be

viewed as machinery producing a conformal field theory (CFT) from a set of data associated

with a geometry. This section 2.1 summarizes which data determine what in the machinery,

and also explains the string theoretic terminology in this paper in the language of the vertex

operator algebra community.

A bosonic conformal field theory (CFT) (as a countable noun):3 it consists of data that

3We use the word “bosonic conformal field theory” in the same sense as “vertex operator algebra” of Ref.
[20]. MC [21] uses generalized vertex algebra or OPE algebra for the same thing.
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include (but are not exhausted by)

1. a pair of vertex operator algebras, one for the left-mover (i.e., one with the holomorphic

local coordinates on a Riemann surface) and one for the right-mover (i.e., one with the

anti-holomorphic local coordinates), and

2. a set of representations under the two mutually commuting vertex operator algebras.

The direct sum of all those representation spaces is called the total Hilbert space, Htot. The

states in the left-mover (resp. right-mover) vertex operator algebra must correspond to all

the states of the total Hilbert space whose right-mover (resp. left-mover) conformal weights

are zero. Such vertex operator algebras are called the left-mover (holomorphic) (resp. the

right-mover (anti-holomorphic)) chiral algebras of the CFT.

When a string theorist refers to a bosonic CFT, it is often assumed implicitly that the both

of the chiral algebras contain an operator called the energy-momentum tensor of conformal

weight 2, that the central charge of the left-mover and the right-mover are not more than

26, that Htot has a positive definite Hermitian inner product, and that the partition function

computed from Htot is modular invariant. The set of data of a bosonic CFT also includes

an End(Htot)-valued formal power series for any state in Htot, not just for the states in the

left-mover and right-mover chiral algebras. The authors do not intend to explain all the

concepts in this paragraph, because not knowning them does not pose a problem in following

the materials in this article.

A torus compactification associated with the data (Tm;G,B): it is a bosonic CFT corre-

sponding to the data (Tm;G,B). Here,

1. Tm = Rm/Z⊕m = Rm/H1(Tm;Z) is a real m-dimensional torus (a manifold) with a set

of real coordinates (XI) = (X1, X2, · · · , Xm) ∈ Rm.

2. G is a Riemannian metric on Tm that remains constant under translations in Rm, and

3. B a closed 2-form on Tm, referred to as the B-field.

In the language of string theory, G is the vacuum metric and B the vacuum B-field configu-

ration, to be precise, but we will omit the word ‘vacuum’ for brevity in this article.

For any bosonic CFT (i.e., torus compactification) for (Tm;G,B), both the left-mover

and right-mover chiral algebras contain the direct sum of m copies of the Heisenberg Lie
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algebra. Different choices of the data G,B as above correspond to different choices of the set

of representations of the m + m Heisenberg Lie algebras. The set of choices of such a set of

representatons of the m+m Heisenberg Lie algebras (and hence the set of data (Tm;G,B))

forms a moduli space. For further details, we refer the reader to [20].

A bosonic CFT is rational when both the left-mover (holomorphic) chiral algebra and

the right-mover (anti-holomorphic) chiral algebra are rational, meaning that both of the two

vertex operator algebras have a finite number of distinct irreducible modules [22, p.90].

A torus (Tm) compactification for G and B is rational if both of the holomorphic and

anti-holomorphic chiral algebras are larger than m copies of the Heisenberg Lie algebras to

the extent that each of the chiral algebras becomes the vertex operator algebra of a rank-m

even positive definite lattice.

An N = (1, 1) SCFT (as a countable noun) associated with the data (M ;G,B), where

M is a real manifold, G a Ricci-flat Riemannian metric on M , and B a closed 2-form on

M : It is an N = (1, 1) SCFT (a countable noun) determined uniquely in string theory by

the data (M ;G,B). An N = (1, 1) SCFT is a set of information that includes (but is not

exhausted by)

1. two vertex operator superalgebras (one for left-mover (holomorphic) and the other for

right-mover (anti-holomorphic)), each one of which contains an N = 1 superconformal

algebra, and

2. a set of representations under the mutually (anti-)commuting algebras.

The states in the left-mover (resp. right-mover) vertex operator superalgebra must correspond

to all the states in Htot whose right-mover (resp. left-mover) conformal weight is zero. These

vertex operator superalgebras are called the left-mover and right-mover chiral superalgebra of

the SCFT. This definition does not rule out an N = (1, 1) SCFT whose chiral superalgebra

contains an N = 2 (or more) superconformal algebra.

If there exists a complex structure I for a Riemannian manifold (M ;G) such that G

is compatible with I and (M ;G, ; I) is Kähler, then the N = (1, 1) SCFT for the data

(M ;G,B), with B as above, has a special property. Each one of the left-mover and right-

mover chiral superalgebras contains an N = 2 superconformal algebra. In fact, there is a
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unique way to specify the vertex operator with conformal-weight 1 from the data I such that

the N = 1 superconformal algebra is enhanced to an N = 2 superconformal algebra. We

refer the reader to [23] for more information.

An N = (1, 1) SCFT is rational when both the left-mover and right-mover chiral superal-

gebras have finitely many distinct irreducible modules. It is clear that the rationality of an

N = (1, 1) SCFT depends on the entire chiral superalgebra determined by the data (M ;G,B),

and not by the N = (2, 2) superconformal algebra determined by the data (M ;G,B; I). It is

also a known fact that the N = (1, 1) SCFT for (Tm;G,B) is rational if and only if a torus

compactification for (i.e., bosonic CFT for) the same set of data (Tm;G,B) is rational.

2.2 The Gukov–Vafa Conjecture

Amongst bosonic CFTs with torus (Tm) as target, RCFTs have been identified completely

[17, 18, 16]. In the case of m = 1, for example, the moduli space of bosonic CFTs is R>0

and is physically parametrized by the radius-squared of the target space S1. Amongst such

bosonic CFTs, only those CFTs for which the radius-squared (in units of the string length)

is a rational number are rational. So, the subset Q>0 ⊂ R>0 classifies all RCFTs for the case

of m = 1.

However, not much is known for cases other than torus compactifications. Certain explicit

constructions such as the Gepner models are known, but it is not known how many more

rational CFTs or SCFTs exist.

The GV conjecture [2] was formulated in an attempt to ascertain where one encounters a

rational SCFT in the moduli space of 2d N = (1, 1) SCFTs obtained as a non-linear-sigma

model of a manifold M that admits a Ricci-flat Kähler metric.

Conjecture 2.1. [2, §7] Consider a 2d N = (1, 1) SCFT obtained as a non-linear sigma

model of (M ;G,B); here, M is a real 2n-dimensional manifold, B a closed 2−form on M ,

and G a Riemannian metric on M that can be Ricci-flat and Kähler under some suitable

complex structure I. The SCFT is rational if and only if the following conditions are satisfied:

1. the rational Hodge structure on the cohomology groups of M is of CM-type,

2. the rational Hodge structure on the cohomology groups of the mirror manifold W of

M is also CM-type,

3. the CM fields of both are isomorphic.
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Conjecture 2.1 presented as above is a slight modification of the conjecture presented in Ref.

[2], although its scientific merit is not compromised. •

We first repeat the justification argument for Conjecture 2.1 for the convenience of a less

initiated reader. We then later discuss the refinement of the statement of Conjecture 2.1. For

a physicist-friendly overview of theory of complex multiplication covering more than elliptic

curves, readers are referred to the appendix of [15]; in the case of elliptic curves to get started,

see [3, 4].

The first piece of evidence in support of Conjecture 2.1 above is the case of T 2 com-

pactification. Consider a T 2 compactification associated with the data (T 2;G,B), where

G and B are a constant Riemannian metric and a constant 2-form on T 2, respectively.

There is a unique complex structure I with which the metric G is compatible. Let (the

SL(2;Z)-orbit of) τ be the complex structure parameter of a complex g = 1 Riemann surface

M = (T 2; I) = C/(Z + τZ), and ρ :=

∫
T 2

(B + iω)/[(2π)2α′] be the complexified Kähler

parameter; ω = ω(−,−) := 2−1G(I−,−) is the Kähler form. It is then known that the CFT

is rational if and only if both Q(τ) and Q(ρ) are degree-2 extension fields over Q, and are

isomorphic to each other [3, 4]. The condition that [Q(τ) : Q] = 2 (resp. [Q(ρ) : Q] = 2) is

equivalent to the condition that the rational Hodge structure on H1(M ;Q) (resp. H1(W ;Q),

where W is the mirror manifold isomorphic to C/(Z+ρZ)) is of CM-type. Those observations

in this example have been abstracted to become the statement of Conjecture 2.1 above.

Let us consider another example: the Z5-orbifold of the tensor product of five copies of

the 2d N = (2, 2) minimal models with the central charges cL = cR = 3k/(k + 2) and k = 3.

This SCFT is rational, and is interpreted as a 2d non-linear sigma model whose target space

is a quintic Calabi–Yau threefold with a very special complex structure and a very special

complexified Kähler parameter. The complexified Kähler parameter is chosen at the small

volume limit within the complex 1−dimensional moduli space, and the complex structure

parameter is chosen at the Fermat point4 of the complex 101−dimensional moduli space.

The cohomology group H3(W ;Q) of the mirror manifold W is 4-dimensional over Q, and is

of CM–type, where the CM–field is Q(ζ5), a cyclotomic extension field over Q generated by

a primitive 5th root of unity ζ5. The cohomology group H3(M ;Q) also contains a rational

Hodge substructure that is 4−dimensional over Q, level−3, and is of CM–type; the CM–field

is Q(ζ5) on this substructure. Various jargons pertaining to Hodge structure are explained

4The 101−dimensional moduli space of complex structure corresponds to choosing an arbitrary homoge-
neous function F (Φi=1,··· ,5) of degree-5 on P4 that defines a threefold M through M = {[Φi] ∈ P4 | F (Φ) =

0} ⊂ P4. The Fermat point in the moduli space corresponds to the choice F =
∑5
i=1(Φi)

5.
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in the appendix of [15], or any textbook or lecture note on Hodge theory by mathematicians.

This example indicates that GV’s Conjecture 2.1 has been generalized from the case of T 2

compactification in a proper way.

We are yet to verify or refute this conjecture, and that is what we do in section 5. Such

an effort also lets us notice that the statement of the conjecture needs to be refined to be

verified, as we see below in Discussions 2.2, 2.3, 2.4 and 2.5.

2.2. Let M be a Ricci-flat Kähler manifold of complex dimension n; the cohomology group

Hn(M ;Q) is endowed with a rational Hodge structure by the complex structure of M . The

rational Hodge structure on Hn(M ;Q) is not necessarily simple, but has a decomposition

into simple Hodge substructures

Hn(M ;Q) ∼= ⊕a∈A[Hn(M ;Q)]a . (2.1)

Let Da := End([Hn(M ;Q)]a)
Hdg be the algebra of Hodge endomorphisms of a simple compo-

nent [Hn(M ;Q)]a; it is always a division algebra.5 The endomorphism algebra of Hn(M ;Q)

is of the form

End(Hn(M ;Q))Hdg ∼= ⊕αMnα(Dα), (2.2)

where the simple components a ∈ A are grouped into those with isomorphic Da’s and a

common level, and the equivalence classes are labeled by α’s; nα is the number of simple

components (a’s) in an equivalence class α.

For example, in the case of the Fermat quintic Calabi–Yau threefoldM , the 204-dimensional

vector space H3(M ;Q) has a decomposition into simple rational Hodge substructures [24,

§3],

[H3(M ;Q)]`=3 ⊕
(
⊕50
a=1[H3(M ;Q)]`=1,a

)
, (2.3)

and each one of the components is of 4−dimensional over Q, supporting a rational Hodge

substructure of level−1 (with the exception of the first component whose Hodge substructure

is of level 3) with the endomorphism field Dα
∼= Q(ζ5).

Back to the general case, the Hodge structure on Hn(M ;Q) is said to be of CM-type if

and only if the Hodge structure on individual substructures on [Hn(M ;Q)]a are of CM-type.

All the division algebras Da are then fields, with [Da : Q] = dimQ[Hn(M ;Q)]a. So, the Hodge

5See Definition A.2 and Notation A.7.

9



structure on Hn(M ;Q) is of CM-type in the case that M is the Fermat quintic threefold.

There are, however, Kähler manifolds where the Hodge structure is of CM-type on the level-n

component (the simple component containing the (n, 0) Hodge component; the notion of level

is explained, e.g., in [15, App. B]), but is not of CM-type in other simple components. We

should therefore remain open minded as to whether the first two conditions in Conjecture

2.1 should be imposed on some of the simple components of Hn(M ;Q) and Hn(W ;Q), or

on all of their simple components. Examples studied in [2] are not sufficient to resolve this

difference in the conditions.6

The third condition in Conjecture 2.1 refers to the fields of CM-type Hodge structures of

M and the mirror manifold W . An easy way to make sense of this condition is to think of

them as the endomorphism fields of the unique simple component ofHn(M ;Q) andHn(W ;Q)

containing the Hodge (n, 0) component, the level-n simple component. If one should require

other simple components to be of CM-type, as discussed before, then one may also have

to refine the the third condition; whether it is read as an isomorphism of the CM fields of

the level-n components on both sides, or as isomoprhisms of some pairs of simple compo-

nents of H∗(M ;Q) and H∗(W ;Q). In general, dimQ[Hn(M ;Q)] is not necessarily equal to

dimQ[Hn(W ;Q)], so there is no natural choice of pairs of simple components besides the pair

of the level-n components.

2.3. For a Ricci-flat Kähler manifold M , its Hodge diamond can be non–zero not only in

the vertical diagonal terms (hk,k with k = 0, · · · , n) and horizontal diagonal terms (hp,n−p

with p = 0, · · · , n), but also in the off–diagonal terms. Certainly all the off–diagonal terms

are zero when M is an elliptic curve, K3 surface, or a Calabi–Yau threefold. But hq,0 with

q 6= 0, n can be non-zero when M is

• a complex torus of n ≥ 2 dimensions, or

• a hyper-Kähler manifold of real 8-dimensions and higher, or

• a product of Ricci-flat Kähler manifolds one of which is either a complex torus or a

hyper-Kähler manifold.

Moreover, there are Calabi–Yau fourfolds where all the hq,0’s are zero for q = 1, · · · , 3, but

the off-diagonal term h2,1 is non-zero (see [27, (90)] for a class of toric hypersurface fourfolds

where h2,1 6= 0).

6 Calabi–Yau threefolds of the form of Borcea–Voisin orbifolds [25, 26] will be a good testing ground in
resolving this issue. To work on this class of cases, however, we should work on K3 surfaces first.
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The authors of this paper are not aware of a proof indicating that the Hodge structure on

Hk(M ;Q) with k 6= n is always of CM-type when one just requires that the Hodge structure

on Hn(M ;Q) is of CM-type (see Rmk. 5.3). We then face a question whether we should read

the conditions in Conjecture 2.1 as that for Hn(M ;Q) and Hn(W ;Q) (the vertical part of

the Hodge diamond of M), or that for all the cohomology groups including the off-diagonal

parts of the cohomology group of M .

2.4. Consider a case where the target space (M ;G) is either a torus T 2n of real 2n dimensions

with n ≥ 2, or a hyper-Kähler manifold. On one hand, for such a smooth manifold M and a

Riemannian metric G on it, there is a continuous freedom in choosing a complex structure I

with which the metric G is compatible.

On the other hand, a 2d non-linear sigma model is specified by only the data (M ;G),

without referring to a complex structure on M . Whether the SCFT is rational or not should

therefore be a property of (M ;G), not of the data (M ;G; I).

Since Conjecture 2.1 tries to characterize rational SCFTs by using a Hodge structure,

there is no way of interpreting the conditions there without choosing a complex structure.

If the conjecture is to be applicable for the class of manifolds we are referring to here, then

we should read the conditions and characterizations in Conjecture 2.1 either as those for

arbitrary I with which the metric is compatible (this is not a good guess as we will see in

section 3.1), or as those for a class of I’s that should be specified more carefully.

2.5. The statement of Conjecture 2.1 is written by referring to a mirror manifold W . It

is not always true, however, that an N = (2, 2) SCFT as a non-linear sigma model with a

Ricci-flat Kähler M as the target space has a mirror-equivalent N = (2, 2) SCFT that can

be interpreted as a non-linear sigma model of another Ricci-flat Kähler manifold W . Even

when there is, it is not guaranteed that there is a unique choice of W .

It is an interesting question whether there is always such a mirror manifold when the

M -target N = (2, 2) SCFT is rational. Would it be an improvement if Conjecture 2.1 is

stated without referring to a mirror manifold?

In this article, we work on the cases with M = T 2n, most intensively with M = T 4.

The experimental data collected in this article do not help in resolving the issue raised in

Discussion 2.2, but will shed some light on the issues raised in 2.4 and 2.5. The authors

admit that they have not made all possible efforts imaginable in exploiting the experimental

data to clarify the issues in 2.3 and 2.5.
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2.3 Rational CFTs with Torus Target

Since RCFTs in torus compactifications have been completely classified, we may use the

established results to refine and test Conjecture 2.1. In this section 2.3, we quote results

from Ref. [16, 17] relevant to our analysis.

Proposition 2.6. ([16] and [17, Lemma 4.5.1]) Let Tm = Rm/Z⊕m be a real m-dimensional

torus with a smooth structure, XIs with I = 1, · · · ,m a set of coordinates of Rm with period-

icity ∆X (i.e., XI ∼ XI + ∆X), let G = GIJdX
I ⊗ dXJ be a constant Riemannian metric

on Tm (i.e., GIJ ∈ R are independent of the coordinates XK’s), and B = 2−1BIJdX
I ∧ dXJ

a 2-form on Tm where BIJ are independent of the coordinates.

The bosonic CFT for the data (Tm;G,B) is rational if and only if 7(
∆X

(2π)
√
α′

)2

GIJ ∈ Q,
(

∆X

(2π)
√
α′

)2

BIJ ∈ Q. (2.4)

The condition for the N = (1, 1) SCFT associated with the data (Tm;G,B) to be rational is

also the same as above.

We are interested in the cases with m = 2n, when there is a possibility of introducing a

complex structure on the target space Tm. The author of [17] has further derived this

Corollary 2.7. [17, Thm. 4.5.5] Let (T 2n;G,B) be a set of data for which the (S)CFT is

rational. Then there exists a surjective homomorphism ϕ : T 2n ∼= R2n/Z⊕2n −→
∏n

a=1 C/(Z+

τaZ) with respect to the abelian group law on R2n and Cn, where each one of C/(Z + τaZ) is

a CM elliptic curve (i.e., [Q(τa) : Q] = 2), and there is a metric on C/(Z + τaZ), given by

ds2 = ga(du
a ⊗ dūā + h.c.) with8 ga ∈ Q so that the pull-back of the metric ds2 by ϕ agrees

with the metric G on T 2n.

This result lends support towards the justification of the GV Conjecture 2.1 in the

following sense. Firstly, there is already an implicit choice of complex structure I0 on∏
aC/(Z + τaZ), with which the metric ds2 is compatible. The metric G is compatible

with the complex structure I = ϕ∗(I0). The complex torus (T 2n; I) is of CM–type since∏
aC/(Z+τaZ) is of CM–type. The metric ga ∈ Q should be split into ga = Im(ρa)/Im(τa) so

that Im(ρa) parametrizes the volume of C/(Z+τaZ). It also follows that Q(iIm(ρa)) ∼= Q(τa).

