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ABSTRACT

We use the exact degeneracy formula of single-centred 1
4 BPS dyonic black holes with unit

torsion in 4D N = 4 toroidally compactified heterotic string theory to improve on the
existing formulation of the corresponding quantum entropy function obtained using su-
persymmetric localization. The result takes the form of a sum over Euclidean backgrounds
including orbifolds of the Euclidean AdS2 × S2 attractor geometry. Using an N = 2 for-
malism, we determine the explicit form of the Abelian gauge potentials supporting these
backgrounds. We further show how a rewriting of the degeneracy formula is amenable, at
a semi-classical level, to a gravitational interpretation involving 2D Euclidean wormholes.
This alternative picture is useful to elucidate different aspects of the gravitational path
integral capturing the microstate degeneracies. We also comment on the relation between
the associated 1D holographic models.
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1 Introduction

Understanding black hole entropy has served as a fecund nexus of diverse approaches to uncovering
the fundamental principles of quantum gravity. In this note, we analyze some of these approaches
and how they feed into each other in the context of obtaining the microstate degeneracies d(m,n, `) of
single-centred 1

4 BPS black holes with unit torsion in toroidally compactified 4D N = 4 heterotic string
theory. In this case, there are three distinct approaches to obtaining the corresponding degeneracies
for these dyonic configurations:

1. The statistical approach, pioneered in [1] and used with spectacular success for certain classes
of BPS black holes, identifies the statistical microscopic degeneracies as Fourier coefficients of
automorphic forms. In the N = 4 case, d(m,n, `) are encoded in the Fourier coefficients of a
particular meromorphic Siegel modular form, namely the reciprocal of the Igusa cusp form Φ10

[2, 3]. An exact expression for the microstate degeneracies d(m,n, `) has been given in [4, 5]
by resorting to a Rademacher type expansion of the Fourier coefficients of 1/Φ10, building on
earlier work [6, 7].

2. The quantum entropy function approach consists of extracting d(m,n, `) from a particular quan-
tum gravity partition function [8]. In this approach, one is instructed to sum over gravitational
space-time metrics that asymptote to Euclidean AdS2 × S2. This a priori infinite dimensional
integral reduces to a finite dimensional one via supersymmetric localization [9, 10, 11, 12].
This drastic simplification enables explicit computations for the counting of BPS black hole
microstates.

3. The holographic approach uses the AdS2/CFT1 correspondence applied to the decoupled near-
horizon geometry associated with asymptotically flat BPS black holes. Bulk fluctuations in
AdS2 are holographically encoded in a Lorentzian 1D DFF type model [13, 14, 15, 16]. This
model has been shown to capture the semi-classical Wald entropy of BPS black holes [17].
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Figure 1: Three approaches to BPS black hole entropy.

The approaches just discussed are summarized on the left-hand side of Figure 1. The statistical
approach, which is at present the one formulated most rigorously, will be used as a starting point to
connect to results obtained in the quantum entropy function approach. We will review the formulation
of the quantum entropy function in an N = 2 language. To relate it to the expression for d(m,n, `)
given in [5] requires certain assumptions that we will spell out in due course.

Importantly, the expression for d(m,n, `) given in [5] can also be brought to a different but
equivalent form whose significance is as follows. While the Rademacher form is naturally related to
the quantum entropy function, which is constructed from an underlying action principle, the equivalent
form presents features that are covariant under S-duality. We will show that this ‘covariant’ picture
suggests a space-time interpretation of the microscopic result in terms of space-time geometries that,
at the semi-classical level, involve the 2D Euclidean wormholes in AdS2 introduced in [18, 19].

The wormhole interpretation admits a holographic dual description in terms of a 1D Liouville
theory [19]. We will demonstrate that this model can be rewritten as a Lorentzian DFF type model
dual to the near-horizon AdS2 factor by means of an appropriate time reparametrization. This
equivalence provides a suggestive first step in understanding the relation between the macroscopic
quantum entropy function and 2D wormhole pictures introduced above. The alternative descriptions
we propose in this paper, and their interrelations, are summarized on the right-hand side of Figure 1.