7The author of [17] adopts the convention ∆X = 2πR, R =
√
α′ and α′ = 2. We will use the convention

∆X = 2π
√
α′ throughout this article. The metric and B-field satisfying (2.4) are therefore said to be rational.

8ua with a = 1, · · · , n are the complex coordinates of the a-th elliptic curve C/(Z + τaZ), which has the
periodicity ua ∼ ua + 1 ∼ ua + τa.
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This observation alone still falls short of resolving the issue raised in 2.5. It also remains

to be an open question whether the class of complex structures of the form I = ϕ∗(I0) are

all those where a GV–like statement holds true (this issue was raised in 2.4). We will discuss

those issues in sections 3 and 4, before examining whether Conjecture 2.1 holds true or not

in section 5.

2.4 Horizontal and Vertical Generalized Complex Structures

Generalized complex structure/Kähler structure and their relation to mirror symmetry are

reviewed in this section 2.4. For a reader familiar with the work in such references as [28, 20,

29, 23, 30], this section 2.4 does not do anything more than preparing notations.

2.8. Horizontal generalized Hodge structure on H∗(T 2n;Q): Let I and B′ be a complex

structure and a R-valued closed 2-form on T 2n, respectively. Using I and B′, a linear operator

IB′ on the space of sections of T (T 2n)⊕ T ∗(T 2n) is introduced:

IB′ : (∂XI , dXI) 7−→ (∂XL , dXL)

(
δLK
B′LK δ KL

)(
IKJ

(I−1)JK

)(
δJI
−B′JI δ IJ

)
, (2.5)

where we have chosen a basis {∂XI} and {dXI} for the tangent and cotangent spaces at

each point on T 2n; B′ =: 2−1B′IJdX
I ∧ dXJ is the usual convention (see [31, App. B.4]). In

the absence of B′, IB′ multiplies (+i) to holomorphic tangent vectors and (0,1)-forms, and

multiplies (−i) to anti-holomorphic tangent vectors and (1,0)-forms. The operator IB′ in

(2.5) is an example9 of a generalized complex structure on T 2n [28, 20].

Let Λ := H1(T 2n;Z) ⊕ H1(T 2n;Z), and q be the bilinear form given by q(∂XI , ∂XJ ) =

q(dXI , dXJ) = 0 and q(∂XI , dXJ) = δ JI . The integral Hodge structure introduced by

diag(I, (I−1)T ) on ΛR := Λ ⊗ R has been deformed by the 2-form B′ to be IB′ . The de-

formed version can be expressed by a representation of U(1) ∼= S1 given as follows: First,

noting that

(IB′)T · q · IB′ = q, (2.6)

we choose an element iXI,B′ of the Lie algebra so(ΛR, q) acting on ΛR:

IB′ = exp
[π

2
iXI,B′

]
. (2.7)

9See Refs. [29, 30] for how the notion of a generalized complex structure is defined for a general real
manifold M not necessarily a torus.
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With this (c.f. A.6),

hI,B′ : S1 3 eiα 7−→ exp [iαXI,B′ ] ∈ GL(ΛR). (2.8)

The vector space Λ⊗C splits into the hI,B′(e
iα) = eiα representation space (containing (0,1)-

forms), and hI,B′(e
iα) = e−iα representation space (containing (1,0)-forms), but this deformed

version of the “Hodge” decomposition is not something we wish to think as a pure Hodge

structure of some given weight any more.

The operator IB′ and exp[iαXI,B′ ] are elements of the Lie group SO(ΛR, q); the S1 sub-

group is denoted by S1
I,B′ . Now, we may think of the spinor representation ρspin of the

SO(ΛR, q) group and its restriction to the S1
I,B′ subgroup; the representation ρspin|S1

I,B′
of S1

I,B′

is denoted by ρspin(hI,B′). The ρspin representation space of SO(ΛR, q) has an isomorphism10

with H∗(T 2n;Q)⊗ R, so we always use this interpretation freely. The spinor representation

of the SO group splits into the two irreducible representations, one on Heven(T 2n;Q)⊗R and

the other on Hodd(T 2n;Q)⊗ R.

The representation ρspin(hI,B′) of S1
I,B′ introduces something similar (but not quite) to the

rational mixed Hodge structure11 on Heven(T 2n;Q) and Hodd(T 2n;Q). The k-th cohomology

10 Here is a brief note on the convention. Let ΛR be a 2m-dimensional vector space, and q its symmet-
ric bilinear form of signature (m,m). Suppose that LR ⊂ ΛR is an isotropic subspace of m-dimensions,
and {eI=1,··· ,m} its basis. Then set L′R := [L⊥R ⊂ ΛR], and choose a basis {em+I;I=1,··· ,m} of L′R. The
representation space of ρspin of SO(ΛR, q) is constructed as follows. The Clifford algebra is given by

Cliff(ΛR, q) := R[x1,··· ,m, xm+1,··· ,m+m]/({xI , xJ}, {xm+I , xm+J}, {xI , xm+J} − 2q(eI , em+J)),

and the representation space we want is the left-ideal aL of Cliff(ΛR, q) generated by the element x1···m :=
x1x2 · · ·xm. See [28, §3.2.1] for more information.

When ΛR = H1(Tm;R)⊕H1(Tm;R), one may set the maximal isotropic subspace LR to be H1(Tm;R). The
isomorphism aH1(Tm;R)

∼= H∗(Tm;R) is given by assigning xm+I1xm+I2 · · ·xm+Ik(x1···m) to dXI1 ∧ dXI2 ∧
· · · ∧ dXIk ∈ Hk(Tm;R).

11 A mixed rational Hodge structure generalizes the pure rational Hodge structure onHk(M ;Q) with a fixed
k, when M is not necessarily a compact smooth Kähler manifold, but a possibly open and singular variety. A
mixed rational Hodge structure [32] on a vector space VQ over Q consists of one decreasing filtration F • (called
Hodge filtration), where V ⊗C ⊃ · · · ⊃ F p ⊃ F p+1, and one increasing filtration W• (called weight filtration),
where Wm ⊂ Wm+1 ⊂ · · · ⊂ VQ. The component (F pWm ⊗ C/F pWm−1 ⊗ C) ∩ (F qWm ⊗ C/F qWm−1 ⊗ C)
is regarded the (p,m− p) component.

Technically, it is not impossible to think of the generalized rational Hodge structure in Def. 2.9 as a mixed
rational Hodge structure. To get started, note that the difference between a decreasing filtration W •h in Def.
2.9 and an increacing filtration W• of a mixed rational Hodge structure is relatively minor. One may set
a weight filtration of a mixed Hodge structure by Wm := W 2n−m

h ; we would have to think of 2n-forms as
weight (m = 0) then, but we could close our eyes to that.

It is not impossible to use the S1 representation h of a generalized Hodge structure to introduce the
decreasing filtration F • of a mixed Hodge structure; an idea that comes to the minds of the authors is to
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group Hk(T 2n;Q)⊗ R of H∗(T 2n;Q)⊗ R alone is not regarded as a representation space of

the S1
I,B′ subgroup when B′ · I − (I−1)T · B′ ∝ (B′)(2,0) − (B′)(0,2) 6= 0. But there is still a

filtration structure

{0} ⊂ W 2n
h ⊂ W 2n−2

h ⊂ · · · ⊂ W 2
h ⊂ W 0

h = Heven(T 2n;Q), (2.9)

{0} ⊂ W 2n−1
h ⊂ W 2n−3

h ⊂ · · · ⊂ W 3
h ⊂ W 1

h = Hodd(T 2n;Q), (2.10)

of vector subspaces over Q, where W k
h ⊗Q R supports a sub–representation of ρspin(hI,B′);

here,

W 2n−2`
h := ⊕`m=0H

2n−2m(T 2n;Q), W 2n−1−2`
h := ⊕`m=0H

2n−1−2m(T 2n;Q). (2.11)

The induced representation of ρspin(hI,B′) on (W k
h /W

k+2
h )⊗R agrees with the representation

of S1
I,B′ that describes the pure Hodge structure of weight-k on Hk(T 2n;Q) obtained from

the complex structure I alone. S1
I,B′ 3 eiα 7−→ e−i∆α with ∆ = (p − q) on the Hodge (p, q)

component (cf A.6).

It is therefore motivated to introduce the following notion.

Definition 2.9. On a vector space VQ over Q, one may introduce a set of data (h,W •)

called a generalized rational Hodge structure whose properties are specified below. W • is a

decreasing filtration, a sequence of vector subspaces over Q, {0} ⊂ · · · ⊂ W 1 ⊂ W 0 = VQ,

and h is a representation of S1, h : S1 3 eiα 7−→ h(eiα) ∈ GL(VQ⊗R), where each one of the

subspaces W k ⊗R’s supports a sub–representaton of h. We call the h(eiα) = e−iα∆ subspace

of W k ⊗C the charge ∆ component of W k ⊗C. One might be interested in introducing the

notion that a generalized rational Hodge structure is polarizable, but the authors do not feel

fully ready to do so.12

set F∆ := ⊕[charge ≥ ∆]. The range of (∆,m) with a non-zero h∆,m−∆ in this rational mixed Hodge
structure (from (ρspin(hI,B′),W

•
h )) on H∗(T 2n;Q) is quite different from the mixed rational Hodge structure

on Hn(M ;Q) of a non-compact and/or singular complex n-dimensional variety M . The range becomes the
conventional one when we set a dictionary p = (m+∆)/2. Conversely, the information in the Hodge filtration
of a mixed Hodge structure on Hk(M ;Q) can also be translated into the language of the S1 representation;

a differential form (∧pdz)(∧k−pdz̄)/(
∏p+q−k
i=1 zi) generating the component [Hk(M ;Q)]p,q (not necessarily

p+ q = k) is assigned a charge #[dz]−#[dz̄]−#[poles] = p− (k − p)− (p+ q − k) = p− q.
Despite the similarity between the mixed and generalized Hodge structures at the technical level, both

structures are based on completely different geometric intuitions. It does not seem possible for a set of
data (ρspin(hI,B′),W

•
h ) to think of something like F p ∼ [charge ≥ ∆ = (2p −m)] ⊂ (Wm = W 2n−m

h ) ⊗ C
consistently with varying choice of m.

12An idea will be to generalize the notion of a polarizable rational Hodge structure of a Kähler manifold
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So, for a closed (constant) 2-form B′ and a complex structure I on T 2n, the set of data

(ρspin(hI,B′),W
•
h ) on H∗(T 2n;Q) introduces a generalized rational Hodge structure. We call

it the horizontal generalized rational Hodge structure for (B′; I).

Lemma 2.10. [28, 29] Let us note in passing that the spinor representation of the linear

transformation (
1
B′ 1

)
∈ SO(ΛR, q)

is exp [2−1B′∧] on the representation space H∗(T 2n;R).

2.11. Vertical generalized Hodge structure on H∗(T 2n;Q): Let ω = 2−1ωIJdX
I ∧ dXJ

and B′ = 2−1B′IJdX
I ∧ dXJ be a symplectic form and a real–valued closed 2-form on T 2n,

respectively. Using ω and B′, a linear operator JB′ on ΛR is introduced:

JB′ : (∂XI , dXI) 7−→ (∂XL , dXL)

(
δLK
B′LK δ KL

)(
(ω−1)JK

ωKJ

)(
δJI
−B′JI δ IJ

)
.

(2.12)

This operator satisfies

(JB′)T · q · JB′ = q, (2.13)

so we may find an element iXω,B′ of the Lie algebra so(ΛR, q),

JB′ =: exp
[π

2
iXω,B′

]
, (2.14)

and define a representation [28, §8.4]

hω,B′ : S1 3 eiα 7−→ exp [iαXω,B′ ] ∈ GL(ΛR). (2.15)

The S1 subgroup of SO(ΛR, q) determined this way may be denoted by S1
ω,B′ .

We may introduce a representation of the S1
ω,B′ subgroup on H∗(T 2n;Q)⊗R by restricting

the spinor representation of SO(ΛR, q) on H∗(T 2n;R). This is denoted by ρspin(hω,B′). The

(cf Def. A.8). When the decreasing filtration W • terminates at 0 ( W 2n ∼= Q, the set of information to be
called a polarization of a generalized Hodge structure will include a bilinear pairing (−,−)0 : VQ × VQ → VQ
such that (W k,W `)0 ⊂ W k+`, generalizing the notion of the wedge product on the middle dimensional
cohomology group Hn(M ;Q) when dimCM = n. One may also include (−,−)2p : VQ × VQ → VQ where
(W k,W `)2p ⊂W k+`+2p. A polarization on the Hodge structure on Hk(M ;Q) on an abelian variety M with
dimCM = n has been generalized to (−,−)2(n−k). So, a tentative definition may be to demand a set of
information (−,−)2p for p = n, n− 1, · · · , 0, · · · ,−n, with a positive definiteness condition similar to the one
for a pure rational Hodge structure (see Def. A.8).
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representation splits into the representation on Heven(T 2n;Q)⊗R and on Hodd(T 2n;Q)⊗R.

For a general ω and B′, however, we have no reason to expect that there is a filtration

structure (there is a sub–representation space defined over Q) like we have in 2.8 or in Def.

2.9.

One can still verify by computation that the vector subspaces [29, §4.1 Ex.2]

Ce2−1(B′±iω) ⊂ H∗(T 2n;Q)⊗ C (2.16)

are where the representation ρspin(hω,B′) becomes 1−dimensional, with ρspin(hω,B′) : eiα 7→
e∓inα. Following some computation, one also finds that the vector spaces

Ce2−1(B′±iω)dXI ⊂ H∗(T 2n;Q)⊗ C (2.17)

for any I = 1, · · · , 2n are where the representation becomes 1−dimensional, with ρspin(hω,B′) :

eiα 7→ e∓iα(n−1). Although it is possible to write down the generators of all the 22n one

dimensional representations in a similar fashion, these are all that we will use in this article.

2.12. The arguments 2.8 and 2.11 are purely mathematical, and are independent of each

other. In the context of torus compactification, however, we have a metric G on T 2n. When

we choose a complex structure I with which G is compatible, we have a natural choice of

a symplectic form, the Kähler form ω = ω(−,−) := 2−1G(I−,−); when we write ω =

2−1ωIJdX
I ∧ dXJ , then ωIJ = IKI GKJ = (ITG)IJ .

The operators IB′ and JB′ on ΛR commute, and so do XI,B′ and Xω,B′ when a common

B′ is used for both. So, the two U(1) subgroups S1
I,B′ and S1

ω,B′ in SO(ΛR, q) commute.

We now proceed to make contact with the following result from string theory.

Lemma 2.13. [23, Prop. 4 and Prop. 8] Consider the N = (1, 1) SCFT associated with

a set of data (T 2n;G,B). When we specify a pair of rank-n primitive subgroups Γf and Γb

of H1(T 2n;Z) so that Γf ⊕ Γb ∼= H1(T 2n;Z), there is a fibration T 2n → Rn/Γb = T n. The

T–duality transformation along the fiber T n in string theory implies that there is a lattice

isometry

g : Λ = (Γf ⊕ Γb)⊕ (Γ∨f ⊕ Γ∨b )→ (Γ◦f ⊕ Γb)⊕ ((Γ◦f )
∨ ⊕ Γ∨b ) =: Λ◦ (2.18)

with g : Γf ∼= (Γ◦f )
∨ and g : Γ∨f

∼= Γ◦f , and there is also an isomorphism f from the total

Hilbert space of the N = (1, 1) SCFT for (T 2n;G,B) to that for (T 2n
◦ ;G◦, B◦).
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Suppose that I is a complex structure on T 2n with which G is compatible. Then I specifies

one additional holomorphic (left-mover) U(1) current JL and one more in right-mover JR in

the superchiral algebra so that the the original N = (1, 1) superconformal algebra extends

to an N = (2, 2) superconformal algebra. The T–duality isomorphism f between the Hilbert

spaces specifies two current operators J◦L := fJLf
−1 and J◦R := −fJRf−1 in the superchiral

algebras of the N = (1, 1) SCFT for (T 2n
◦ ;G◦, B◦), but it is not guaranteed that there

exists some complex structure I◦ on T 2n
◦ compatible with G◦ so that the pair J◦L and J◦R is

reproduced from I◦. We say that (T 2n;G,B; I) has a geometric SYZ-mirror when such an

appropriate complex structure I◦ exists.

A geometric SYZ–mirror exists for the T–duality along Γf ⊂ H1(T 2n;Z) if and only if the

following conditions are satisfied:

ω|Γf⊗R = 0, B|Γf⊗R = 0. (2.19)

�

Note that the condition (2.19) does not ask to find an isotropic n-dimensional vector space

Rn within H1(T 2n;R), but to find an isotropic n-dimensional vector space Qn ∼= Γf⊗Q within

H1(T 2n;Q). It is clear that a generic choice of (G,B; I) would not have a geometric SYZ-

mirror [28, §9.5].

2.14. Suppose that theN = (1, 1) SCFT for (T 2n;G,B) with (JL, JR) for a complex structure

I has a geometric SYZ–mirror for a T–duality along a rank-n subgroup Γf ⊂ Γf ⊕ Γb ∼=
H1(T 2n;Z). We use the same notation as in Lemma 2.13.

It is understood in string theory13 that there is an isomorphism H∗(T 2n;Q) ∼= H∗(T 2n
◦ ;Q)

given by the map of D–brane charges having the same physical properties. We abuse the no-

tation and use g for this isomorphism, too. The cohomology group H∗(T 2n
◦ ;Q) has a grading

⊕kHk(T 2n
◦ ;Q), as well as a filtration structure W •

h◦ (i.e., W •
h in (2.11) for the mirror the-

ory), and the data (B◦, I◦) introduces a pure rational Hodge structure (resp. the horizontal

generalized rational Hodge structure) on Hk(T 2n
◦ ;Q) (resp. H∗(T 2n

◦ ;Q)). Those structures

can be superimposed on H∗(T 2n;Q) by pulling them back via the isomorphism g. Using the

13The isometry g : (Λ, q) ∼= (Λ◦, q◦) induces the isomorphisms SO(ΛR, q) ∼= SO(Λ◦R, q
◦) and Cliff(ΛR, q) ∼=

Cliff(Λ◦R, q
◦); we abuse the notation and denote those two isomorphism as g. Thus, the left-Cliff(Λ◦R, q

◦)-
module aΓ◦f+Γb

can be regarded as a left-Cliff(ΛR, q) module as well. A linear map g : aΓf+Γb
→ aΓ◦f+Γb

is

determined by demanding that it is compatible with the action of Cliff(ΛR, q). Combining this isomorphism
with the cohomology interpretation in footnote 10, we obtain g : H∗(T 2n;Q)→ H∗(T 2n

◦ ;Q) in the main text
(e.g., [28, §3.3, §3.5 and §9.3]).
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isometry g : (Λ, q) → (Λ◦, q◦), g−1IB◦g = JB and g−1S1
I◦,B◦g = S1

ω,B [20]. In the spinor rep-

resentation, the horizontal generalized Hodge structure (ρspin(hI◦,B◦),W
•
h◦) on H∗(T 2n

◦ ;Q) is

mapped into a generalized rational Hodge structure on H∗(T 2n;Q) by (ρspin(hω,B), g∗(W •
h◦)).