2 Microstate degeneracies of 1
4 BPS N = 4 black holes

The degeneracies d(m,n, `) of 1
4 BPS states with unit torsion in heterotic string theory compactified

on a six-torus are given in terms of the Fourier coefficients of 1/Φ10, where Φ10 is the Igusa cusp
Siegel modular form of weight 10 [2, 20, 21]. Φ10 depends on 3 variables, here denoted by ρ, σ, v, and
the degeneracies are extracted by integrating these variables over a contour C,

d(m,n, `) = (−1)`+1

ˆ
C
dσdvdρ

1

Φ10(ρ, σ, v)
e−2πi(mρ+nσ+`v) . (2.1)

Since 1/Φ10 is a meromorphic Siegel modular form, the resulting expression for the Fourier coefficients
d(m,n, `) will depend on the choice of the integration contour C.

Here we will focus on the degeneracies of single-centred dyonic 1
4 BPS black holes. The microstate

degeneracies d(m,n, `) of these BPS black holes are determined in terms of charge bilinears m,n, `
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satisfying ∆ > 0, where

∆ = 4mn− `2 . (2.2)

Following [22, 23, 24, 3], we define the R-chamber by

ρ2

σ2
� 1 ,

v2

σ2
= − `

2m
,

`

2m
∈ [0, 1) , (2.3)

where ρ = ρ1 +iρ2, σ = σ1 +iσ2, and v = v1 +iv2. To extract the degeneracies of single-centred 1
4 BPS

black holes, we take the integration contour C to be the one detailed in [5]. By first integrating over
the variable ρ, one obtains an exact expression for the degeneracies d(m,n, `) with ∆ > 0 in terms of
a fine-grained Rademacher type expansion that uses two distinct SL(2,Z) subgroups of Sp(4,Z). We
refer to [5] for the exact but somewhat lengthy expression for d(m,n, `).

When integrating over ρ, one obtains an expression that can be brought to the form [5]

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

(−1)`+1

γ2(ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)13

(m
ac

+
a

c
E2(ρ′0) +

c

a
E2(σ′0)

)
×

1

η24(ρ′0)

1

η24(σ′0)
e−2πiΛ ,

(2.4)

where the set P is defined by

P =

{(
a b
c d

)
,

(
α β
γ δ

)
∈ SL(2,Z) | a, γ > 0 , c < 0 , α, δ ∈ Z/γZ , b ∈ Z/aγZ

}
, (2.5)

and where τ = τ1 +iτ2, τ̄ = τ1−iτ2, and |τ |2 = τ τ̄ . The combinations ρ′0 and σ′0 are functions of τ and
τ̄ , while the exponent Λ depends on (τ, τ̄) as well as on the charge bilinears (m,n, `). Their explicit
expressions will be given in the next subsection, where we also discuss the contour Ĉ. The subsequent
evaluation of (2.4) results in the fine-grained Rademacher type expansion mentioned above, which
expresses the BPS degeneracies with ∆ > 0 in terms of the polar BPS degeneracies with ∆ < 0. We
refer to [5] for more details.

Below we will show that by adding a total derivative term to the integrand, we can bring the
expression (2.4) to the following form,

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

eiπϕ

2iπ

(−1)`+1

γ (ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)14

(
26 +

2π

n2

m|τ |2 + n− `τ1

τ2

)
×

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

m|τ |2+n−`τ1
τ2 ,

(2.6)

where n2 = −acγ and ϕ depends on (m,n, `). To write (2.6), we have dropped exponentially sup-
pressed contributions associated with small BPS black holes that we will discuss in Subsection 2.2. As
mentioned in the introduction, we will call (2.4) the Rademacher form of the microscopic degeneracy
formula, and (2.6) the ‘covariant’ form. We will show that the total derivative term that relates the
Rademacher and ‘covariant’ forms of the degeneracy formula does not contribute when integrated
over the contour Ĉ.

In the rest of the paper, we will explain how both (2.4) and (2.6) are amenable to a gravitational
path integral interpretation in terms of a sum over gravitational backgrounds that include Euclidean
orbifolds of AdS2 space-times [9, 10, 11, 12]. Furthermore, we will demonstrate that, at a semi-classical
level, the ‘covariant’ form (2.6) is amenable to an alternative macroscopic description in terms of 2D
wormholes introduced in [18, 19].

As shown in [4, 25], a detailed analysis of the Rademacher form (2.4) reveals that the degeneracies
d(m,n, `) of 1

4 BPS states with ∆ > 0 are encoded in the degeneracies of polar states, which are
BPS states with ∆ < 0. The degeneracies of the latter can be constructed from a continued fraction
structure associated with the decay of two-centred 1

4 BPS bound states. Note that this bound state
structure is not manifest in (2.6).

In the rest of this section, we first recall how the Rademacher form (2.4) arises. Subsequently, we
show how (2.6) is related to (2.4).
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2.1 Integrating 1/Φ10 over ρ

We first consider integrating (2.1) over ρ. To do so we follow [5]. The integral over ρ is evaluated by
summing over the residues in the ρ-plane associated with the quadratic poles of 1/Φ10. These poles
are characterized by the 5 integers m1, n1,m2, n2 ∈ Z, j ∈ 2Z+ 1. One may take n2 ≥ 0 without loss
of generality. The poles with n2 > 0 are referred to as quadratic poles, while those with n2 = 0 are
called linear poles. The poles are defined by the loci

n2(ρσ − v2) + jv + n1σ −m1ρ+m2 = 0 , (2.7)

in the Siegel upper half plane. The five integers m1, n1,m2, n2, j satisfy the constraint

m1n1 +m2n2 =
1

4

(
1− j2

)
, (2.8)

and they can be parametrized in terms of 9 integers, 8 of which comprise the entries of the two
SL(2,Z) matrices in the set (2.5), as follows [26, 5]

n2 = − acγ ,
j = ad+ bc ,

n1 = − bdα− γΣ ,

m1 = acδ ,

m2 = − bdβ − δΣ .

(2.9)

Integrating over ρ in this manner, one obtains the expression [5]

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

(−1)`+1

ˆ
C̃
dσ ∧ dv (γσ + δ)10

ac

(m
ac

+
a

c
E2(ρ′0) +

c

a
E2(σ′0)

)
×

1

η24(ρ′0)

1

η24(σ′0)
e−2πiΛ ,

(2.10)

which is encoded in the two distinct SL(2,Z) subgroups that describe the set P in (2.5). Here, E2

is the Eisenstein series of weight two and C̃ denotes a particular contour in the (σ, v)-plane [5]. The
variables ρ′0 and σ′0 are given in terms of σ and v as

ρ′0 = − b

c

(
ασ + β

γσ + δ

)
+
a

c

(
v

γσ + δ

)
− a

c
Σ ,

σ′0 =
d

a

(
ασ + β

γσ + δ

)
− c

a

(
v

γσ + δ

)
− c

a
Σ ,

(2.11)

while the quantity Λ is given by

Λ(σ, v) = m

[
γv2

γσ + δ
− bd

ac

(
ασ + β

γσ + δ

)
+

(ad+ bc)

ac

v

γσ + δ
− 1

ac
Σ

]
+ nσ + `v . (2.12)

We now bring (2.10) to the form (2.4) by expressing

ˆ
C̃
dσ ∧ dv (γσ + δ)10

ac
= −
ˆ
C̃′

dρ′0 ∧ dσ′0
γ13

1[
α
γ − (c2 ρ′0 + a2 σ′0 + 2acΣ)

]13 , (2.13)

where the contour C̃ has been mapped to the contour C̃ ′ through (2.11). We then obtain for the
exponent in (2.10),

Λ =
X1

X2
−m Σ

ac
, (2.14)
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where

X1 =
1

γ

[
m
(
−ρ′0σ′0γ + αd2ρ′0 + αb2σ′0

)
+ n (−β + δA) + `

(
cdρ′0 + abσ′0

)]
+ Σ

(
−mA

ac
+m

α

γ

(a2d2 + b2c2)

ac
+ 2n

δ

γ
ac+ `

ad+ bc

γ

)
− Σ2m ,

X2 =
α

γ
−A− 2acΣ ,

(2.15)

and where for later use we define the combinations

A = c2 ρ′0 + a2 σ′0 ,

B = c2 ρ′0 − a2 σ′0 ,
(2.16)

in terms of which

ρ′0 =
A+B

2c2
, σ′0 =

A−B
2a2

. (2.17)