We call this generalized rational Hodge structure as the vertical generalized rational Hodge

structure.14 See Fig. 1 for an illustration.

The rational Hodge structure on Hn(T 2n
◦ ;Q) by I◦ is polarized with respect to the wedge

product on T 2n
◦ :

(W n
h◦/W

n+2
h◦ )× (W n

h◦/W
n+2
h◦ ) 3 (ψ, χ) 7−→

∫
T 2n
◦

ψ ∧ χ ∈ Q. (2.21)

When this bilinear form (symmetric if n is even, and anti–symmetric if n is odd) is pulled

back by g to H∗(T 2n;Q), it becomes

g∗(W n
h◦/W

n+2
h◦ ) × g∗(W n

h◦/W
n+2
h◦ ) 3 (g∗(ψ), g∗(χ)) (2.22)

7−→ (−1)
n(n−1)

2

∫
T 2n

(
n∑
k=0

(−1)kΠ2kg
∗(ψ)

)
∧ g∗(ψ) ∈ Q,

where Π2k is the projection H∗(T 2n;Q)→ H2k(T 2n;Q).

Remark 2.15. The most natural choice of the operators IB′ and JB′ are for B′ equal

to the B–field in the data (T 2n;G,B) of an N = (1, 1) SCFT. In this case, IBJB is an

operation multiplying −1 to the right-moving momentum on ΛR [23, eq. (2.10)]. It is still

possible, mathematically, to define those operators with B′ chosen differently than B itself;

then different U(1) subgroups S1
I,B′ and S1

ω,B′ are specified within SO(ΛR, q). For a technical

reason in the presentation, we will also use such subgroups in footnote 34.

2.16. Suppose that there are two geometric SYZ-mirrors for the N = (1, 1) SCFT with a set

of data (T 2n;G,B; I). Let Γfi⊕ Γbi ∼= H1(T 2n;Z) for i = 1, 2 be the split of the 1-cycles into

those in the fiber (to be taken T-dual) and those in the base, and gi and fi (with i = 1, 2)

the corresponding lattice isometries and the Hilbert space isomorphisms, respectively.

14The vertical generalized rational Hodge structure splits into pure rational Hodge structures of weights
ranging from 0 to 2n, when the condition

ω|Γb⊗R = 0, B|Γb⊗R = 0 (2.20)

is also satisfied.

19



(a) (b)

Figure 1: This figure illustrates how the (a) horizontal and (b) vertical S1 subgroups act
on H∗(T 4;R), and how the filtration W •

h is introduced on H∗(T 4;Q). See also Fig. 2 for the
filtrations g∗(W •

h◦).

Both representations ρspin(hI◦
(i)
,B◦i

) on H∗(T 2n
◦(i);R) for i = 1, 2 are pulled back by gi to

one identical representation on H∗(T 2n;R), and that is the representation ρspin(hω,B). It

is therefore economical to deal with ρspin(hω,B) instead of ρspin(hI◦
(i)
,B◦i

). The gradings and

the filtrations pulled back to H∗(T 2n;Q)—g∗i (H
k(T 2n
◦(i);Q)) and g∗i (W

k
h◦(i))—are however not

identical15 for different geometric SYZ-mirrors i = 1, 2 (cf Fig. 2).

2.5 Coarse Classification of CM-type Abelian Surfaces

A complex torus M = Cn/Z⊕n = (T 2n; I) of dimension n is regarded as an abelian variety

when there exists a polarization, which means the existence of a ψ ∈ H2(M ;Z)∩H1,1(M ;R)

such that the bilinear form ψ(I−,−) : (X, Y ) 7→ ψ(IX, Y ) for X, Y ∈ H1(T 2n;R) is positive

definite. It is a non-trivial condition on I whether a polarization exists or not. Mathemati-

cians tend to favor abelian varieties over general complex tori because abelian varieties may

be treated as algebraic varieties (rather than complex analytic manifolds). String theorists,

however, do not have any a priori reason to be in favor of a complex structure on T 2n that

allows a polarization over those that do not. So, here, we introduce the following definition

for a general complex torus that is not necessarily an abelian variety.

Definition 2.17. Let M = (T 2n; I) be a complex torus of dimension n; then a rational Hodge

structure is given on H1(M ;Q). The following two conditions are known to be equivalent:16

15The pulled back filtrations, g∗i (W •h◦(i)), are identical, if Γf1 = Γf2 (even when Γb1 6= Γb2).
16The proof of Props. 17.3.4 and 17.3.5 of [33] does not assume that the Hodge structure in question admits
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(i) The algebra End(H1(M ;Q))Hdg over Q contains a commutative semi-simple subalge-

bra17 of dimension 2n.

(ii) The Hodge group of the Hodge structure Hg(M) is commutative.

The definition of a Hodge group is given in Def. A.9; very little intuition on the Hodge group

is required, however, in following the related arguments in section 3.1.

When either one of the above conditions (and hence both) are satisfied, we say that

the complex torus has/is with sufficiently many complex multiplications, and also that the

rational Hodge structure is with sufficiently many CM. In the case a complex torus M (and

its rational Hodge structure on H1(M ;Q)) with the property (i), (ii) admits a polarization,

we say that M is a CM abelian variety, and the Hodge structure is of CM-type.

Remark 2.18. It may seem a little odd to use different jargons for one and the same

properties, (i) and (ii), depending on whether existence of a polarization is guaranteed or

not. Such a choice of jargons partially reflects the fact that the properties (i) and (ii) mean

a lot more when they are combined with a polarization.

a polarization.
17 When a finite dimensional semi-simple algebra over Q is commutative, then it is of the form of ⊕α∈AFα,

the direct sum of a finite number of number fields Fα. Conversely, an algebra of this form is always semi-simple
and commutative.
An addendum in arXiv ver. 2: only one of the authors (TW) is held responsible for the rest of this

footnote. Although the condition (i) is a natural generalization of the definition of CM-type from abelian
varieties to complex tori, there is another way to generalize that is equally natural. One might also think of
defining complex tori with sufficiently many complex multiplications by imposing the following condition: (i′)
The semi-simplification of the algebra R := End(H1(M ;Q))Hdg over Q, i.e., the quotient R/J by the radical
J := J(R) of R, contains a commutative semi-simple subalgebra of dimension 2n. It turns out (as explained
shortly), however, that the two conditions (i) and (i’) are equivalent; so it does not matter which one is used
for the definition.

To see that the condition (i) implies the condition (i′), one just has to note that a semi-simple subalgebra
F ⊂ R is injectively mapped into the quotient R/J . To see that the condition (i′) implies (i), think of
a case where M is an indecomposable complex torus of dimension n for simplicity (we use terminology of
[34]). The algebra R is a local algebra, and the division algebra R/J contains a commutative algebra F
(a field F in this simple case) because of the condition (i′). Now, there is a sequence of complex subtori
M ⊃ JM ⊃ J2M ⊃ · · · ⊃ JmM = {0}; here, we adapt the idea of Loewy series of a module ([35, p.
346], [36, §1]) to a complex torus. The division algebra R/J and its subfield F is realized on each of the
complex tori J iM/J i+1M with i = 0, · · · ,m− 1 as the endomorphism algebra. If a non-zero element φ+ J
of R/J or F were to be realized trivially in any one of the tori J iM/J i+1M , then φ ∈ R must be nilpotent,
which is a contradiction. So, a degree 2n field F has an embedding into EndQ(J iM/J i+1M) for some
i ∈ {0, · · · ,m−1}, and we learn that the complex torus J iM/J i+1M is of n dimension, which further implies
that J i+1M = 0, and J iM = M , so m = 1, i = 0, and J(R) = 0 in the end. Under the condition (i′), the
semi-simple commutative subalgebra F ⊂ R/J is actually a subalgebra of R (i.e., the condition (i)), and an
indecomposable complex torus satisfying the condition (i′) is always a simple complex torus. �
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Here are a few properties that hold true only when a polarization exists (see e.g., [33, 37,

6]):

• The algebra End(H1(M ;Q))Hdg is semi-simple, so this algebra has the structure (A.5).

• The semi-simple algebra End(H1(M ;Q))Hdg with the structure (A.5) acts faithfully18 on

the vector space H1(M ;Q) (by definition); when this algebra contains a 2n-dimensional

commutative subalgebra (so, its structure is of the form in footnote 17), that means

that the division algebra Dα is commutative, (i.e., Dα = kα and qα = 1), and the

number field Fα is a degree-nα extension19 of the number field kα.

• Both kα and Fα are CM-fields.

A little more information is provided in section 3.1 on complex tori with sufficiently

many complex multiplications. Although complex tori with sufficiently many complex mul-

tiplications are more general than CM abelian varieties (making it desirable to have a theory

relating rational SCFTs with such tori), we will be able to confirm such a connection only

for CM abelian varieties. This is for scientific reasons, not a matter of mathematical taste,

preference or interests.

For that reason, it makes sense to prepare ourselves to work specifically with CM abelian

varieties. Let us quote a result of classification of CM-type abelian varieties of n = 2 di-

mensions. That is essentially done by classifying the CM algebras ⊕α∈AFα of dimension

2n = 4.

Lemma 2.19. [6, pp.64–65 Ex.8.4.(2)] There are four different kinds of CM algebras ⊕αFα
over Q of dimension 4.

(A) The CM algebra is a CM field (i.e., |A| = 1), and F = Fα ∼= Q[x, y]/(y2− d, x2− p) for

some square-free integers d > 1 and p < 0. This field F is an extension of the imaginary

quadratic field K(2) ∼= Q[x]/(x2 − p). The totally real subfield of F is Q[y]/(y2 − d).

(A’) The CM algebra is of the form K
(2)
1 ⊕K

(2)
2 , where K

(2)
1
∼= Q[x1]/(x2

1 − p1) and K
(2)
2
∼=

Q[x2]/(x2
2− p2) are imaginary quadratic fields that are not mutually isomorphic. That

is, p1, p2 are negative square-free integers, and p1 /∈p2(Q×)2. |A| = 2 in this case.

18A structure theory on End(H1(M ;Q))Hdg of a complex torus, not necessarily with a polarization, is
found in [34, §1.7 and §1.8].

19Footnote 21 provides a pedagogical explanation on how to construct an extension Fα/kα.
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(B, C) The CM algebra is a CM field (i.e., |A| = 1), F = Fα =: K, that does not contain a CM

subfield. Such a degree-4 CM field always has a structureK ∼= Q[x, y]/(y2−d, x2−p−qy)

for some square-free integer d > 1 and rational numbers p, q such that p < 0, q 6= 0

and d′ := p2 − q2d > 0. The two distinct cases d′ ∈ d(Q×)2 and d′/∈d(Q×)2 are called

the case (B) and (C), respectively; the field extension K/Q is Galois and non-Galois,

respectively, in the two cases. The totally real subfield is Q[y]/(y2 − d).

The distinction between the cases B and C is not very important in the analysis in this article.

The case (A) looks as if it is the cases (B, C) with just setting q = 0. There is a clear

difference between the case (A) and the cases (B, C), however. The difference is seen in the

reflex field of the CM field F in the case (A) and the field K in the cases (B, C) (e.g., [6, 37]).

To be more explicit:

2.20. For the CM field F in case (A), the four embeddings F ↪→ Q are denoted by τ±±,

where τ±∗ : y 7→ ±
√
d and τ∗± : x 7→ ±√p = ±i

√
−p. Throughout in this article, we mean

by
√
d for d ∈ R>0 the positive square root, and by

√
p = i

√
−p for p ∈ R<0 the square root

in the upper half complex plane.

There seem to be two choices of a CM-type of the CM-field, {τ++, τ−+} and {τ++, τ−−};
in fact, we have an alternative presentation F ∼= Q[x′, y]/(y2 − d, (x′)2 − pd) due to the

isomorphism xy ↔ x′, and the set of embeddings {τ++, τ−−} for F ∼= Q[x, y]/(y2− d, x2− p)
is regarded as {τ++, τ−+} for F ∼= Q[x′, y]/(y2 − d, (x′)2 − pd). So, we do not lose generality

by thinking only of the CM-type Φ := {τ++, τ−+}.
For the CM-type (F,Φ), the reflex field F r is Q[ξr]/((ξr)2 − p), which is an imaginary

quadratic field. The reflex field of the reflex field is F rr = Q(
√
p), and F rr is a proper-subfield

of F in the case (A). It is also easy to see this directly from the fact that the CM-type Φ is

not primitive, but is induced from the CM-type (K(2), τ∗+ : x 7→ √p) [6, §8].

For the CM field K in the cases (B, C), on the other hand, the four embeddings K ↪→ Q
are denoted by τ±±, where

τ±∗ : y 7→ ±
√
d, τ±+ : x 7→

√
p± q

√
d = i

√
−p∓ q

√
d, (2.23)

τ±− : x 7→ −
√
p± q

√
d = −i

√
−p∓ q

√
d. (2.24)

We introduce a short-hand notation
√

+ :=

√
p+ q

√
d and

√
− :=

√
p− q

√
d for the pure

imaginary complex numbers in the upper half plane and use it for the sake of compactness

of notation in this article.
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There seem to be two inequivalent choices of a CM-type of the CM-field K, namely,

{τ++, τ−+} and {τ++, τ−−}. We can change the presentation of the field K (with different

values of p, q) so that the choice {τ++, τ−−} is regarded as {τ++, τ−+} in the new presentation,

as we have done in the case (A). So, we do not lose generality by considering only one CM-type

Φ := {τ++, τ−+}.
The reflex field Kr of (K,Φ) is not (necessarily) isomorphic to K in the cases (B, C), but

is a degree-4 number field

Kr ∼= Q[y′, ξr]/((y′)2 − d′, (ξr)2 − 2p+ 2y′). (2.25)

The reflex field of Kr, denoted by Krr, is K itself in the cases (B, C). That is the difference

between the case at hand and case (A); this difference in algebraic notation/terminology is

also reflected in geometric notation/terminology concerning abelian varieties as we quote a

statement below (Lemma 2.22).

Before moving on, however, let us introduce notations τ r±± for the four embeddings of the

reflex field Kr ↪→ Q.

τ r±∗ : y′ 7→ ±
√
d′, τ r±+ : ξr 7→

√
p+ q

√
d±

√
p− q

√
d, (2.26)

τ r±− : ξr 7→ −
(√

p+ q
√
d±

√
p− q

√
d

)
. (2.27)

2.21. Let us also write down a little bit of information on the reflex field in the case (A’),

because we use that later in this article. The two embeddings of the imaginary quadratic

fields K
(2)
i are given by τiεi : xi 7→ εi

√
pi = εii

√
−pi for εi ∈ {±}. A CM-type20 of the

CM algebra K
(2)
1 ⊕ K

(2)
2 must be for Φ = {(τ1ε1 , τ2ε2)} for some choice of (ε1, ε2). For any

one of them, the reflex field is Kr = Q[x1, x2]/(x2
1 − p1, x

2
2 − p2), which is isomorphic to

Q[ξr, y′]/((ξr)2 − p1, (y
′)2 − d′) with d′ = p1p2 > 0 through x1 7→ ξr and x1x2 7→ y′. The four

embeddings may be denoted by τ rε′,εr , where τ r±∗ : y′ 7→ ±
√
d′ and τ r∗± : ξr 7→ ±√p1. �

Let us now quote the known result stating how the classification of degree-4 CM algebras

above is translated to the classification of CM-type abelian varieties of complex dimension 2

(abelian surfaces).

Lemma 2.22. Let M be an abelian surface of CM-type. Then it must be in one of the

following mutually exclusive cases.

20See [37, Def. 1.17] for the definition of the reflex field of a CM algebra that is not a CM field.
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(A) There is an isogeny ϕ : M −→ E × E where E is an elliptic curve of CM-type with

End(H1(E;Q))Hdg ∼= K(2) ∼= Q[x]/(x2 − p). In this case,

End(H1(M ;Q))Hdg ∼= M2(K(2)); (2.28)

for any square-free integer d > 1, one can find within21 the algebra M2(K(2)) a subfield

F of the property (A) in the classification in Lemma 2.19.

(A’) There is an isogeny ϕ : M −→ E1 × E2 where Ei is an elliptic curve of CM-type with

End(H1(Ei;Q))Hdg ∼= K
(2)
i
∼= Q[x]/(x2 − pi) (for both i = 1, 2).

(B,C) M does not contain an abelian subvariety. End(H1(M ;Q))Hdg ∼= K.

Abstract elements denoted by x, y are then regarded as ‘Hodge structure preserving’ endo-

morphisms on H1(M ;Q).

3 Choice of Complex Structure

As we have remarked in Discussion 2.4, there is no way not choosing a complex structure

on T 2n when we wish to establish a Gukov–Vafa-like characterization of rational T 2n-target

(S)CFTs. On one hand, it is desirable to find a characterization statement that works well

for a broader class of complex structures on T 2n. For example, it may be natural for algebraic

geometers to pay attention only to a complex structure I such that (T 2n; I) is an abelian

21 Such a CM field F ∼= Q[x, y]/(x2 − p, y2 − d) within M2(K(2)) can be constructed as follows. First,
think of a map φx : z1 7→ √pz1, z2 7→ √pz2. The pull-back φ∗x generates the center K(2)12×2 of the algebra

M2(K(2)). Next, for a square-free integer d > 1 and a complex multiplication ξ ∈ End(H1(E;Q))Hdg\{0},
think of a map φd,ξ : z1 7→ dξz2, z2 7→ ξ−1z1. Then (φ∗d,ξ) ∈ End(H1(M ;Q))Hdg has the property of the

generator y, so we may set F to be the subalgebra of M2(K(2)) generated by x = φ∗x and y = φ∗d,ξ.

Such a subfield F within the algebra M2(K(2)) has the following property characterized by a polariza-
tion Qd,ξ ∈

√
p
(
dz1 ∧ dz̄1̄ + dNm(ξ)dz2 ∧ dz̄2̄

)
Q. When we assign to φ ∈ End(H1(M ;Q))Hdg ∼= M2(K(2))

another endomorphism φ′ ∈ End(H1(M ;Q))Hdg by Q(φ′−,−) = Q(−, φ−) (this is called Rosati involution
with respect to Q), then φ′x = −φx, and φ′d,ξ = φd,ξ, so φ′ ∈ F for any φ ∈ F (i.e., the subfield F for d, ξ is
closed under the involution by Qd,ξ). See [37, Prop. 3.6 (b)] for more information.

All above in this footnote are written by mathematicians in many articles explaining the theory of complex
multiplication of abelian varieties, but are often expressed only in abstract and general terms. So, we pursued
a hands-on style of presentation preferred by string theorists here.

In the context of string theory, it is usually not motivated to fix an embedding of a complex analytic
manifold M to a projective space to see it as an algebraic variety. String theorists are not worried about
too many automorphisms either. So, there is no particular reason to restrict one’s attention only to a proper
subalgebra F of M2(K(2)). It is still good to know that M2(K(2)) contains a subfield F that is CM and a
degree-2 extension of K(2), because that is enough to be able to apply a useful fact written as Lemma A.11.
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variety (e.g. [19]), i.e., an object in the category of algebraic varieties (instead of a general

complex torus as an object of the category of complex analytic manifolds). As string theorists,

however, we should give a thought whether such a characterization has a chance to work for

a complex structure not necessarily with a polarization. That is the subject of section 3.1.