Next we change integration variables from (ρ′0, σ
′
0) to (τ, τ̄) using

ρ′0 = − a

c

τ

γ
− b

c

α

γ
− a

c
Σ ,

σ′0 =
c

a

τ̄

γ
+
d

a

α

γ
− c

a
Σ ,

(2.18)

where we define τ = τ1 + iτ2, τ̄ = τ1 − iτ2, and |τ |2 = τ τ̄ . Note that τ1 and τ2 are complex variables,
since ρ′0 and σ′0 are complex. The quantities X1 and X2 are expressed in terms of τ and τ̄ as

X2 =
ac

γ
(τ − τ̄) = 2i

ac

γ
τ2 ,

γX1 = m

(
τ τ̄

γ
− α

γ
bd(τ − τ̄)

)
+ n

(
1

γ
− δ

γ
ac(τ − τ̄)

)
− `τ1

γ
− i`τ2

γ
(ad+ bc) ,

(2.19)

and hence we obtain for the combination (2.14),

−2πiΛ =
π

n2

[
m|τ |2 + n− `τ1

τ2
+ 2i

(
−1

2
j`−m1n+ n1m

)]
. (2.20)

Then, (2.10) becomes

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

(−1)`+1

γ2 (ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)13

(m
ac

+
a

c
E2(ρ′0) +

c

a
E2(σ′0)

)
×

1

η24(ρ′0)

1

η24(σ′0)
e−2πiΛ ,

(2.21)

with ρ′0, σ′0 and Λ expressed in terms of τ and τ̄ through (2.18) and (2.20), and where the contour C̃ ′

has been mapped to the contour Ĉ through (2.18). To describe the new contour Ĉ, we first note the
relations

τ = −
γ(v + b

aγ )

γσ + δ
= τ1 + iτ2 ,

τ̄ = −
γ(v + d

cγ )

γσ + δ
= τ1 − iτ2 .

(2.22)

Then, using the relation (2.3) and the contours of integration over σ and v discussed in [5], it can be
shown that Ĉ takes the following form in terms of the (τ1, τ2) coordinates,

τ1 :
`

2m
− iτ2 →

`

2m
+ iτ2 , τ2 : ε− i∞ → ε+ i∞ , (2.23)

5



where ε is a positive real number. We can set it to ε =
√

∆
2m to guarantee that the contour passes

through the attractor point, which is the tree-level saddle point value for τ given below in (2.48). The
contour (2.23) can be parametrized by

Γ1 : τ1 =
`

2m
+ iτ2 (−1 + 2y) , δ ≤ y ≤ 1− δ ,

Γ2 : τ2 = ε+ it , −∞ < t <∞ ,
(2.24)

where δ > 0 is a regulator, whose presence ensures that the arguments of the η functions in (2.21)
satisfy |e2πiρ′0 | < 1 and |e2πiσ′0 | < 1 on the contour.1 Indeed, on this contour we have

τ1 + iτ2 =
`

2m
+ 2iτ2y =

`

2m
− 2ty + 2iεy ,

τ1 − iτ2 =
`

2m
− 2iτ2(1− y) =

`

2m
+ 2t(1− y)− 2iε(1− y) ,

(2.25)

and hence, using (2.18), we infer that on the contour

|e2πiρ′0 | = e
4π a

cγ
εy

= e
−4π a

|c|γ εy < 1 ,

|e2πiσ′0 | = e
4π c

aγ
ε(1−y)

= e
−4π

|c|
aγ
ε(1−y)

< 1 .
(2.26)

Throughout the paper, when we write
´
Ĉ dτ ∧ dτ̄ f , we will mean

2i

ˆ
Γ2

dτ2

(ˆ
Γ1

dτ1 f

)
. (2.27)

In the next subsection we will show how the Rademacher form (2.21) of the degeneracy formula can
be brought into the ‘covariant’ form (2.6).

2.2 Adding a total derivative term

The Rademacher form (2.21) is obtained by performing the integration over the ρ variable in (2.1).
An alternative expression for the degeneracies can be obtained by first integrating over the v variable.
As shown in [9], the leading contribution to (2.1) coming from the residue at the pole ρσ− v2 + v = 0
takes the form of the integral entering (2.6). We now explain how to directly relate the degeneracies
obtained from integrating over ρ and over v by the addition of a total derivative term.