On the other hand, if there is a choice of a complex structure I that is motivated well in

string theory, there is a chance that we have a sharper/clearer characterization statement for

rational T 2n-target (S)CFTs. That is what we aim for in section 3.2.

3.1 Polarization

Let us first extract more information from the definition of a complex torusM with sufficiently

many complex multiplications.

3.1. As a direct consequence of the definition, there must be an algebra of endomorphisms of

the form ⊕α∈AFα acting faithfully on H1(M ;Q); here, Fα is a number field. Since the action

is faithful, the comparison of the dimensions implies that the vector space H1(M ;Q) should

have a structure H1(M ;Q) ∼= ⊕α∈A[H1(M ;Q)]α, where [H1(M ;Q)]α is a 1-dimensional vec-

tor space of Fα. See footnote 17 and Lemma A.10 for more background information. We

can apply the following discussion to individual pairs Fα and [H1(M ;Q)]α, so we drop the

subscript now.

Any endomorphism in F ⊂ End(H1(M ;Q))Hdg maps the Hodge (1,0) and (0,1) com-

ponents of H1(M ;Q) to themselves. So, the action of the endomorphisms in F can be

diagonalized simultaneously on the two Hodge components separately. The simultaneous

eigenstates of the action of F explained in Lemma A.11 should therefore belong either to the

(1,0) component, or to the (0,1) component. The set Hom(F,C) of embeddings of the field

F is therefore separated into two subsets, Φ ⊂ Hom(F,C) for the (1,0) components and Φ

for the (0,1) components. Moreover, the set Φ consists of the embeddings in Φ followed by

the complex conjugation in C. This means that a number field F in the context of a complex

torus with sufficiently many complex multiplications must be a totally imaginary field.

Let F be a totally imaginary field of degree 2n, and Φ = {τa} ⊂ Hom(F,C) a set of n

embeddings, any two of which are not mutually complex conjugate of the other. Then one can

construct a complex torus Cn/Z⊕2n of n-dimensions by choosing a basis {ηI=1,··· ,2n} of F/Q
and setting Z⊕2n ↪→ Cn to be (n1, n2, · · · , n2n) 7→ (τ1(nIηI), τ2(nIηI), · · · , τn(nIηI)) ∈ Cn.

The 2n vectors (τa=1,··· ,n(ηI)) ∈ Cn ∼= R2n for I = 1, · · · , 2n are automatically linearly

independent over R; to see this, it is enough to note that the 2n×2n matrix (τa(ηI), τ̄a(ηI))I,aā
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has a non-zero determinant (see Lemma A.11). The algebra of endomorphisms of this complex

torus contains a subalgebra isomorphic to F (use Lemma A.12).

Remark 3.2. CM fields constitute a special subclass of totally imaginary fields. A complex

torus with sufficiently many complex multiplications is a CM abelian variety if and only if

its endomorphism algebra ⊕αFα is made of totally imaginary fields Fα that are all CM fields.

The implication ⇒ is from the 3rd property quoted in Rmk. 2.18. The implication ⇐ is

from Lemma 4.1. Examples of totally imaginary fields that are not CM fields are found22 in

the database LMFDB (www.lmfdb.org). For example, F = Q[x]/(x4 − 2x2 + 2).

Having developed intuitions23 on complex tori with sufficiently many complex multipli-

cations, however, let us see

Proposition 3.3. [19, Thm. 2.5] Let M = (T 2n; I) be an abelian variety, i.e., a complex

torus that admits a polarization. If there exists a constant metric G compatible with I that

is rational in the sense of (2.4), then the polarized rational Hodge structure on H1(M ;Q) is

of CM-type.

For a set of data (T 2n;G,B) for which the (S)CFT is rational, there is always a complex

structure I with which G is compatible and which admits a polarization (see Cor. 2.7 and the

discussion that follows). So, Prop. 3.3 above is not an empty statement for any T 2n-target

rational (S)CFTs.

The proof of [19, Thm. 2.5 + Prop. 2.4] is just as informative as the statement itself.

Prop. 2.4 of [19] proves that the properties (i) and (ii) in Def. 2.17 are equivalent to the

property

(iii) the Hodge group Hg(M)(R) is compact

for an abelian variety M ; Thm. 2.5 of [19] proves the compactness (iii) of Hg(M)(R) when

there exists a rational G that is compatible with I, and hence the properties (i) and (ii) in

22Math StackExchange entry “totally imaginary number field of degree 4”
https://math.stackexchange.com/questions/4372232/

23In the case of CM abelian varieties, the notion of a primitive CM-type (Kα,Φ
rr
α ) is available [6], so one

can work out the embedding of the algebra ⊕αFα into the entire endomorphism algebra End(H1(M ;Q))Hdg

is determined from the CM type (Fα,Φα). For a general complex torus with sufficiently many complex
multiplications, the authors have not made enough effort to come up with an alternative to the primitivity
of CM type; so the authors are not ready to write down a statement similar to the 2nd item in Rmk. 2.18
in connection with the theory of structure of End(H1(M ;Q))Hdg for a general complex tori in [34, §1.7 and
§1.8].
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Def. 2.17. In proving the equivalence between the properties (iii) and (i, ii), however, Ref.

[19] uses the fact that Hg(M)(R)Ad(h(i)) is compact; to prove the compactness of this group,

Thm. 1.3.16 of [38]24 uses the positive definiteness of a polarization of the rational Hodge

structure. To conclude, the equivalence between the properties (iii) and (i, ii) breaks down

when the rational Hodge structure H1(M ;Q) does not necessarily have a polarization.

In our context, even when there is a constant rational metric G compatible with the

complex structure I of a complex torus M = (T 2n; I), we cannot derive the property (i), the

presence of sufficiently many complex multiplications (endomorphisms), if I is not polarized.

We could pay attention to complex tori M = (T 2n; I) satisfying the property (i) in Def. 2.17,

but it is not obvious whether there exists a constant rational metric compatible with the

complex structure I (Discussion 4.4 constructs rational metrics satisfying (2.4), by exploiting

properties of CM fields not available to a general totally imaginary field). For this reason, we

pay attention only to complex structures I that admit polarization in the rest of this article.

There are countably infinitely many such complex structures I for a constant rational

metric G on T 2n; complex structures compatible with G are parametrized by S2 [39], and

once a 2-form ψ with
∫
ψ ∧ ψ > 0 is chosen from H2(T 4;Q), then we should choose the

direction of the Kähler form ω for the metric G in the way Rω includes the projection of ψ

to ΠG in the notation to be used in section 3.2, so that ψ becomes Hodge (1,1) type (cf the

discussion in between (3.3) and (3.4)). There are countably infinitely many choices of such

ψ, and hence of a polarizable complex structure I. Existence of countably infinitely many

complex structures is also understood naturally from the way Cor. 2.7 is proven in [17].

3.2 Transcendental Part of the B-field

We may deal with all the polarizable complex structures I on T 2n with which a given metric

G is compatible and try to characterize the rational Hodge structures when (T 2n;G,B)

yields a rational (S)CFT. That is done in section 5.2.3. It is also an option to impose

further conditions on the choice of I and try to characterize the Hodge structures for rational

(S)CFTs for such a smaller class of complex structures. That is what we do in Thms. 5.5, 5.7

and 5.8, built on Thm. 4.6. For them to make sense, however, we should prove the following

Proposition 3.4. This is for the case n = 2. Let (T 2n=4;G,B) be a set of data for which the

(S)CFT is rational. Then there exists a polarizable complex structure I on T 4 with which G

24We refer to the LNM version, not to its arXiv versions.
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is compatible, and the B-field only has the Hodge (1, 1) component with respect to that I. In

particular, the B-field is in algebraic part H2(T 4
I ).

Here,

Definition 3.5. For a general Kähler manifold M of dimension n,

H2(M) := H1,1(M ;R) ∩H2(M ;Q) (3.1)

is said to be the algebraic part of H2(M ;Q). When n = 2, the orthogonal complement

TM ⊗Q :=
[
H2(M ;Q)⊥ ⊂ H2(M ;Q)

]
(3.2)

with respect to the wedge product is said to be the transcendental part. The rational Hodge

structure on H2(M ;Q) given by I has a decomposition into the substructures on H2(M) and

TM ⊗Q; the substructure on H2(M) is of level-0 and that on TM ⊗Q of level-2. For a 2-form

ψ ∈ H2(M ;R), its decomposition into H2(M)⊗R⊕TM ⊗R is denoted by ψalg +ψtransc, and

are called the algebraic and transcendental parts/components.

Proof of Prop. 3.4: Recall that the metric G determines the real 3-dimensional vector

subspace ΠG of H2(T 4;R) that consists of 2-forms that are self-dual under the Hodge-*

operation with respect to the metric G. Choice of a complex structure I compatible with G

is to specify one direction for ω = 2−1G(I−,−) within ΠG; so, the choice of I comes with

a variety S2 [39, §2]; the two directions in ΠG orthogonal to ω with respect to the wedge

product supports the holomorphic (2,0) form ΩM on T 4. Recall also that any 2-form can

be decomposed into the self-dual component and the anti-self-dual component under the

Hodge-* operation; let B = B‖ +B⊥ be the decomposition of the B-field.

When B‖ = 0, automatically there is no Hodge (2,0) or (0,2) component in B = B⊥,

regardless of which direction in ΠG is chosen (and of how complex structure I is chosen). We

just have to choose any I in S2 such that a polarization exists (such an I exists; we have

already seen that at the end of section 2.3 for a rational G).

When B‖ 6= 0, there is virtually no free choice for I after requiring that the Hodge (2,0)

component is absent; we have to choose ω ∈ RB‖. Choosing ω ∈ R<0B‖ instead of ω ∈
R>0B‖ is nothing more than declaring holomorphic coordinates on T 4 as anti-holomorphic

coordinates instead. So, we fix ω = 2−1G(I−,−) by the condition ω ∈ R>0B‖, and prove

that there is a polarization under I.
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To this end, note that
∫

ΩM ∧B‖ = 0 and
∫

ΩM ∧B⊥ = 0, which is equivalent to∫
T 4

ΩM ∧B = 0,

∫
T 4

ΩM ∧ (∗B) = 0. (3.3)

So, both B and ∗B are in H1,1(T 4
I ;R). We already know that B is also in H2(T 4;Q), when

(T 4;G,B) is for a rational (S)CFT.

If R(∗B) = RB, then either ∗B = B or ∗B = −B. In the case B‖ 6= 0, ∗B = B is the

only option, and B‖ = B = ∗B. In that situation, either B or −B is a polarization. To see

this, note first that
∫
T 4 B ∧ B =

∫
T 4 B ∧ (∗B) > 0. This means that the Hermitian 2 × 2

matrix (Bab̄) in B = iBab̄dz
a ∧ dz̄b̄ has a positive determinant, so the product of the two

eigenvalues of the matrix is positive. This proves that either B or −B is positive definite,

besides being rational.

If ∗B and B are linearly independent in H2(T 4;R), then SpanR{B, ∗B} ⊂ H1,1(T 4;R) is

a 2-dimensional subspace, with signature (1, 1). Now, we claim that R(∗B) ∩ H2(T 4;Q) is

not {0}. To see this, it is enough to note that

(∗B)IJ =
√

det(G) εIJMN GMKGNLBKL
1

2
, (3.4)

where εIJKL is the {±1}-valued totally anti-symmetric tensor of rank-4; R(∗B) contains such

2-forms as
√

deg(G)
±1

(∗B), which are rational, as promised. This means that H2(T 4
I ) =

H2(T 4;Q) ∩ H1,1(T 4
I ;R) is at least of 2-dimensions over Q of signature (1, 1). Moreover,

within the 2-dimensional H2(T 4
I ), the there is a line Rω along the Kähler form, and there is

a rational point of H2(T 4
I ) arbitrarily close to the line in H2(T 4

I )⊗ R. Such a rational point

is a polarization.

The last statement in Prop. 3.4 follows from Lemma 3.6 below. We review it below for

the benefit of the reader not familiar with it. �

Such a complex structure in Prop. 3.4 is almost unique when B‖ 6= 0, and there will be

infinitely many when B‖ = 0 (see the discussion at the end of section 3.1).

Lemma 3.6 (well known in math). Let TM ⊗ Q be the transcendental part of a Kähler

surface M that has a polarization in H2(M ;Q). When ψ ∈ TM ⊗ Q is decomposed into

ψ(2,0) + ψ(0,2) + ψ(1,1) and ψ(2,0) = 0, then ψ = 0.

Proof: The input ψ(2,0) = 0 implies ψ(0,2) = 0, because ψ ∈ TM ⊗Q is real. This means

that ψ = ψ(1,1) is in H2(M).

Since we have assumed that M admits a polarization, M is algebraic, so the intersection

form on H2(M) is non-degenerated (Hodge index theorem); H2(M ;Q) ∼= H2(M)⊕ TM ⊗Q
then. So, ψ = ψ(1,1) is both inH2(M) and TM⊗Q, which is possible only if ψ = 0. �
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4 On the Rational Constant Kähler Metric

4.1 It is in the Algebraic Part

For a rational constant metric G on T 2n and a polarizable complex structure I with which

G is compatible, there is an intriguing property on the Kähler form ω = 2−1G(I−,−). In

section 4.1 (and henceforth), any complex structure under consideration is always of this

kind, even when the authors fail to mention that explicitly. To prove Thm. 4.5, we begin

with this elementary preparation.

4.1.1 A Convenient Rational Basis

We have seen that the rational Hodge structure on H1(T 2n
I ;Q) is of CM type, when G is

rational and compatible with a polarizable I. So, a 2n−dimensional CM algebra ⊕α∈AFα
over Q acts faithfully on the 2n-dimensional vector space H1(T 2n

I ;Q). This can be used to

introduce a rational basis of H1(T 2n
I ;Q) with which various computations are easier.

The idea is to use the fact explained in Lemma A.11; we can do so because the individual

CM fields Fα act faithfully on their corresponding [Fα : Q]-dimensional vector subspaces of

[H1(T 2n;Q)]α. In the case F is a CM field K with a primitive CM type, it often becomes

convenient when we choose a basis {η′i=1,··· ,[K:Q]} of K/Q so that {η′i=1,··· ,[K:Q]/2} forms a basis

of the totally real subfield K0 of K, and use a purely imaginary generator ξ∗ of the extension

K/K0 (i.e., K = K0(ξ∗) such that (ξ∗)
2 ∈ K0) to fill the rest of a basis by {η′i+[K:Q]/2 =

(ξ∗η
′
i) | i = 1, · · · , [K : Q]/2}. We apply this prescription to the cases (B, C) for n = 2; we

use the basis {1, y, x, xy} of K/Q as the basis {η′i} in Lemma A.11, and then there must be

an appropriate rational basis {v′i} of H1(T 4;Q) such that v′iτa(η
′
i) for a ∈ {±±} become the

simultaneous eigenvectors of the action of the endomorphisms in K ∼= End(H1(T 4
I ;Q))Hdg.

The rational basis {v′i} corresponding to {η′i} = {1, y, x, xy} is denoted by {α̂1, α̂2, β̂1, β̂2} in

this article. It is further convenient to introduce two complex coordinates za=1,2 on T 4 so

that dz1 = va=++ and dz2 = va=−+. Namely,

(dz1, dz2) = (α̂1, α̂2, β̂1, β̂2)


1 1√
d −

√
d√

p+ q
√
d

√
p− q

√
d√

p+ q
√
d
√
d −

√
p− q

√
d
√
d

 =: (α̂i, β̂i)

(
ZT

αT

)
; (4.1)

Z is real-valued and α pure-imaginary valued; both are 2× 2 matrices.
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For the cases (A) and (A’), it is convenient to apply Lemma A.11 to the CM elliptic

curves referred to in Lemma 2.22. In the case (A’), the imaginary quadratic field K
(2)
i
∼=

Q[xi]/(x
2
i − pi) acts on the i-th elliptic curve of CM-type. We use the basis {η′} = {1, xi}

of K
(2)
i , and Lemma A.11 ensure that there is a rational basis {v′} = {α̂i, β̂i} of H1(Ei;Q)

so that dzi = α̂i +
√
piβ̂i is the (1,0) form, which is also an eigenvector of the action of the

endomorphisms in K
(2)
i .

In the case (A), we may also choose a rational basis as {α̂1, β̂1}∪{α̂2, β̂2} inH1(E×E;Q) ∼=
H1(E;Q)⊕H1(E;Q), and introduce complex coordinates za=1,2 on the two CM elliptic curves

E by dz1 = α̂1 +
√
pβ̂1 and dz2 = α̂2 +

√
pβ̂2.

In both cases (A’) and (A), there must be an isogeny ϕ from the abelian variety M =

(T 4; I) to E1×E2 and E×E, respectively. We pull back the convenient rational basis {α̂i, β̂i}
of E1×E2 and E×E to H1(M ;Q), respectively, and also pull back the complex coordinates

z1,2 to M , and use the same notation, {α̂i, β̂i} and z1,2. In the cases (A’) and (A),

(dz1, dz2) = (α̂i, β̂i)

(
ZT

αT

)
, Z = diag(1, 1), α = diag(

√
p1,
√
p2); (4.2)

in the case (A), α = diag(
√
p,
√
p).

Note that the basis {α̂1, β̂1, α̂
2, β̂2} of H1(T 4;Q) chosen above is generically not a set of

generators of the entire H1(T 4;Z) ∼= Z⊕4. That is not a problem; the observation of GV

[2] was that rational CFTs may be characterized by using a rational Hodge structure, not

an integral Hodge structure, so we just need a rational basis. Although there are infinitely

many mutually non-isomorphic CM-type abelian surfaces, they may have one of only three—

(A), (A’) and (B, C)—qualitatively different rational Hodge structures. Conveniently, all the

analysis in this article needs to be performed for just these three cases.

4.1.2 The Algebraic and Transcendental Parts

We claim in Thm. 4.5 that the Kähler form ω is always in the algebraic part H2(T 4
I ) ⊗ R.

For this purpose, we need to know H2(T 4
I ).

Lemma 4.1. [well known in math literatures (e.g., [6, 37, 19])] Let M be a complex torus of

dimension n where End(H1(M ;Q))Hdg is a CM field F . Then the algebraic part H2(M) ⊂
H2(M ;Q) contains an n dimensional subspace H2(M)gen specified below (h1,1(M) = n2, so

that is possible). The proof also introduces a basis on H2(M)gen and also explains how to

construct a polarization within H2(M)gen ⊂ H2(M).
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Proof: Let F0 be the totally real subfield of F , and Φ = {τa=1,··· ,n} be the CM type cor-

responding to the Hodge (1, 0) components of H1(M ;Q). There must be a basis {eI=1,··· ,2n}
of H1(M ;Q) and a basis {ηI=1,··· ,2n} of F/Q so that dza := eIτa(ηI) for a = 1, · · · , n are the

n holomorphic 1-forms (cf Lemma A.11).

Now, let ξ∗ ∈ F be a generator of F/F0 (i.e., F = F0(ξ∗)) so that ξ2
∗ ∈ F0. Then for any

element ξ ∈ ξ∗F×0 ,

Q(ξ) :=
n∑
a=1

2τa(ξ)dz
a ∧ dz̄ā, (4.3)

= eI ∧ eJ
n∑
a=1

(τa(ξηI η̄J)− τa(ξη̄IηJ)) ,

= eI ∧ eJ
n∑
a=1

(
τa(ξηI η̄J) + τa(ξ̄η̄IηJ)

)
= eI ∧ eJTrF/Q[ξηI η̄J ] ∈ H2(M) (4.4)

(for any field extenstion E/F , TrE/F [x] ∈ F for x ∈ E; see [15, A.1.15] or any introduc-

tory textbook on field theory). Linearly independent choices of ξ from ξ∗F0 generate an

n-dimensional subspace of H2(M), which is denoted by H2(M)gen.

For the (1, 1) form Q(ξ) to be a polarization, first, choose {eI} to be an integral basis of

H1(M ;Z), and restrict to ξ such that TrF/Q[ξηI η̄J ] ∈ Z for all the pairs (I, J); the basis {ηI}
should be those that correspond to the integral basis {eI}. Second, impose inequalities on

ξ ∈ ξ∗F0 so that it is positive definite. �

Lemma 4.2. Let M = (T 2n; I) be an abelian variety of CM-type. Then

dimQH2(M) ≥ dimCM.

Proof: We can split the vector space H1(M ;Q) into its components ⊕a∈A[H1(M ;Q)]a

supporting simple Hodge substructures; let Ka be the CM field End([H1(M ;Q)]a)
Hdg. Thus,

it is enough to prove the statement for a simple abelian variety, and that was done in Lemma

4.1. �

Lemmas 4.1 and 4.2 above imply that

TM ⊗ C ⊂ T gen
M ⊗ C = SpanC

{
(dza ∧ dzb)a<b, (dz̄ā ∧ dz̄b̄)a<b, (dza ∧ dz̄b̄)a6=b

}
, (4.5)

H2(M)⊗ C ⊃ H2(M)gen ⊗ C = SpanC {dza ∧ dz̄ā} (4.6)

for a CM abelian surface M . In fact,
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4.3. This is for n = 2. In the cases (B, C, A’) of CM abelian surfaces M , H2(M)gen is

the entire H2(M); that is almost evident from the details below, but we justify this later in

Discussion 5.2.

In the case (B, C),

dz1 ∧ dz̄1̄ = −2

√
p+ q

√
d
{

(α̂1β̂1) + d(α̂2β̂2) +
√
d(α̂1β̂2 + α̂2β̂1)

}
, (4.7)

dz2 ∧ dz̄2̄ = −2

√
p− q

√
d
{

(α̂1β̂1) + d(α̂2β̂2)−
√
d(α̂1β̂2 + α̂2β̂1)

}
, (4.8)

so

H2(M) = SpanQ

{
(α̂1β̂1) + d(α̂2β̂2), (α̂1β̂2 + α̂2β̂1)

}
, (4.9)

TM ⊗Q = SpanQ

{
(α̂1α̂2), (β̂1β̂2), (α̂1β̂2 − α̂2β̂1), (α̂1β̂1 − dα̂2β̂2)

}
. (4.10)

A generator of the Hodge (2, 0) component is in TM ⊗ C, because

dz1 ∧ dz2 = −2
√
d
[
α̂1α̂2 + (

√
+−
√
−)/(2

√
d) [α̂1β̂1 − dα̂2β̂2]

+(
√

+ +
√
−)/2 [α̂1β̂2 − α̂2β̂1] +

√
d′ β̂1β̂2

]
. (4.11)

Here, we used the notation introduced below (2.24).

In the case (A’),

dz1 ∧ dz̄1̄ = −2
√
p1α̂

1β̂1, dz2 ∧ dz̄2̄ = −2
√
p2α̂

2β̂2, (4.12)

so dz1 ∧ dz2 = (α̂1α̂2)−√p1p2(β̂1β̂2) +
√
p2(α̂1β̂2) +

√
p1(β̂1α̂

2) is in TM ⊗ C below:

H2(M) = SpanQ

{
(α̂1β̂1), (α̂2β̂2)

}
, (4.13)

TM ⊗Q = SpanQ

{
(α̂1α̂2), (β̂1β̂2), (α̂1β̂2), (α̂2β̂1)

}
. (4.14)

In the case (A),25

TM ⊗Q = SpanQ

{
(α̂1α̂2 + pβ̂1β̂2), (α̂1β̂2 + β̂1α̂

2)
}
, (4.15)

generated by the real and imaginary part of dz1 ∧ dz2 = (α̂1 +
√
pβ̂1)(α̂2 +

√
pβ̂2).

H2(M) = SpanQ

{
(α̂1β̂1), (α̂2β̂2), (α̂1α̂2 − pβ̂1β̂2), (α̂1β̂2 − β̂1α̂

2)
}
, (4.16)

generated by dz1 ∧ dz̄1̄/(−2
√
p) and dz2 ∧ dz̄2̄/(−2

√
p) in H2(M)gen, along with the real and

imaginary part of dz1 ∧ dz̄2̄. �
25 The case (A), where M is isogenous to a product of two copies of a CM elliptic curve, is known [40] to

be the case of rank-2 TM .
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4.4. An idea is explained in [19, Thm. 2.5] how to construct a rational constant Kähler

metric on CM-type complex abelian variety M . It is done by decomposing M into its factors

Mα where the algebra End(H1(Mα;Q))Hdg contains a CM field Fα with [Fα : Q] = 2 dimCMα.

Here, we review the construction, as we will refer to this construction (already in section 3.1

and also) later in section 4.1.3 and discussions in 5.11 and 5.13.

Let us use the same notation as in Lemma 4.1 here, except dropping the subscript α

above. For any β ∈ ξ∗F0,

ω(β) :=
i

2

n∑
a=1

τa(ξ∗)τ̄ā(β) (dza ⊗ dz̄ā − dz̄ā ⊗ dza) , (4.17)

G(β) :=
n∑
a=1

τa(ξ∗β̄) (dza ⊗ dz̄ā + dz̄ā ⊗ dza) , (4.18)

= (eI ⊗ eJ)
n∑
a=1

(
τa(ξ∗β̄ηI η̄J) + τa(ξ∗β̄η̄IηJ)

)
= eI ⊗ eJ TrF/Q[ξ∗β̄ηI η̄J ]. (4.19)

In this construction, all the components G
(β)
IJ are rational. One just has to impose inequalities

on ξ∗β̄ ∈ F0 ↪→ Rn so that the metric is positive definite. In the application to the cases (B,

C, A), we may set ξ∗ = x in Lemma 2.19; F0 = K0 in the case (B, C). In the application to

the case (A’), we may set ξ∗ = xi for i = 1, 2, and F0 = Q for both i = 1, 2.

4.1.3 Analysis

The first one of the conditions in (2.4)—one for the metric—involves an integral basis of

H1(T 2n;Z). This condition is still in the same form—the components are rational numbers

when we use a rational basis of H1(T 2n;Q). As a preparation for the analysis in section 5, let

us translate this condition by using the CM-algebra eigenstate basis {dza, dz̄ā} of H1(T 2n
I ;C).

The metric G is Hermitian under the complex structure I, that is,

G = hab̄dz
a ⊗ dz̄b̄ + hābdz̄

ā ⊗ dzb (4.20)

for some constant Hermitian n× n matrix h = (hab̄). Using the linear relations such as (4.1,

4.2), the rationality of the components GIJ in a rational basis is translated to the rationality

of all the components of the matrix(
ZT Z

T

αT αT

)(
h

hT

)(
Z α
Z α

)
=

(
ZThZ + Z

T
hTZ ZThα + Z

T
hTα

αThTZ + αThZ αThα + αThTα

)
. (4.21)
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That is,

ZThZ + Z
T
hTZ ∈Mn(Q)sym, (4.22)

αThα + αThTα ∈Mn(Q)sym, (4.23)

ZThα + ZhTα ∈Mn(Q). (4.24)

We wish to solve those conditions in terms of the matrix h = (hab̄); this is done by working

separately for the cases (B, C), (A’), and (A) separately. So, the analysis leading to Thm.

4.5 is only for n = 2, T 2n=4. We will use the following parametrization of the 2× 2 matrix h:

h =

(
h1 c1 − ic′2

c1 + ic′2 h2

)
, h1,2, c1, c

′
2 ∈ R. (4.25)

Case (B, C): The condition (4.22) implies that

h1 + h2 ∈ Q, h1 − h2 ∈
√
dQ, c1 ∈ Q, ∀c′2 ∈ R, (4.26)

and the condition (4.23) on top of this implies that

c1 = 0. (4.27)

On the other hand, the condition (4.24) is equivalent to c′2 = 0 with arbitrary h1,2 and c1.

So, we have26

h = diag(a+ b
√
d, a− b

√
d), ∃a, b ∈ Q; (4.28)

the corresponding Kähler form ω(−,−) = 2−1G(I−,−) is

ω = i(a+ b
√
d)dz1 ∧ dz̄1̄ + i(a− b

√
d)dz2 ∧ dz̄2̄. (4.29)

This family of Kähler forms parametrized by a, b ∈ Q is the same as the family (4.17)

parametrized by β ∈ ξ∗F0 ([F0 : Q] = [K0 : Q] = 2 in the case (B,C)).

Cases (A’) and (A): The condition (4.22) is translated to h1,2, c1 ∈ Q, and the condition

(4.23) on top of this imposes c1 ∈
√
p1p2Q. So we should have c1 = 0 in the case (A’), while

c1 ∈
√
p1p2Q is equivalent to c1 ∈ Q in the case (A). On the other hand, the condition (4.24)

implies c′2 ∈
√
−p1Q∩

√
−p2Q; so we should have c′2 = 0 in the case (A’), while we just have

c′2 ∈
√
−pQ. To summarize, we should have

(A′) : h = diag(a1, a2), a1,2 ∈ Q, (4.30)

(A) : h =

(
h1 c1 − c2

√
p

c1 + c2
√
p h2

)
, h1,2, c1, c2 ∈ Q, (4.31)

26For the metric to be positive definite, a > 0 and a2 − b2d > 0.
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and the corresponding Kähler forms are

ω = ia1dz
1 ∧ dz̄1̄ + ia2dz

2 ∧ dz̄2̄, (4.32)

ω = i(dz1, dz2) ∧
(

h1 c1 − c2
√
p

c1 + c2
√
p h2

)(
dz̄1̄

dz̄2̄

)
, (4.33)

respectively. The family of Kähler forms in (4.32) in the case (A’) is the same as the family

in (4.17); for the case (A), however, the full family of Kähler forms (4.33) corresponding to

rational metrics has four rational parameters, whereas the family (4.17) constructed by using

one CM subfield F ⊂ End(H1(M ;Q))Hdg has [F0 : Q] = 2 rational parameters.

Having done this analysis, we are ready for this:

Theorem 4.5. This is for n = 2. Let (T 2n=4;G,B) be a set of data for which the (S)CFT is

rational. For a polarizable complex structure I on T 4 with which G is compatible, the Kähler

form ω = 2−1G(I−,−) is always in the algebraic part of the 2-forms, H2(T 4
I )⊗ R.

Moreover, the combination iω is in H2(T 4
I ) ⊗ τ r(20)(K

r), where Kr is the reflex field in

2.20 and 2.21, and τ r(20) its embedding for the Hodge (2, 0) component in TT 4
I
⊗ C.

Proof: It is just necessary to write down the Kähler forms in (4.29, 4.32, 4.33) in the

rational basis in Discussion 4.3. In the case (B, C),

iω = 2τ r++(aξr + bqd/ξr)e1 + 2τ r++(bdξr + aqd/ξr)e2, (4.34)

e1 := α̂1β̂1 + dα̂2β̂2, e2 := α̂1β̂2 + α̂2β̂1. (4.35)

In the case (A’),

iω = 2a1
√
p1(α̂1β̂1) + 2a2

√
p2(α̂2β̂2), (4.36)

while

iω =
√
p
[
2h1(α̂1β̂1) + 2h2(α̂2β̂2) + 2c1(α̂1β̂2 − β̂1α̂

2) + 2c2(α̂1α̂2 − pβ̂1β̂2)
]

(4.37)

in the case (A). �

Prop. 4.1 and Cor. 5.11 of Ref. [19] identifies an example that looks like a counter

example to the (spirit of the) conjecture in section 2.2. The example in [19, §4] chose a

Kähler form within H1,1(M ;R) but not in H2(M)⊗ R, so there is no wonder in the light of

Thm. 4.5 above that the metric is not rational in that example. This observation suggests

that the Kähler form being in the algebraic part is an important element in characterizing

the data for rational CFTs. So, this property is now implemented as the condition 2(b) of

Thms. 5.8 and 5.9 to be meant as a revised version of Conjecture 2.1.
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4.2 A Geometric Mirror Always Exists

Theorem 4.6. (This is only for the n = 2 cases) Let (T 2n=4;G,B) be a set of data for which

the N = (1, 1) SCFT is rational. Choose27 a polarizable complex structure I with which G

is compatible so that the Hodge (2,0) component of B is absent. Then one can always find a

rank-n = 2 primitive subgroup Γf of H1(T 4;Z) so that the T-dual along Γf has a geometric

SYZ-mirror.

Proof: In the cases (B, C, A’), we have stated in 4.3 that α̂1α̂2 is in the transcendental

part of H2(T 4;Q). So, when we choose Γf ⊗Q = SpanQ{α1, α2}, B|Γf = 0 because we chose

the complex structure so that B is purely algebraic. We have also seen in Thm. 4.5 that the

Kähler form is also in the algebraic part, so ω|Γf = 0.

In the case (A), we have seen in (4.31) how the Kähler form is parametrized. A rational

B = Balg should also have 4 parameters in Q because dimQH2(T 4
I ) = 4. Details in 4.3 reveals

that

Balg =
√
p(dz1, dz2) ∧

(
hB1 cB1 − cB2

√
p

cB1 + cB2
√
p hB2

)(
dz̄1̄

dz̄2̄

)
, hB1,2, c

B
1,2 ∈ Q. (4.38)

With a straightforward computation, one can show that Γf = SpanZ{α′1, α′2} with

α′1 = α1, α′2 = α2 −
{
c2

h1

− c1

h1

(hB1 c2 − h1c
B
2 )

(hB1 c1 − h1cB1 )

}
β1 − hB1 c2 − h1c

B
2

hB1 c1 − h1cB1
β2 (4.39)

satisfies the condition ω|Γf = 0 and B|Γf = 0. In the case hB1 c1 − h1c
B
1 = 0, the same

conditions are satisfied when

α′1 = α1 +
1

pv
β1, α′2 = α2 −

c1

h1

(
v − 1

pv

)
β1 + vβ2, v ∈ Q, v 6= 0. (4.40)

The T-dual in the directions (4.39, 4.40) have a geometric SYZ-mirror.

The choices of Γf above still come with a variety of choices of Γb, and moreover, there

will be more choices of Γf other than the one above; they are meant to be only examples. �

5 Refined Gukov–Vafa Theorem for T 4

5.1 CM Horizontal Hodge Structure

Let us quickly go through known results to confirm CM-type statements on horizontal rational

Hodge structures. Whenever we refer to rational Hodge structures in this section 5.1, that is

27We have seen in section 3.2 that such a complex structure I exists. So, this Theorem is not empty for
any set of data (T 2n;G,B).
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a horizontal one.

Prop. 3.3 already implies that the rational Hodge structure on H1(T 2n
I ;Q) is of CM-type,

when we choose a polarizable complex structure I on T 2n compatible with the rational metric

G in a set of data (T 2n;G,B) for a rational SCFT. This may be combined with

Lemma 5.1. [25, Prop. 1.2] Let (h1, V1) and (h2, V2) be both a polarizable rational Hodge

structure. When both are of CM-type, then the polarizable rational Hodge structure (h2 ⊗
h1, V2 ⊗ V1) on the vector space V2 ⊗Q V1 is also CM type. �

So, the polarizable rational Hodge structure on ⊗k(H1(T 2n
I ;Q) is also of CM-type, and

its rational Hodge substructure on ∧kH1(T 2n
I ;Q) = Hk(T 2n

I ;Q) is also of CM-type.28

Within Hk=n(T 2n
I ;Q), there is just one simple Hodge substructure of level-n, denoted by

[Hn(T 2n
I ;Q)]`=n, which contains the 1-dimensional Hodge (n, 0) and (0, n) components. The

algebra End([Hn(T 2n;Q)]`=n)Hdg should be a CM field, and moreover, the CM field should

be29 the reflex field Kr of the CM-type (F,Φ) of the CM-type rational Hodge structure

H1(T 2n
I ;Q).

5.2. In the case of n = 2, let us confirm explicitly the general statements above; that also

serves as a preparation for the discussion in section 5.3.

Let us begin with the case (B, C). We may choose a generator of the Hodge (n, 0) =

(2, 0) component as v++ := dz1 ∧ dz2/(−2
√
d); see (4.11) for the expression. This generator

v++ is within the 4-dimensional space TM ⊗ C and is indeed in the form of eiτ
r
++(ηi) for a

rational basis {ei} given in (4.10) and a rational basis {ηi} = {1, q/ξr, ξr/2, y′} of the reflex

field Kr (see 2.20). It is also possible to confirm that (dz1 ∧ dz̄2̄), (dz̄1̄ ∧ dz2) and (dz̄1̄ ∧ dz̄2̄)

are proportional to eiτ
r
−+(ηi), eiτ

r
−−(ηi) and eiτ

r
+−(ηi), respectively. The CM field Kr acts

on the 4-dimensional vector space TM ⊗ Q in (4.10) as explained in Lemma A.12, which is

in a way preserving the Hodge decomposition. So, Kr ⊂ End(TM ⊗Q)Hdg indeed. The fact

that Kr is not a CM algebra but a CM field implies that the 4-dimensional TM ⊗ Q as a

whole (not its proper subspace) is the transcendental part indeed, and H2(M) is no larger

28Any maximally commutative endomorphism (sub)algebra on ∧kH1(T 2n;Q) and the one on the rest in
⊗k(H1(T 2n;Q)) can have dimensions as large as the dimension of the vector spaces they act. So, existence of
a commutative subalgebra F ⊂ End(⊗k(H1(T 2n;Q)))Hdg with dimQ F = dimQ⊗k(H1(T 2n;Q)) implies that
there exists a commutative subalgebra F1 ⊂ End(∧k(H1(T 2n;Q)))Hdg and F2 on the rest of ⊗k(H1(T 2n;Q))
such that dimQ F1 = dimQ ∧k(H1(T 2n;Q)) (to be rigorous, the structure (A.5) and the observation in footnote
21 need to be used).

29The authors could not identify a reference to cite for this statement, but an easy way to see this may
be to note that the Hecke character associated with the holomorphic n-form is the product of the n Hecke
characters associated with Φ. For string theorists, a direct computation as in 5.2 may be easier.
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than H2(M)gen. We also note that the embedding τ r++ of the number field Kr is the one

associated with the Hodge (2,0) component (i.e., τ r(20) in Thm. 4.5).