We start from (2.21),

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

eiπϕ
(−1)`+1

γ2 (ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)13

(m
ac

+
a

c
E2(ρ′0) +

c

a
E2(σ′0)

)
×

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

m|τ |2+n−`τ1
τ2 ,

(2.28)

where the phase ϕ reads

ϕ =
2

n2

(
−1

2
j `−m1 n+ n1m

)
. (2.29)

To this we add the total derivative termˆ
Γ2

dτ2
d

dτ2

(ˆ
Γ1

dτ1R(τ1, τ2)

)
, (2.30)

with

R(τ1, τ2) =
i

π

∑
P

∑
Σ∈Z/|ac|Z

eiπϕ
(−1)`+1

γ (2iac)13

1

τ13
2

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

m|τ |2+n−`τ1
τ2 , (2.31)

1A similar contour was also used in [27, 28].

6



to obtain

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

{
eiπϕ

2iπ

(−1)`+1

γ (ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)14

(
26 +

2π

n2

m|τ |2 + n− `τ1

τ2

)
×

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

m|τ |2+n−`τ1
τ2

}

+ i(1− 2δ)

ˆ
Γ2

dτ2R

(
τ1 =

`

2m
+ iτ2(1− 2δ), τ2

)
+ i(1− 2δ)

ˆ
Γ2

dτ2R

(
τ1 =

`

2m
− iτ2(1− 2δ), τ2

)
.

(2.32)

Next, let us analyze the last two terms in (2.32). We focus on the term

ˆ
Γ2

dτ2R

(
τ1 =

`

2m
+ iτ2(1− 2δ), τ2

)
=
i

π

∑
P

∑
Σ∈Z/|ac|Z

eiπϕ
(−1)`+1

γ (2iac)13

ˆ
Γ2

dτ2

τ13
2

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

[
∆

4mτ2
+4mτ2 δ(1−δ)

]
,

(2.33)

where

ρ′0 = − a

cγ

(
`

2m
+ 2iτ2(1− δ)

)
− 1

c

(
b
α

γ
+ aΣ

)
,

σ′0 =
c

aγ

(
`

2m
− 2iτ2δ

)
+

1

a

(
d
α

γ
− cΣ

)
.

(2.34)

Let us perform a saddle point analysis of the integral in (2.33). Taking Im τ2 to be large, and using
the approximation

1

η24(ρ′0)

1

η24(σ′0)
≈ e−2πi(ρ′0+σ′0), (2.35)

we obtain for the saddle point value of τ2,

τ2 extr =

√
∆√

16m (|a|2(1− δ) + |c|2δ +mδ(1− δ)
. (2.36)

For the case n2 = 1, and setting δ = 0, this becomes

τ2 extr =

√
∆

16m
, (2.37)

which, when inserted back into (2.33), shows that the summand on the right-hand side behaves as

e2π
√

∆/m in a saddle point approximation. This is an exponentially supressed contribution that can
be dropped in the semi-classical expansion, as it does not scale with the charges. A similar argument
applies to the last two terms of (2.32). Since in Section 2.3 we will be interested in the semi-classical
analysis of dyonic single-centred BPS black holes whose classical entropy scales quadratically in the
charges, we will ignore these terms in what follows.

Finally, let us show that the integrated total derivative term (2.30) vanishes,

ˆ
Γ2

d

dτ2

(ˆ
Γ1

dτ1R(τ1, τ2)

)
=
i

π

∑
P

∑
Σ∈Z/|ac|Z

eiπϕ
(−1)`+1

γ (2iac)13
(Gn2(ε+ i∞)−Gn2(ε− i∞)) , (2.38)

where

Gn2(τ2) =
2i

τ12
2

e
π∆

4mn2τ2

ˆ 1−δ

δ
dy

1

η24(ρ′0)

1

η24(σ′0)
e

4πmτ2y(1−y)
n2 . (2.39)

7



Let us estimate |Gn2(τ2)| using Darboux’s inequality,

|Gn2(ε+ it)| ≤ 2

(ε2 + t2)6
e

π∆ε

4mn2

√
ε2+t2 e

πmε
n2 M(t) , M(t) =

ˆ 1−δ

δ
dy

∣∣∣∣∣ 1

η24(ρ′0)