In the case A’, literally the same argument as above can be repeated, by using 2.21

instead of 2.20, and using the rational basis (4.14) instead of (4.10). We may think of the

embedding τ r++ of the number field Kr as the one associated with the Hodge (2,0) component.

In the case A, dz1∧dz2 = (α̂1α̂2−pβ̂1β̂2)+
√
p(α̂1β̂2+β̂1α̂

2), which is expressed in the form

of eiτ
r(ηi) for the reflex field F r in 2.20. The endomorphism algebra on the 2-dimensional

TM ⊗Q in 4.3 is a degree-2 extension field, so TM ⊗Q is indeed the transcendental part.

Remark 5.3. Given the fact that the cohomology group of a Ricci-flat Kähler manifold M

has a unique level-n simple Hodge substructure [Hn(M ;Q)]`=n, it is natural to wonder if this

simple Hodge substructure plays more important role than other parts of the cohomology

group. In the particular case of M = T 2n, for example, we may wonder whether or not a

CM-type Hodge structure of [H2(T 2n;Q)]`=n implies that the rational Hodge structure on

H1(T 2n;Q) is CM-type.

In the case of n = 2, this question is split into four cases.

(α) The transcendental part of H2(T 4
I ;Q) is of 2-dimensions; its CM field K ′ should be

K ′ ∼= Q[ξ]/(ξ2 − p) for p ∈ Q<0, an imaginary quadratic field.

(α′) The transcendental part is of 4-dimension, and its CM field K ′ is that of case (A);

K ′ ∼= Q[ξ, y′]/(ξ2 − p1, (y
′)2 − d) ∼= Q[ξ, (ξy′)]/(ξ2 − p1, (ξy

′)2 − dp1); we may write

dp1 =: p2 /∈p1(Q×)2 because d is a square-free integer and d 6= 1.

(β, γ) The transcendental part is of 4-dimension, and its CM field K ′ is that of cases (B, C).

The case (α) has been completely understood, and the question is answered affirmative [40]

(as mentioned already in footnote 25). For other cases, certainly the CM abelian surfaces of

case A’, and B, C are examples of the cases α′, and β, γ here. It is not obvious, however,

whether or not all the abelian surfaces with the property α′, β, γ are such CM abelian surfaces.

5.2 The Vertical Hodge Structure is of CM-type

5.2.1 Mirror Isogeny and Hodge Isomorphism

The following result by [19] exploits various properties very special to torus target SCFTs.

For example, torus-target SCFTs forms a self-mirror moduli space of string vacua; all the
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data of constant metric G, closed 2-form B, complex structure I can be treated by constant-

valued matrices than a field configuration, and all the information on cohomology and Hodge

structure follows from that on H1(T 2n;Q). Nevertheless, we use the result quoted as Prop.

5.4 and reach a nice-looking result (Thms. 5.8 and 5.9) that can be stated in a language that

also (almost) makes sense for other families of target spaces. Now, let us begin with

Proposition 5.4. [19, Prop. 3.10] Let (T 2n;G,B) be a set of data for which the N = (1, 1)

SCFT is rational, and I a complex structure with which G is compatible; here, I may or may

not be polarizable. Suppose further that this SCFT with I has a geometric SYZ-mirror, with

a set of data (T 2n;G◦, B◦; I◦). Then the complex tori T 2n
I and T 2n

I◦ are isogenous.

Now, we can combine this Prop. 5.4 with Thm. 4.6 (verified for n = 2, and for a

polarizable I). For any (T 2n=4;G,B) that yields a rational N = (1, 1) SCFT, there is a

geometric SYZ-mirror, and there is an isomorphism of rational Hodge structures30

(W k
h /W

k+2
h ) ∼=/Q g

∗(W k
h◦/W

k+2
h◦ ) (5.1)

for all k = 0, 1, · · · , 2n = 4; the Hodge structure is given by I (equivalently, by ρspin(hI,B)) on

the left-hand side, and by I◦ (equivalently, by ρspin(hω,B)) on the right-hand side. By using

Prop. 3.3 and the discussion right after Lemma 5.1, we arrive at the following theorem.

Theorem 5.5. This is31 for n = 2. For a general (T 2n=4;G,B) whose corresponding N =

(1, 1) SCFT is rational, choose a polarizable complex structure I with which G is compatible,

and B(2,0) = 0; such a complex structure I exists because of Prop. 3.4. For any geometric

SYZ-mirror of (T 2n=4;G,B; I) (which is known to exist because of Thm. 4.6), with the T-

dual taken along Γf ⊂ H1(T 2n;Z), the vertical rational Hodge structure on g∗(W k
h◦/W

k+2
h◦ ) by

ρspin(hω,B) is of CM-type, and is Hodge isomorphic to the CM-type rational Hodge structure

(W k
h /W

k+2
h ) by ρspin(hI,B) for all k = 0, 1, · · · , 2n = 4.

When there are multiple geometric SYZ-mirrors, there are multiple different filtrations

g∗(W •
h◦) installed on H∗(T 2n=4;Q). The statement here is meant to apply for one common

ρspin(hω,B) and all different g∗(W •
h◦). That is not surprising given the discussion in 2.16,

however.

Thm. 5.5 is meant to be a refined version of [19, Thm. 3.11]. In the present version, we

make it clear that this Thm. 5.5 is applicable and is not an empty statement for any set of

data (T 2n;G,B; I) for a rational SCFT, albeit only for n = 2 at this moment.

30 This also means that the rational Hodge structures on Hk(T 2n=4
◦ ;Q) by I◦ are polarizable, because we

chose I so that the rational Hodge structure on H1(T 2n;Q) is polarizable [28, Prop. 9.4.3].
31Since Thm. 4.6 has been confirmed only for n = 2.

41



Remark 5.6. The CM-ness of the vertical rational Hodge structures on g∗(W k
h◦/W

k+2
h◦ )

follows immediately from the rational nature of the mirror N = (1, 1) SCFT,32 combined

with Props. 3.3 (and the discussions after Lemma 5.1). We need Prop. 5.4, however, for the

existence of a horizontal–vertical Hodge isomorphism (W k
h /W

k+2
h ) ∼= g∗(W k

h◦/W
k+2
h◦ ).

5.2.2 The Simple Level-n Vertical Hodge Substructure

The states e2−1(B±iω) in H∗(T 2n;Q) ⊗ C are the generators of the unique hω,B(eiα) = e∓inα

eigenstates (see Discussion 2.11). These U(1) eigenstates must be in g∗(W n
h◦ ⊗ C) of any

mirror description; we cannot claim that these states must be purely in g∗(Hn(T 2n
◦ ;C)),

because it is not guaranteed whether the Hodge (2, 0) component (with respect to I◦) of B◦

vanishes.

Choose one mirror description for definiteness for the moment. Then f := e2−1(B+iω) ∈
g∗(W 2

h◦) has a decomposition

f = f4e
◦
4 + f2 ∈ g∗(H4(T 4

◦ ;C))⊕ g∗(H2(T 4
◦ ;C)), (5.2)

where Qe◦4 = g∗(H4(T 4
◦ ;Q)) ⊂ H∗(T 4;Q). The decomposition is possible in fact within

f = f4e
◦
4 + f2 ∈ τ r(20)(K

r)⊗Q g
∗(H4(T 4

◦ ;Q))⊕ τ r(20)(K
r)⊗Q g

∗(H2(T 4
◦ ;Q)), (5.3)

because B = Balg is rational, and iω ∈ H2(T 4;Q) ⊗ τ r(20)(K
r) as we have seen in Thm. 4.5.

The vertical rational Hodge structure on g∗(Hn=2(T 2n=4
I◦ ;Q)) is of CM-type (Thm. 5.5), so

there must be a CM-type simple Hodge substructure of level-(n = 2), g∗([H2(T 4
◦ ;Q)]`=2) ⊂

g∗(H2(T 4
◦ ;Q)); the state f2 must be in this level-2 component. The CM field is the reflex field

Kr because End(TM⊗Q)Hdg ∼= Kr. As a general property (Lemma A.11), the dimQ(TM⊗Q)-

dimensional level-n simple Hodge substructure is generated by the Galois conjugates on

the linear combination coefficients of the state33 f2 relatively to a rational basis of the

dimQ(TM ⊗Q)-dimensional vector space; in fact, it does not matter any one of rational basis

of the larger space H∗(T 4;Q) is used for the expansion. The [Kr : Q] states {fσ
2 | σ ∈

Gal(Q/Q)} generate the vector space g∗([H2(T 4
◦ ;Q)]`=2)⊗C. See Fig. 2. The argument here

32The N = (1, 1) SCFT for (T 2n;G,B) and N = (1, 1) SCFT for (T 2n;G◦, B◦) are isomorphic. So the
latter is rational when the former is.

33In applying Lemma A.11, we should keep in mind that we should rescale the state f2 to f′2 ∈ Cf2 in
general so that f′2 is identified with a state of the form eIτ

r
a (ηI) for some rational basis {eI} of the [Kr : Q]-

dimensional vector space g∗([H2(T 4
◦ ;Q)]`=2) and some basis {ηI} of Kr/Q. In the application here, however,

we already know that f2 ∈ τ r(20)(K
r) ⊗ H∗(T 4;Q), so we should use it as it is for the state of the form

eIτ
r(ηI) in Lemma A.11.
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Figure 2: The grading structures pulled back from multiple different SYZ-mirrors are not
necessarily identical. The decomposition of f ∈ H∗(T 4;C) into f4e

◦
4 and f2 therefore de-

pends on the SYZ-mirrors. The combination f is still within g∗(W 2
h◦ ⊗C) for any geometric

SYZ-mirror.

may sound a little abstract; it is still a straightforward exercise to work out the decomposition

f = f4e
◦
4 + f2 for each example of geometric SYZ-mirrors in section 4.2.

It follows from the discussion above that the [Kr : Q] states are in this subspace,

fσ = fσ
4e
◦
4 + fσ

2 ∈ g∗(H4(T 4
◦ ;C))⊕ g∗([H2(T 4

◦ ;C)]`=2) ⊂ C⊗ g∗(W 2
h◦), (5.4)

while they also generate a [Kr : Q]-dimensional subspace—denoted by g∗(T ◦M) ⊗ C—of the

algebraic part A(T 4
I )⊗ C ⊂ H∗(T 4;C), where

A(M)⊗Q := ⊕nm=0

(
H2m(M ;Q) ∩Hm,m(M ;R)

)
(5.5)

for a Kähler manifold M . The composition

g∗(T ◦M ⊗Q) ↪→ g∗(W 2
h◦)→ g∗([H2(T 4

◦ ;Q)]`=2), fσ 7−→ fσ
2 (5.6)

is an isomorphism of rational Hodge structures. This isomorphism is in fact that of a polarized

Hodge structure, because the pairing (2.22) is not sensitive to the W 4
h◦ component. Therefore,

reminding ourselves that the discussion above holds true for any mirror description, we have

Theorem 5.7. Let (T 2n=4;G,B) be a set of data for a rational N = (1, 1) SCFT, and I a

polarizable complex structure with which G is compatible and B(2,0) = 0. Then there exists a
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[Kr : Q]-dimensional vector subspace g∗(T ◦M) ⊗ Q ⊂ A(T 4
I ) ⊗ Q determined uniquely, which

admits a CM-type weight-2 polarized rational Hodge structure with the endomorphism field

Kr; its Hodge (2, 0) and (0, 2) components are generated by e2−1(B+iω), and the polarization

is given by (2.22).

For any geometric SYZ-mirror, g∗(T ◦M)⊗Q ⊂ g∗(W n=2
h◦ ), and there is an isomorphism of

polarized rational Hodge structures between g∗(T ◦M)⊗Q and g∗([H2(T 4
◦ ;Q)]`=2). �

For a general set of data (T 2n;G,B) for which the N = (1, 1) SCFT is not necessarily

rational, and for a general complex structure I with which G is compatible, dimQ(A(T 2n
I ))

can be as small as 2. On the other hand, generically the level-n simple Hodge substructure

of Hn(T 2n
I◦ ;Q), if a geometric SYZ-mirror exists, is of bn = 2nCn dimensions. Obviously the

property stated in Thm. 5.7 no longer holds true in such a general set up.

Let us now summarize what we have found so far for T 4 in the style as close as possible

to Conjecture 2.1.

Theorem 5.8. Let (M ;G,B) a set of data of a real 2n-dimensional manifold M , a Ricci-flat

metric G and a closed 2-form B on M ; we assume that there exists a complex structure I so

that (M,G, I) can be regarded as a Kähler manifold. We have so far verified the following

statements in the case M = R4/Z⊕4 = T 4.

Suppose that the N = (1, 1) SCFT for the set of data (M ;G,B) is rational. Then

1. there exists a polarizable complex structure I on M , with which G is compatible and

(M,G, I) becomes Kähler, and Btransc = 0.

For such a complex structure I (MI is meant to be the complex manifold (M, I)), there are

2. properties on the horizontal and vertical simple level-n rational Hodge substructures:

(a) The level-n simple Hodge substructure on [Hn(M ;Q)]`=n by I is of CM-type,

where the CM field End([Hn(M ;Q)]`=n)Hdg is denoted by K ′.

(b) There exists a [K ′ : Q]-dimensional vector subspace A(MI)⊗Q denoted by T vM⊗Q
on which a simple level-n rational Hodge structure of weight-n can be introduced,

with the polarization (2.22); its Hodge (n, 0) component is generated by f :=

e2−1(B+iω), where ω = 2−1G(I−,−), and this polarized rational Hodge structure is

of CM-type, with the endomorphism field K ′.

(c) There is an isomorphism of polarized rational Hodge structure of weight-n between

the vertical and horizontal simple level-n components T vM ⊗Q and TM ⊗Q.
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3. There are also properties on the rational Hodge substructures other than the level-n

components:

(a) All other rational polarizable Hodge structures on Hk(M ;Q) by I are also of

CM-type.

(b) There is a filtration W •
v on H∗(M ;Q) so that the data (ρspin(hω,B),W •

v ) introduces

a generalized rational Hodge structure on H∗(M ;Q), so that

i. T vM ⊗Q ⊂ W n
v , and

ii. the rational Hodge structures on W k
v /W

k+2
v is of CM-type for all k, and the

one for k = n is polarized by the pairing (2.22).

Furthermore,

4. there is a geometric SYZ-mirror to the N = (2, 2) SCFT for the data (M ;G,B; I), and

5. the filtration W •
v referred to above (and no.6 below) can be interpreted as that of

g∗(W •
h◦), the one on the geometric SYZ-mirror.

Finally, there is one more property that makes sense only for a family of (M ;G,B) that is

self-SYZ-mirror (as in the case of M = T 2n and K3):

6. there is a one-to-one correspondence between the simple rational horizontal Hodge

substructures on (W k
h /W

k+2
h ) and vertical Hodge substructures on (W k

v /W
k+2
v ) so that

there are Hodge isomorphism.

Furthermore, here is one more property whose generalization to M other than a torus is not

obvious:

7. the isomorphisms between the horizontal and vertical rational Hodge structures can be

interpreted as a combination of an isogeny and a mirror map of D-brane charges.

At this moment, the authors do not have hard evidence to believe that the 3rd property

follows as a consequence of the 2nd one, because an issue remains in Rmk. 5.3. So, the

properties no.2 and no.3 are listed independently here.

Proof: This is just a brief note on the origin of the properties above. The property no.1

is from Prop. 3.4. The property no.2(a) is essentially due to [19, Thm. 2.5] (quoted as Prop.

3.3 in this article), while the fact that B + iω ∈ H2(T 4) ⊗ τ r(n0)(K
r)—2.(b)—is from Prop.
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3.4 and Thm. 4.5. The combination of the properties 3.(b).i and 5, T vM ⊗ Q ⊂ g∗(W n
h◦) for

any geometric SYZ-mirror, is from the discussion leading to Thm. 5.7.

For a target space M other than tori and K3 surfaces, the charge n state f under

ρspin(hω,B) is no longer e2−1(B+iω), but is likely to be the one including the worldsheet in-

stanton corrections. That is indicated at least by the example of the Gepner construction of

a Fermat quintic Calabi–Yau threefold (reviewed in section 2.2). �

5.2.3 Trial Statements for a Complex Structure with B(2,0) 6= 0

The results in Thms. 5.5, 5.7 and 5.8 are valid only for a polarizable complex structure I

where B(2,0) = 0, because Thm. 4.6 guaranteeing a geometric SYZ-mirror has been proven

only for such complex structures. For a general polarizable complex structure I, not neces-

sarily B(2,0) = 0, one may still be interested in characterizing the data (T 2n=4;G,B; I) for a

rational SCFT in terms of Hodge structures. Thm. 5.9 below is meant to be for that broader

class of complex structures.

Suppose that (T 4;G,B) is for a rational N = (1, 1) SCFT, and I a polarizable complex

structure with which G is compatible. Suppose further that a geometric SYZ-mirror exists.

Then Prop. 3.3, Thms. 4.5 and 5.5 still hold true. Discussion leading to Thm. 5.7, however,

needs to be modified at one point. The elements {fσ} do not generate a [Kr : Q]-dimensional

subspace of A(M)⊗C, but a [Kr : Q]-dimensional subspace of (eB
transc/2A(M)⊗C); let us still

use the same notation g∗(T ◦M)⊗Q for the [Kr : Q]-dimensional space in eB
transc/2A(M)⊗Q.

So, we have an analogue of Thm. 5.8:

Theorem 5.9. Let (M ;G,B) a set of data of a real 2n-dimensional manifold M , a Ricci-flat

metric G and a closed 2-form B on M ; we assume that there exists a complex structure I so

that (M,G, I) can be regarded as a Kähler manifold. We have so far verified the following

statements in the case M = R4/Z⊕4 ∼= T 4. In the following, we avoid repeating literally the

same sentences as in Thm. 5.8 and abbreviate them by “.......”.

Suppose that the N = (1, 1) SCFT for the set of data (M ;G,B) is rational. Choose

a polarizable complex structure I on M with which G is compatible and (M,G, I) becomes

Kähler, and assume that there is a geometric SYZ-mirror for (M ;G,B; I). Then

1. Btransc ∈ TM ⊗Q ⊂ TM ⊗ R.

For the complex structure I (MI is meant to be the complex manifold (M, I)), thre are

2. properties on the horizontal and vertical simple level-n rational Hodge substructures:

46



(a) The level-n simple Hodge substructure on [Hn(M ;Q)]`=n by I is of CM-type,

where ........

(b) There exists a [K ′ : Q]-dimensional vector subspace of eB
transc/2A(MI)⊗Q denoted

by T vM ⊗Q on which a simple level-n rational ....... 34

(c) There is an isomorphism of .........

3. There are also properties on the rational Hodge substructures other than the level-n

components:

(a) All other rational polarizable Hodge ........

(b) There is a filtration W •
v on H∗(M ;Q) so that ........

Furthermore,

4. (ignore this, because we did not prove Thm. 4.6 for I with B(2,0) 6= 0)

5. the filtration W •
v referred to above (and also at no.6 below) can be interpreted as .........

Finally, there is one more property that makes sense only for a family of (M ;G,B) that is

self-SYZ-mirror (as in the case of M = T 2n and K3):

6. there is a one-to-one correspondence between ........

Furthermore, here is one more property whose generalization to M other than ........:

7. the isomorphisms between the horizontal and vertical ...

The remark at the end of Thm. 5.8 also applies here. �

Remark 5.10. Although the rationality of Btransc is listed (as the no.1 property) separately

in the statement of Thm. 5.9, there may be a way to encode this property together with

others.35

34 The state f = e2−1(B+iω) is in e2−1Btransc

A(MI)⊗ C, and the state e2−1(Balg+iω) is in A(MI)⊗ C. The
latter state is a U(1) eigenstate of S1

ω,B′ for B′ = Balg. We are not sure if there is any importance in this
observation, but let us just note this down here.

35The property 2(b), saying that there exists a vector subspace (T vM ⊗ Q) ⊂ H∗(M ;Q) even within

eB
transc/2A(MI)⊗Q, makes sense only when Btransc is rational, though.
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A näıve idea (which fails in the following) is to introduce the algebra of endomorphisms

of a generalized rational Hodge structure,

End(H∗(T 2n;Q))(ρspin(hI,B),W •h ), (5.7)

those that preserve the filtration, and commute with the ρspin(h1I,B) action. When Btransc is

rational, the algebra above contains

eB
transc/2

(
⊕kEnd(Hk(T 2n;Q))Hdg

)
e−B

transc/2. (5.8)

So, when the rational Hodge structures on Hk(M ;Q) by I are all CM-type, and Btransc is

rational, the algebra (5.7) contains a commutative semi-simple algebra F over Q of dimension

equal to dimQ(H∗(T 2n;Q)) whose quotient representation on W k
h /W

k+2
h is a Q-algebra of

dimension bk(T
2n).

Conversely, however, it is possible for the case where Btransc differs from a rational B′ratnl ∈
TM ⊗Q by a (1, 1) form, that the algebra (5.7) contains a commutative subalgebra F with

dimQ F = dimQ(H∗(T 2n;Q)), and dimQ(F |Wk
h /W

k+2
h

) = bk, if (T 2n; I) is a complex torus with

sufficiently many complex multiplications.

5.3 The Converse

Let us now study whether the converse of Thm. 5.8 is true. By imposing the 2nd and 3rd

properties36 in Thm. 5.8 on a set of data (T 2n=4;G,B) and a polarizable I with Btransc = 0

(implicitly, the 1st property is imposed as well), we will see that there is a significant likeli-

hood that the resulting N = (1, 1) SCFT is rational. However, there are data (T 4;G,B; I)

satisfying the two properties, and yet the corresponding CFTs are not rational. The following

analysis is carried out separately for the cases (B, C), (A’), and (A).

5.3.1 Case (B, C)

Because of the 2nd and 3rd properties in the statement of Thm. 5.8, we have an abelian

variety M = (T 4, I) of CM-type; a CM field K of case (B, C) acts on H1(M ;Q), also on

H3(M ;Q), and its reflex field Kr acts on the [Kr : Q] = 4-dimensional transcendental part

TM⊗Q ⊂ H2(M ;Q). There is also [Kr : Q]-dimensional vector subspace T vM⊗Q ⊂ A(M)⊗Q
on which ρspin(hω,B) introduces a rational Hodge structure with CM by Kr, polarized under

the pairing (2.22). The combination (B+ iω) is in [(T vM⊗Q)∩H2(T 4;Q)]⊗C, and e2−1(B±iω)

36Since it is not guaranteed whether the third property follows from the second, we impose both.
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with the sign + and − should generate the Hodge (2,0) and (0,2) components, respectively.

Let us exploit all those information and see whether one can claim that the B-field and the

metric G are rational (the answer is no).

5.11. The fact that f := e(B+iω)/2 is the only generator of the Hodge (2, 0) component of

the CM-type Hodge structure on T vM ⊗Q, with the CM field Kr and embedding τ r(20) = τ r++,

implies that there must be a basis {1, η1, η2, η4} of Kr/Q, so that

f = τ r++

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (5.9)

where a rational basis {e1, e2} of H2(M) is the one introduced in (4.35); we must set η4 =

(dη2
1 − η2

2) ∈ Kr so that (f,f) = 0. So, there are eight rational parameters for η1, η2 ∈ Kr,

for the moment. The Hodge (0,2) component should be given by

f = τ r+−

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (5.10)

and the (1,1) components by the two vectors

Σ = τ r−+

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
, (5.11)

Σ = τ r−−

[
1 + e1η1 + e2η2 + (α̂1β̂1α̂

2β̂2)η4

]
. (5.12)

This Hodge decomposition must be polarized with respect to (2.22). The condition

(f,f) = 0 is built in by construction, f = e2−1(B+iω). The remaining non-trivial infor-

mation from the polarization is that (f,Σ) = 0 and (f,Σ) = 0. The two conditions are

equivalent to

−2−1
(
τ r++(X)− τ r−±(X), τ r++(X)− τ r−±(X)

)
H2 = 0 (5.13)

for X = e1η1 + e2η2, using just the pairing in H2(M); those conditions are further rewritten

as

d
(
τ r++(η1)− τ r−±(η1)

)2 −
(
τ r++(η2)− τ r−±(η2)

)2
= 0 (5.14)

in the normal closure of the number field Kr.

The eight rational parameters for η1,2 ∈ Kr, that is, A,B,C,D, Ã, B̃, C̃, D̃ ∈ Q in

η1 =: A+By′ + Cξr +Dξry′, η2 =: Ã+ B̃y′ + C̃ξr + D̃ξry′, (5.15)

49



should satisfy the conditions (5.14). Straightforward computation translates the conditions

to

dBC = B̃C̃, dBD = B̃D̃, d(D2d′ − C2) = (D̃2d′ − C̃2), (5.16)

along with

d
[
d′(B2 − 2CD) + p(C2 + d′D2)

]
=
[
d′(B̃2 − 2C̃D̃) + p(C̃2 + d′D̃2)

]
. (5.17)

There are four conditions on the eight parameters.

First, one can immediately see that the rational parameters A and Ã dropped out. So any

A, Ã ∈ Q has no conflict with the condition (5.14) for the consistency of the Hodge structure

(of B + iω) with the polarization (2.22).

Second, we prove that B̃ = 0 by contradiction. If B̃ 6= 0, then C̃ and D̃ can be solved in

terms of C, D and B/B̃. Then

(D2d′ − C2)

(
B2

B̃2
d− 1

)
= 0. (5.18)

This is a contradiction37 because neither d nor d′ is a square of a rational number.

Thirdly, B̃ = 0 implies that either B = 0 or C = D = 0 holds true. The latter is not

possible, however, because D̃2d′ − C̃2 = 0 would follow, although d′ is not a square of a

rational number. So, B = 0. We have now proved that the B-field is

τ r++

[
e1(A+By′) + e2(Ã+ B̃y′)

]
= Ae1 + Ãe2 (5.19)

for free A, Ã ∈ Q. This is the same as saying that the B-field is in H2(M). The rational-

ity condition of the B-field (2.4) follows from the 2nd and 3rd (and 1st) properties in the

statements of Thm. 5.8.

Next, change the parametrization as follows.

C =
1

2

(
C ′ +

pD′

qd

)
, D =

D′

2qd
, C̃ =

1

2

(
C̃ ′ +

p

q
D̃′
)
, D̃ =

D̃′

2q
, (5.20)

or equivalently,

ξr(C +Dy′) = D′
q

ξr
+
C ′

2
ξr, ξr(C̃ + D̃y′) =

C̃ ′

2
ξr + D̃′

qd

ξr
. (5.21)

37If D = C = D̃ = C̃ = 0, then [T vM ⊗ C](2,0) = [T vM ⊗ C](0,2) = C ⊂ T vM ⊗ C. This is not appropriate as a
Hodge decomposition. In physics terminology, this corresponds to ω = 0, and volume(T 4) = 0.
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Then the remaining two conditions on C,D, C̃, D̃ are rewritten as

d(C ′)2 +
2p

q
(C ′D′) + (D′)2 = d(D̃′)2 +

2p

q
C̃ ′D̃′ + (C̃ ′)2, (5.22)

(C ′)2pd+ (D′C ′)2qd+ (D′)2p = (D̃′)2dp+ (D̃′C̃ ′)2qd+ (C̃ ′)2p. (5.23)

So, this is equivalent to

D′C ′ = C̃ ′D̃′, d(C ′)2 + (D′)2 = d(D̃′)2 + (C̃ ′)2. (5.24)

This coupled quadratic equations seem to allow two possibilities,

C̃ ′

D̃′
= d

C ′

D′
,

C̃ ′

D̃′
=
D′

C ′
, (5.25)

including D′ = D̃′ = 0 and D̃′ = C ′ = 0, respectively. The first case is impossible, because

(C̃ ′)2 = d(C ′)2 is a contradiction for the parameters C ′, C̃ ′ ∈ Q for d that is not a square.

The only option is

(C ′, D′) = (D̃′, C̃ ′), (5.26)

and

(C ′, D′) = −(D̃′, C̃ ′). (5.27)

There are two kinds of solutions, (5.26) and (5.27), for the Hodge structure on [T vM ⊗Q] to

be compatible with the polarization (2.22); for solutions of both kinds, there are two free

rational parameters C ′, D′ ∈ Q for ω (besides the two free parameters A, Ã ∈ Q for the

B-field).

In the first kind of solutions, (5.26), we have

i

2
ω = τ r++

(
C ′

2
ξr +

D′q

ξr

)
e1 + τ r++

(
C ′qd

ξr
+
D′

2
ξr
)
e2, (5.28)

=
C ′

2

(
e1(
√

+ +
√
−) + e2(

√
+−
√
−)
√
d
)

(5.29)

+
D′

2

(
e2(
√

+ +
√
−) + e1(

√
+−
√
−)/
√
d
)
,

= i(pω(x) − qω(xy))

(
− C

′

4d′

)
+ i(−qdω(x) + pω(xy))

(
− D′

4dd′

)
. (5.30)
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The last expression is a rational linear combination of the basis ω(β) of Kähler forms (4.17)

corresponding to a rational metric; the expression in the middle can easily be identified with

iω in (4.34) for a rational metric with the dictionary 2a = C ′ and 2b = D′/d.

In the other kind of solutions, (5.27), on the other hand,

i

2
ω = τ r++

(
C ′

2
ξr +

D′q

ξr

)
e1 − τ r++

(
C ′qd

ξr
+
D′

2
ξr
)
e2, (5.31)

=
C ′

2

(
e1(
√

+ +
√
−)− e2(

√
+−
√
−)
√
d
)

(5.32)

+
D′

2

(
−e2(

√
+ +
√
−) + e1(

√
+−
√
−)/
√
d
)
,

Rewriting this in terms of dz1 ∧ dz̄1̄ and dz2 ∧ dz̄2̄ according to (4.7) and (4.8),

i

2
ω =

p− q
√
d

4
√
d′

(
C ′ − D′√

d

)
dz1 ∧ dz̄1̄ +

p+ q
√
d

4
√
d′

(
C ′ +

D′√
d

)
dz2 ∧ dz̄2̄. (5.33)

For this Kähler form to be fitted by the expression (4.34), we have

a = − 1

2
√
d′

(pC ′ + qD′), b =
1

2d
√
d′

(qdC ′ + pD′). (5.34)

The fitted parameters a, b are not rational when C ′, D′ ∈ Q. The metric corresponding to

this Kähler form does not satisfy the condition (2.4). The resulting metric is positive definite

for some region in (C ′, D′) ∈ Q2, so the second kind of solutions include physically sensible

N = (1, 1) SCFTs that are not rational. �

5.12. We have restricted (B+iω) by demanding that the vertical Hodge structure on T vM⊗Q
is of CM-type, with CM by the reflex field Kr of a CM field K. For such a (B+iω), whether a

solution of (5.26) or (5.27), the vertical Hodge structure on H1(T 4;Q)⊕H3(T 4;Q) is already

determined. Demanding that this rational Hodge structure is also of CM-type and that their

endomorphism field is K, we find in the following that no extra condition is found on the

parameters A, Ã, C ′, D′ ∈ Q.

The charge p − q = +1 components in H1(T 4;Q) ⊕ H3(T 4;Q) can be generated by

e2−1(B+iω)α̂i and e2−1(B+iω)β̂i with i = 1, 2; the charge p− q = −1 components are generated

by the ones with (B + iω) replaced by (B − iω), as stated in 2.11. Now, we use

1

2
(B + iω) = τ r++

(
A+

C ′

2
ξr +

D′

2

2q

ξr

)
e1 + τ r++

(
Ã± D′

2
ξr ± C ′

2

2qd

ξr

)
e2, (5.35)
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where the + and − choices of ± correspond to the solution (5.26) and (5.27), respectively.

Within the vector space V1 := SpanQ{α̂1, α̂2} ⊕ SpanQ{α̂1α̂2β̂1, α̂
1α̂2β̂2},

(e2−1(B+iω)α̂1, e2−1(B+iω)α̂2) =
(
α̂1, α̂2, α̂1α̂2β̂1, α̂

1α̂2β̂2

)
1 0
0 1
Z2 −Z1

dZ1 −Z2

 , (5.36)

where

Z1 := τ r++

(
A+

C ′

2
ξr +

D′

2

2q

ξr

)
, Z2 := τ r++

(
Ã± D′

2
ξr ± C ′

2

2qd

ξr

)
. (5.37)

One finds the following structure when the two generators in [V1 ⊗ C]p−q=+1 are rearranged

as follows:

(e2−1(B+iω)α̂1, e2−1(B+iω)α̂2)

(
1 1

∓
√
d ±

√
d

)
(5.38)

=
(
α̂1, α̂2, α̂1α̂2β̂1, α̂

1α̂2β̂2

)
1 1

τ++(∓y) τ−+(∓y)
τ++(Ξ±) τ−+(Ξ±)

τ++(±Ξ±y) τ−+(±Ξ±y)

 ,

where

Ξ± = Ã± Ay ±D′x± C ′xy ∈ K. (5.39)

Unless C ′ = D′ = 0 (which we are not interested because the volume of T 4 is precisely

zero), {1, y,Ξ±,Ξ±y} forms a basis of K/Q. So, with Lemma A.12, we see that an algebra

isomorphic to K acts on the vector space V1 while preserving this Hodge decomposition.

A similar calculation can be carried out for the rest of the vector space, V3 := SpanQ{β̂1, β̂2}⊕
SpanQ{α̂1β̂1β̂2, α̂

2β̂1β̂2} in H1(T 4;Q)⊕H3(T 4;Q). The charge p− q = +1 components are

generated by(
β̂1e

2−1(B+iω), β̂2e
2−1(B+iω)

) ( 1 1

∓
√
d ±

√
d

)
(5.40)

=
(
β̂1, β̂2, α̂

1β̂1β̂2, α̂
2β̂1β̂2

)
1 1

τ++(∓y) τ−+(∓y)
τ++(−Ξ±) τ−+(−Ξ±)
τ++(∓Ξ±y) τ−+(∓Ξ±y)

 .
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The endomorphism algebra of V3 contains K, so this Hodge structure is also of CM-type (the

property 3.(b)ii).

The 2nd and 3rd properties in the statement of Thm. 5.8 allows one to choose/find a

filtration W •
v (the 5th property demands more, though). So, we choose W 3

v := V3. Then the

horizontal rational Hodge structure on H3(T 4;Q) (resp. on H1(T 4;Q)) is isomorphic to the

vertical rational Hodge structure on W 3
v (resp. W 1

v /W
3
v ) (the property 6), as claimed at the

beginning of 5.12. �

5.3.2 Case (A’)

Let us work on the case the endomorphism algebra of H1(M ;Q) is the one in case (A’). Let

us exploit just the 1st, 2nd and 3rd properties of a pair of horizontal and vertical Hodge

structures in the statement of Thm. 5.8 and see whether one can claim that B and G are

rational (the answer is no). The logic and the procedure of the analysis are precisely the same

as for the case (B, C). So, we will focus on small difference in the following presentation, and

often avoid repeating the same logic.

5.13. Let us impose on (B+ iω) the conditions that the vertical Hodge structure on T vM ⊗Q
is of CM type, with the endomorphism field Kr in 2.21. The generator f := e2−1(B+iω) of the

Hodge (2, 0) component of T ◦M ⊗ C must be in the form of

f = τ r++

[
1 + (α̂1β̂1)η1 + (α̂2β̂2)η2 + (α̂1β̂1α̂

2β̂2)η4

]
(5.41)

for some basis {1, η1, η2, η4} of Kr/Q. The property (f,f) = 0 implies that η4 = η1η2, so

there are eight rational parameters for η1 and η2 at this moment.

Let us parametrize the freedom by A,B,C,D, Ã, B̃, C̃, D̃ ∈ Q, where

η1 = A+By′ + Cξr +Dξry′, η2 = Ã+ B̃y′ + C̃ξr + D̃ξry′. (5.42)

For the Hodge decomposition to be compatible with its polarization (2.22), we impose

(f,Σ) = 0 and (f,Σ) = 0. As a result, we obtain

BB̃ + p1DD̃ = 0, BD̃ + B̃D = 0, (5.43)

BB̃p2 + CC̃ = 0, BC̃ + B̃C = 0. (5.44)

Now, we have four conditions on the eight rational parameters.

One can prove that B = B̃ = 0 (or otherwise we should accept an unphysical zero-volume

situation (such as C = D = 0)); the proof is similar to the case (B, C), so we omit the detail.
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The four conditions above are reduced to DD̃ = 0 and CC̃ = 0. So, there are two kinds of

solutions (apart from the zero-volume situations):

D = 0, C̃ = 0, so 2−1(B + iω) = α̂1β̂1(A+ C
√
p1) + α̂2β̂2(Ã+ D̃

√
p1

√
d′), (5.45)

C = 0, D̃ = 0, so 2−1(B + iω) = α̂1β̂1(A+D
√
p1

√
d′) + α̂2β̂2(Ã+ C̃

√
p1). (5.46)

Therefore, the B field has to be rational (B = B̃ = 0 and ∀A, Ã ∈ Q) for both kinds of the

solutions (5.45, 5.46).

The first kind of solutions (5.45) reproduces all the rational metric G in (4.30, 4.36); a1 ∼
C and a2 ∼ D̃(−p1). In the second kind of solutions (5.46), the metric is not rational; a1 ∼
D
√
d′/∈Q, and a2 ∼ C̃

√
p1/p2 /∈Q. There is a region with a positive volume interpretation in

the (a1, a2) space. �

5.14. The combination (B + iω) is parametrized by four rational parameters. For such a

(B+ iω), the vertical Hodge structure is also given to H1(T 4;Q)⊕H3(T 4;Q). For both kinds

of solutions, (5.45) and (5.46), the vertical Hodge structure is also of CM-type, and there

exists Hodge isomorphism with the horizontal Hodge structure on H1(T 4;Q) ⊕ H3(T 4;Q),

as we see below.