1

η24(σ′0)

∣∣∣∣∣ . (2.40)

Note that M(t) is finite due to the regulator δ, and that it stays finite for arbitrary values of t, i.e.
M(t) ≤ M ∀t ∈ R. Therefore |Gn2(ε ± i∞)| = 0, and hence Gn2(ε ± i∞) = 0. Thus, we have
established the equivalence of the Rademacher and ‘covariant’ forms (2.4) and (2.6), respectively, up
to exponentially suppressed corrections. In Section 5, we will give a physical motivation for adding
the total derivative term to (2.21) and working with the covariant expression of the degeneracies,
which allows for an interpretation involving 2D Euclidean wormholes.

Note that in the ‘covariant’ expression (2.6) the measure factor 26 + 2π
n2

m|τ |2+n−`τ1
τ2

does not carry
any dependence on Σ, and that the dependence of the integrand on the SL(2,Z) parameters of (2.5)
is solely contained in the combination n2 = −acγ, cf. (2.9).

2.3 Semi-classical expansions

We established that the expression for the microstate degeneracies (2.28) is equal to the expression
(2.6) (up to the exponentially suppressed contributions just discussed) which we reproduce here for
convenience,

d(m,n, `)∆>0 =
∑
P

∑
Σ∈Z/|ac|Z

eiπϕ

2iπ

(−1)`+1

γ (ac)13

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)14

(
26 +

2π

n2

m|τ |2 + n− `τ1

τ2

)
×

1

η24(ρ′0)

1

η24(σ′0)
e
π
n2

m|τ |2+n−`τ1
τ2 ,

(2.41)

where

ρ′0 = − a

c

τ

γ
− b

c

α

γ
− a

c
Σ ,

σ′0 =
c

a

τ̄

γ
+
d

a

α

γ
− c

a
Σ .

(2.42)

Let us consider the integrand of (2.41). Both the measure and the exponent are given in terms of the
combination

π

n2

m|τ |2 + n− `τ1

τ2
, (2.43)

which, upon substituting the tree-level saddle point value for τ , is equal to

SBH

n2
=
π
√

∆

n2
, (2.44)

where SBH denotes the Bekenstein-Hawking entropy of a BPS black hole carrying charge bilinears
(m,n, `) at the two-derivative level. Note that despite the presence of the combination (2.43) in the
measure of (2.41), no contribution proportional to logSBH arises when evaluating the integral (2.41)
in saddle point approximation [9]. When n2 = 1, the associated quantum entropy function space-time
background is AdS2 × S2, while when n2 > 1, the associated space-time background has been argued
to be a freely acting Zn2 orbifold of an AdS2 × S2 background [9, 10, 11, 12]. We note at this stage
that the order n2 of the orbifold is a composite integer given by n2 = −acγ. Moreover, the orbifold
background is supported by electric and magnetic gauge potentials (AIθ, ÃθI) whose values depend
on the integers introduced in (2.9). There are therefore several sectors in (2.41) that are labelled by
different integers but have the same order n2. We will discuss these orbifold backgrounds in more
detail in Section 3, in conjunction with S-duality.
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To facilitate the discussion about the space-time interpretation of (2.28) and (2.41), it is useful to
first infer semi-classical expressions for log d(m,n, `) by extremizing the integrand of either expressions.
Both extremizations give identical results, and we will choose to extremize the latter since the analysis
is less involved. We will first extremize the terms in the exponent of (2.41), and subsequently consider
the extremization problem in the presence of the η24 terms.