The vector space V1 := SpanQ{α̂1, α̂2}⊕ SpanQ{α̂1α̂2β̂1, α̂
1α̂2β̂2} can be split into V11 :=

SpanQ{α̂1, α̂1α̂2β̂2} and V12 := SpanQ{α̂2, α̂2α̂1β̂1}, and

(solution (5.45)) : EndQ(V11)Hdg ∼= K
(2)
2 , EndQ(V12)Hdg ∼= K

(2)
1 , (5.47)

(solution (5.46)) : EndQ(V11)Hdg ∼= K
(2)
1 , EndQ(V12)Hdg ∼= K

(2)
2 . (5.48)

So, as a whole,

EndQ(V1)v.Hdg ∼= K
(2)
1 ⊕K

(2)
2
∼= EndQ(H1(T 4

I ;Q))Hdg (5.49)

for both solutions. The vertical rational Hodge structure on V1 is of CM-type, with the CM

field K
(2)
1 ⊕K

(2)
2 .

Similarly, V3 := SpanQ{β̂1, β̂2} ⊕ SpanQ{α̂2β̂2β̂1, α̂
1β̂1β̂2} can also be split into V31 :=

SpanQ{β̂1, β̂1α̂
2β̂2} and V32 := SpanQ{β̂2, β̂2α̂

1β̂1}, and

(solution (5.45)) : EndQ(V31)Hdg ∼= K
(2)
2 , EndQ(V32)Hdg ∼= K

(2)
1 , (5.50)

(solution (5.46)) : EndQ(V31)Hdg ∼= K
(2)
1 , EndQ(V32)Hdg ∼= K

(2)
2 (5.51)

for both of the solutions. So, the vertical rational Hodge structure on V3 is also of CM-type,

with the CM field K
(2)
1 ⊕K

(2)
2 .
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The 2nd and 3rd properties of Thm. 5.8 does not restrict how one introduces a filtration

W •
v , so we may still choose W 3

v = V31 ⊕ V32. Then there is a Hodge isomorphism between

the horizontal H3(T 4;Q) (resp. H1(T 4;Q)) and the vertical W 3
v (resp. W 1

v /W
3
v ) (the 6th

property in Thm. 5.8) for both kinds of the solutions. �

5.3.3 Case (A)

Finally, let us work on the case (A). In this case, we find that (B + iω) that satisfies the 1st,

2nd and 3rd properties in the statement of Thm. 5.8 correspond to rational B and G, and

hence for a rational N = (1, 1) SCFT.

5.15. In this case, the reflex field Kr is a degree-2 extension field Q(
√
p). So, the 2-

dimensional subspace T vM⊗Q ⊂ A(M)⊗Q should be such that both e2−1(B+iω) and e2−1(B−iω)

are contained in T vM ⊗C. For the vertical Hodge structure on this space to be of CM by the

degree-2 field Q(
√
p), the generator f of the charge p − q = 2 component should be of the

form

f = e2−1(B+iω) =
(

1 +B/2 + E(α̂1β̂1α̂
2β̂2)

)
τ r+(1) +

(
ω′/2 + E ′(α̂1β̂1α̂

2β̂2)
)
τ r+(ξr) (5.52)

for some E,E ′ ∈ Q and B,ω′ in the image of T vM ⊗ Q ⊂ A(M) ⊗ Q projected into H2(T 4
I ).

The rational constants E,E ′ are determined by B and ω′ by the condition (f,f) = 0

in T vM ⊗ Q ⊂ A(M) ⊗ Q with respect to the pairing (2.22). Free choice of B ∈ H2(M)

corresponds to a rational B-field in (2.4), and a free choice of
√
pω′ ∈ √pH2(M) corresponds

to iω for ω given in (4.37), which is for a rational metric. So, the first two properties in Thm.

5.8 are strong enough in the case (A) to allow only the data (G,B) for a rational CFT. �

6 Discussions

In this article, we have made an attempt at refining Gukov–Vafa’s conjecture, Conj. 2.1, and

verifying it for the simple case where the target space is T 4. Rational CFTs in this case have

been completely classified, so we used that to refine the conditions to be imposed (criteria)

for rational SCFTs in the language of the horizontal and vertical rational Hodge structures.

As a result, we arrived at Thms. 5.8 and 5.9 stated in the language that is applicable,

for their most part, to SCFTs with a general Ricci-flat Kähler manifold as the target space.

Thm. 5.8 extracts properties that all the T 4-target RCFTs satisfy. The property 2(b) in
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Thm. 5.8 rules out an example of a non-rational T 4-target CFT in [19, §4] that looks as if it

were a counter example to the version Conjecture 2.1.

We have also found by imposing the properties 1, 2, 3, and 6 in Thm. 5.8 on a data

(T 4;G,B; I), that there are still T 4-target N = (1, 1) SCFTs that are not rational. Obviously

it is one of the next steps to see whether those counter examples can be eliminated by

implementing the 5th and 7th properties of Thm. 5.8.

Although the statements of Thm. 5.8 are phrased (as much as possible) in a way applicable

to Ricci-flat Kähler manifolds, we do not make a clear stance on which subset of the itemized

properties in Thm. 5.8 should be imposed as criteria for rationalness of the SCFTs. Some

of the properties might be derived from others (cf Rmk. 5.3). Some of the properties may

not hold true in some examples of rational SCFTs (such as 3.(a) and 3.(b)ii; cf discussions

2.2, 2.3 and footnote 6). Since there is still room for experimental study as in this article,

the authors do not feel obliged to decide now which subset of the properties are necessary

conditions for the rationalness.

There is a chance of having the 6th property as a part of necessary criteria for rational

SCFTs, only for a family of Ricci-flat Kähler target SCFTs that are self-SYZ-mirror. We

need to make an effort in properly formulating and generalizing the 7th property of Thm.

5.8 to Ricci-flat Kähler manifolds other than tori.

One can also enjoy a moment of speculation. Consider K3-target N = (1, 1) SCFTs.

The most näıve way to apply the refined version Thm. 5.8 for this class of target space

is to take the 1st, 2nd, 4th and 5th properties in Thm. 5.8 as the necessary and sufficient

conditions for the SCFT to be rational. The 3rd and 6th properties do not contain additional

information in this case. An immediate consequence of this is that there exists a complex

structure on K3 such that there is a polarization, and at the same time B(2,0) = 0 when a

K3-target SCFT is rational. This speculation/conjecture is already non-trivial. Moreover,

the Picard number ρ should be no less than 10, and the Kähler form must be within the

image of T vM ⊗ R ⊂ A(M) ⊗ R projected on to the Neron–Severi space H2 ⊗ R for any K3

target rational SCFT.38

There has been a question of how densely rational SCFTs populate the moduli space of

Ricci-flat Kähler target SCFTs. Reference [2] conjectured that rational SCFTs might have

38Reference [21] discusses how to find an appropriate B-field and a symplectic form for a complex CM-type
K3 surface X with ρ(X) ≥ 10 such that X has a mirror that is also of CM-type, motivated by the GV
conjecture [2].
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something to do with CM-type rational Hodge structures (Conj. 2.1), and further combined

the observation with André–Oort conjecture in math [41, 42, 43],39 which says that CM points

are not very dense in the moduli space of such manifolds in general (except for the moduli

space of abelian varieties and K3 surfaces). So, it has been hinted that rational SCFTs do

not populate densely within the whole moduli space of N = (1, 1) SCFTs with a Calabi–Yau

threefold target space. The experimental study carried out in this article concluded that

all the rational (T 4-target) SCFTs satisfy the properties of Thm. 5.8 refined from Conj.

2.1. So, the inference on scarcity of rational SCFTs from the scarcity of CM-type Calabi–

Yau manifolds does not have to be questioned at this moment. Finer understanding on the

remaining issues listed above (e.g., footnote 6), however, might also change this perspective

in the future.

The question above may have a consequence beyond mathematical physics. Suppose one

day that mankind discovers that Type IIB flux compactification is theoretically consistent

only when the SCFT is rational; it is not bad to enjoy such a speculation sometimes [2].

That may indicate that the vacuum complex structure of the internal Calabi–Yau threefold

is something captured by a special subvariety of Calabi–Yau moduli space interpreted as

a Shimura variety, if we speculate along the lines of Gukov–Vafa and Andrè–Oort. When

the moduli space has a group action, discrete and/or continuous, its isotropy subgroup at

the vacuum point may remain in the low-energy effective field theory of the moduli fields as

gauged and/or accidental symmetry.
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A Appendix: Additional notation and background

Some definitions not included (and notations not explained) in the main text:

39cf also [44] and [45].
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String theorists do not necessarily have lot of experience with number fields or theory of

complex multiplication. For those readers, the appendices40 of [15] will be useful. Materials

there include basics about number fields, and the definitions of totally imaginary field, totally

real field, CM field, the totally real subfield of a CM field, CM-type of a weight-1 rational

Hodge structure, reflex field of a CM-type, primitivity of a CM-type. The notations such as

Q[x], [E : F ] and TrE/F of a field extension E/F as well as its properties are also explained

there. So, we do not include those materials in this article. A CM algebra is the direct sum

of a finite number of CM fields.

Notation A.1. Mn(A) for an algebra A is the algebra of A-valued n× n matrices.

Definition A.2. An algebra D over a field F is a division algebra if any non-zero element

x ∈ D has an inverse x−1 with respect to the multiplication law of the algebra D.

Then x−1 ·x = 1 = x ·x−1. A division algebra D is regarded as a field if the multiplication

law of the algebra D is commutative (abelian).

Definition A.3. A finite dimensional algebra A over a field F is semi-simple if there is no

non-zero nilpotent ideal.

A.4. Although a minimum explanation on rational (pure) Hodge structure is given already

in Appendix B of [15], we also repeat some of it here without worrying about overlap. That

is partly because we should have an eye on something beyond the most conventional pure

rational Hodge structure in this article, and also because not much emphasis was given to

the role played by a polarization of a rational Hodge structure in [15]. So, let us start from

the basics.

Definition A.5. Let VQ be a vector space over Q. A pure rational Hodge structure on VQ of

weight-m is a decomposition of a vector space over C,

VQ ⊗ C ∼= ⊕(p+q=m)
p,q [VQ ⊗ C]p,q (A.1)

satisfying ([VQ⊗C]p,q)c.c. = [VQ⊗C]q,p. The word “pure” is often omitted; it is retained only

when there is a high chance of confusion with a mixed rational Hodge structure (mentioned

in footnote 11) or with a generalized Hodge structure we introduce in Def. 2.9.

40Some materials in the appendix of the preprint version are placed within the main text of the journal
version.
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See [15, App. B] or any math literatures for the definition of a Hodge substructure, simple

rational Hodge structure, and the level of a pure rational Hodge structure.

A.6. For a rational pure Hodge structure of weight-m on a vector space VQ, the added

data on top of the vector field VQ, i.e., the decomposition, can also be encoded by giving a

representation

h : S1 −→ GL(VQ ⊗ R), h(eiα)|[VQ⊗C]p,q = e−iα(p−q) (A.2)

(the representation h cannot reproduce the information m = p+ q, so the weight-m needs to

be retained along with h).

Notation A.7. Let (VQ, h) be a pure rational Hodge structure. Then

End(VQ)Hdg := {φ ∈ HomQ(VQ, VQ) | φ([V ⊗ C]p,q) ⊂ [V ⊗ C]p,q} , (A.3)

=
{
φ ∈ HomQ(VQ, VQ) | φ ◦ h(eiα) = h(eiα) ◦ φ

}
. (A.4)

We call it the endomorphism algebra, and its elements endomorphisms in this article. We

should refer to those elements as Hodge-structure-preserving endomorphisms of the vector

space VQ for a general (VQ, h); when we deal with the 1st cohomology groups of an abelian

variety, however, such Hodge-structure-preserving endomorphisms originate from the group-

law preserving morphisms of an abelian variety to itself. So, for this reason, it is not too bad

to use the word that does not sound right (certainly not right especially for various simple

components of Hk>1(T 2n;Q)).

Definition A.8. A bilinear form Q : VQ × VQ → Q on a vector space VQ, either symmetric

(for even m) or anti-symmetric (for odd m), is said to be a polarization of a pure rational

Hodge structure (VQ, h) of weight-m, if Q(x, y) ∈ C can be non-zero for x ∈ [V ⊗C](p1,q1) and

y ∈ [V ⊗ C](p2,q2) only when p1 = q2 and q1 = p2, and ip−qQ(x, xcc) > 0 for x 6=0 ∈ [V ⊗ C]p,q.

A pure rational Hodge structure (VQ, h) of weight-m is said to be polarizable when (VQ, h)

admits a polarization.

Let ψ be a polarization41 of an abelian variety X of complex dimension n. Then the

rational Hodge structures of weight m on Hm(X;Q) admits a polarization Qψ given by

Qψ(x, y) =
∫
X
ψn−m ∧ x ∧ y.

41Its definition is found at the beginning of section 2.5.
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Definition A.9. Let (VQ, h) be a pure rational Hodge structure of weight-m. Its Hodge

group, denoted by Hg((VQ, h)) or Hg(h), is the minimal algebraic variety of GL(VQ) with

the group law from GL(VQ) given by defining equations that involve only rational coefficients

(i.e., in Q, not in C), so that all the points h(eiα) for eiα ∈ S1 satisfy those defining equations.

Most of literatures referring to a Hodge group is for a polarizable pure rational Hodge

structure. But it is possible to define such a notion for a rational Hodge structure that is not

necessarily polarizable; whether such a Hg(h) still has a nice property is a separate question.

Representations of semi-simple algebras: we record a few basic known facts about

representations of a finite-dimensional semi-simple algebras over Q for convenience of readers.

Those facts are used in the main text.

Lemma A.10. This is known as Wedderburn’s theorem. A finite dimensional semi-simple

algebra R over Q has a structure

R ∼= ⊕α∈AMnα(Dα) (A.5)

for some finite set A, nα ∈ N, and a division algebra Dα.

When R has a faithful representation on a vector space VQ over Q, dimQ(VQ) ≥
∑

α nαq
2
α[kα :

Q], where kα is the center of Dα, and qα is the positive integer such that [Dα : kα] = q2
α.

The following facts (Lemmas A.11, A.12) are regarded so trivial by mathematicians that

we have to read that out between the lines in textbooks on semi-simple algebras. The authors

are unable to refer to a specific text for this reason. For the reader with a background in

string theory, it will still be better that they are written down explicitly.42

Lemma A.11. Let F be a number field (with [F : Q] <∞), and {τa=1,··· ,[F :Q]} its embeddings

to Q ⊂ C. Let VQ be a vector space over Q. We think of only the cases that [F : Q] = dimQ VQ

here.

Suppose that F acts non-trivially on VQ (with Q ⊂ F acting as the scalar multiplication

on the vector space VQ). The action of F on VQ can be diagonalized simultaneously; the

dimQ V eigenvectors can be chosen in a following way. First, choose any non-zero element

v∗ ∈ VQ, and arbitrary basis {ωi=1,··· ,[F :Q]} of the vector space F/Q. Then {ωi · v∗}i=1,··· ,[F :Q]

42The appendix B.2 of the preprint version of [15] (main text II.B.3 of the journal version) has a little more
pedagogical explanation on the first half of Lemma A.11. The statement here is slightly polished up from
the version there, however.
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can be used as a basis of the vector space VQ over Q. Now, we can choose the eigenvectors

to be43

va :=
∑
i

(ωi · v∗)τa(ηi), a = 1, · · · , [F : Q], (A.6)

where {ηj=1,··· ,[F :Q]} is the basis of F/Q dual to {ωi} with respect to the bilinear form

TrF/Q[xy]. That is, TrF/Q[ωiηj] = δij. The matrix (τa(ηi))ai is used as the inverse matrix of

(τa(ωj))ja. For any element x ∈ F , its action on VQ ⊗C is given by x · va = vaτa(x), i.e., the

eigenvalue of x· is τa(x) for the eigenvector va. All those eigenvectors va (a = 1, · · · , [F : Q])

are obtained from one of them, say, va∗, by applying Galois transformations on the coeffi-

cients τa∗(ηi) of the expansion of va∗ with respect to the rational basis {(ωi · v∗)i=1,··· ,[F :Q]},
because τa = σa · τa∗ for some σa ∈ Gal(Q/Q). We may express this in the form of va = vσaa∗ .

For any basis {η′i=1,··· ,[F :Q]} of F/Q, there exists a basis {v′i} of VQ where the simultaneous

eigenvectors are in the form of va = v′iτa(η
′
i). To see this, just find the rational coefficient

matrix ηi = Cijη
′
j and set v′j := (ωi · v∗)Cij.

Lemma A.12. Conversely, for any basis {ηj} of F/Q and {vi} of V , one may construct a non-

trivial action of F on the vector space V over Q so that va :=
∑

i viτa(ηi) for a = 1, · · · , [F : Q]

are all eigenvectors of the action of F . The action of x ∈ F on V claimed here is given as

follows. First, write down the multiplication law in F as follows:

(x·) : ωi 7−→ ωk[A(x)]ki, (A.7)

where {ωi} is the basis of [F : Q] dual to {ηj}, and [A(x)] is a Q-valued [F : Q] × [F : Q]

matrix. Using this matrix, the action of x is

x· : vi 7−→ vk[A(x)]ki. (A.8)

�

The facts above in both ways (Lemmas A.11 and A.12) hold for a general number field

F not necessarily a CM field; the eigenspace decomposition does not have to be relevant to

Hodge components.

43So, the action of F on VQ splits into 1-dimensions on VQ ⊗Q k whenever k ⊂ Q contains the normal
closure of F in Q.
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[44] J. Tsimerman, “A proof of the Andre-Oort conjecture for A g.” arXiv:1506.01466.

[45] B. Moonen and F. Oort, “The Torelli locus and special subvarieties,” in Handbook of

moduli. Vol. II, vol. 25 of Adv. Lect. Math. (ALM), pp. 549–594. Int. Press, Somerville,

MA, 2013. [arXiv:1112.0933].

66

http://www.arXiv.org/abs/[hep-th/9611137]
http://www.arXiv.org/abs/[arXiv:1112.0933]

	1 Introduction
	1.1 Relevant Background on String Theory and SCFT
	1.2 Outline and Summary of the Paper

	2 Preliminaries
	2.1 A Pertinent String Theory – VOA Dictionary
	2.2 The Gukov–Vafa Conjecture
	2.3 Rational CFTs with Torus Target
	2.4 Horizontal and Vertical Generalized Complex Structures
	2.5 Coarse Classification of CM-type Abelian Surfaces

	3 Choice of Complex Structure
	3.1 Polarization
	3.2 Transcendental Part of the B-field

	4 On the Rational Constant Kähler Metric
	4.1 It is in the Algebraic Part
	4.1.1 A Convenient Rational Basis
	4.1.2 The Algebraic and Transcendental Parts
	4.1.3 Analysis

	4.2 A Geometric Mirror Always Exists

	5 Refined Gukov–Vafa Theorem for T4
	5.1 CM Horizontal Hodge Structure
	5.2 The Vertical Hodge Structure is of CM-type
	5.2.1 Mirror Isogeny and Hodge Isomorphism
	5.2.2 The Simple Level-n Vertical Hodge Substructure
	5.2.3 Trial Statements for a Complex Structure with B(2,0) =0

	5.3 The Converse
	5.3.1 Case (B, C)
	5.3.2 Case (A')
	5.3.3 Case (A)


	6 Discussions
	A Appendix: Additional notation and background