For subsequent use, we recall that the evaluation of (2.28) results in an exact expression for the
degeneracies d(m,n, `) in terms of a fine-grained Rademacher expansion that involves Kloosterman
sums and modified Bessel functions of the first kind [5]. This exact expression, given in equation
(5.118) of [5], is rather lengthy and will not be reproduced here. For our semi-classical analysis it will
be sufficient to focus on the first line of this result since, in the large ∆ limit, the remaining terms
are exponentially supressed. Here we simply recall that this part of the exact degeneracies involves

modified Bessel functions I23/2(z), with z = π
√

∆|∆̃|/(γm), as well as the generalized Kloosterman
sum

Kl
( ∆

4m
,

∆̃

4m
, γ, ψ

)
`˜̀

=
∑

0≤−δ<γ
(δ,γ)=1, αδ=1 mod γ

e
2πi
(
α
γ

∆̃
4m

+ δ
γ

∆
4m

)
ψ̃(Γ) ˜̀̀ ,

ψ̃(Γ) ˜̀̀ = − 1√
2mγ

∑
T∈Z/γZ

e
2πi

(
α
γ

(˜̀−2mT )2

4m
− `(

˜̀−2mT )
2mγ

+ δ
γ
`2

4m

)
,

(2.45)

where

∆ = 4mn− `2 > 0 , ∆̃ = 4mñ− ˜̀2 < 0 . (2.46)

2.3.1 Extremization without log η terms

Let us consider the terms in the exponent of (2.41),

f0(τ, τ̄) =
π

n2

m|τ |2 + n− `τ1

τ2
+ iπϕ , (2.47)

where we recall that the phase ϕ is given by (2.29). Extremizing with respect to τ yields

τ∗ =
`

2m
+ i

√
∆

2m
. (2.48)

At this extremum, (2.47) takes the value

f0(τ∗, τ̄∗) = π

[√
∆

n2
− i

n2
(ad+ bc)`+ 2i

δ

γ
n+ 2i

α

γ

bd

ac
m+ 2im

Σ

ac

]
. (2.49)

which we can write as

f0(τ∗, τ̄∗) = π

[√
∆

n2
+

2i

n2

(
−1

2
j`−m1n+ n1m

)]
, (2.50)

using (2.9). We thus reproduce the semi-classical result for log d(m,n, `) obtained in [29, 9, 11] as
expected.

Next, we determine the values of (ρ, σ, v) at the extremum, which we will denote by (ρ∗, σ∗, v∗).
Using

ρ =

α
γ

(
d2 ρ′0 + b2 σ′0 + 2bdΣ

)
+ Σ2 − ρ′0σ′0

X2
,

σ = − δ

γ
+

1

γ2X2
,

v =
cdρ′0 + abσ′0 + (ad+ bc)Σ

γ X2
,

γσ + δ =
1

γ X2
,

(2.51)
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as well as (2.18) and (2.48), we obtain

ρ∗ = − n1

n2
+ i

n

n2

√
∆
,

σ∗ =
m1

n2
+ i

m

n2

√
∆
,

v∗ =
j

2n2
− i `

n2

√
∆
.

(2.52)

This reproduces the result for (ρ∗, σ∗, v∗) obtained in [11], apart from a sign difference in Im v∗.

2.3.2 Extremization with log η terms

Next, we consider the extremization of the terms in the exponent in (2.41), but this time also taking
into account the η24 terms in (2.41). This will result in a change of the saddle point value of τ given
in (2.48).

We take the imaginary part of τ to be large and use the approximation

1

η24(ρ′0)

1

η24(σ′0)
≈ e−2πi(ρ′0+σ′0). (2.53)

We thus extremize the function

f(τ, τ̄) = −2πi
(
ρ′0 + σ′0

)
+ π

m|τ |2 + n− `τ1

n2 τ2
+ iπϕ (2.54)

with respect to τ and τ̄ using the expressions (2.18). This results in the following two equations,

a2(τ − τ̄)2 +mτ̄2 − `τ̄ + n = 0 ,

c2(τ − τ̄)2 +mτ2 − `τ + n = 0 ,
(2.55)

which are solved by

τextr =
`

2m
+ i

√
∆

2m

m+ a2 − c2√
(m+ (a− c)2)(m+ (a+ c)2)

,

τ̄extr =
`

2m
− i
√

∆

2m

m− a2 + c2√
(m+ (a− c)2)(m+ (a+ c)2)

,

(2.56)

where we chose the appropriate signs so that (2.56) reduces to (2.48) when switching off the terms
proportional to a2 and c2. Note that when a2 6= c2, the saddle point values τextr and τ̄extr are not any
longer complex conjugates of one another.

In the following, let us consider the case a = −c = 1, b = 0, d = 1. The saddle point value is then

τextr =
`

2m
+ i

√
∆

2
√

(m+ 4)m
, (2.57)

which reproduces the R2-corrected attractor value for τ at leading order [30]. Next we evaluate the
value of (2.54) at the saddle point. Exponentiating the resulting expression gives

ef(τextr,τ̄extr) = e
2πi
(
n δ
γ
−α
γ
− `

2γ

)
+π
γ

√
∆
√
m+4√
m . (2.58)

Comparing with (2.49), we note the presence of the additional R2 induced phase α stemming from
the terms (2.53).

We observe that the exponent in (2.58) corresponds to the term ñ = −1, ˜̀= m in the Rademacher
expression given in (5.118) of [5], in which case ∆̃ = 4mñ − ˜̀2 = −m(4 + m) . The real part of the
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exponent yields Wald’s R2 corrected entropy [30] divided by γ. The imaginary part of the exponent
matches the exponent in the Kloosterman sum (2.45)

δ

γ

∆

4m
+
α

γ

∆̃

4m
+
α

γ

(˜̀− 2mT )2

4m
− `(˜̀− 2mT )

2mγ
+
δ

γ

`2

4m

=
δ

γ
n+

α

γ

(
ñ− ˜̀T +mT 2

)
− `(˜̀− 2mT )

2mγ
,

(2.59)

for

ñ = −1 , ˜̀= m , T = 0 . (2.60)

Note that the R2 induced phase α is crucial to obtain this matching.
As mentioned above, the exact expression for the microstate degeneracies d(m,n, `) involves mod-

ified Bessel functions I23/2(z), with z = π
√

∆|∆̃|/(γm). Note that z has a dependency on 1/γ, not

on 1/n2. On the other hand, the saddle point result (2.50), when exponentiated, gives an expression

whose modulus is eπ
√

∆/n2 . One may then wonder how these two seemingly differently looking ex-
pressions are related. To do so, we proceed as follows. The quantity ∆̃ in (2.46) can be expressed in
terms of integers M,N as [5]

∆̃ =
1

a2c2

[
−(a2M − c2N)2 − (m2 − 2m(a2M + c2N))

]
, (2.61)

where M,N satisfy the bounds

−m < a2M − c2N ≤ m , a2M + c2N ≤ m . (2.62)

Taking m to be large, and restricting to integers M,N such that the following holds,

|a2M − c2N | � m , |a2M + c2N | � m , (2.63)

we find that ∆̃ is approximately given by

|∆̃| ≈ m2

(ac)2
, (2.64)

in which case z becomes

z =
π
√

∆

n2
, (2.65)

so that to leading order,

I23/2(z) ≈ e
π
√

∆
n2 . (2.66)

Note that the set of integers M,N satisfying (2.63) is finite. This is a consequence of demanding that
∆̃ < 0 as well as of the continued fraction condition stated in [5].

3 Orbifolds of AdS2 and S-duality

The microscopic result (2.41) suggests that its semi-classical interpretation in terms of sums over space-
time backgrounds involves freely acting Zn2 orbifolds of an AdS2 × S2 background [9, 11, 31, 12], as
we mentioned in Subsection 2.3.

In Euclidean space-time, a freely acting Zn2 orbifold background is described by the following
Euclidean line element [9, 11, 31, 12],

ds2 = v∗

(
(r2 − 1)dθ2 +

dr2

r2 − 1
+ dψ2 + sin2 ψ dφ2

)
, θ ∼= θ +

2π

n2
, φ ∼= φ+

2π

n2
, (3.1)
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and by gauge potentials AIθ that acquire a constant real part when orbifolding,

AIθ = −ieI∗ (r − 1) dθ + ReAIθ . (3.2)

Likewise, the dual gauge potentials ÃθI also acquire a constant real part when orbifolding.
In the following, we will determine the real part of the gauge potentials that support these orb-

ifolds in the context of N = 2 theories, by resorting to S-duality and viewing it as a symplectic
transformation acting on the symplectic vector that comprises the gauge potentials in these N = 2
theories. We will thereby show that (ReAIθ,ReÃθI) depend on the integers m1, n1, j introduced in
(2.9). Recall that the order of the orbifold is given by n2 = −acγ. Hence, we slightly abuse the
notation when denoting these orbifolds as Zn2 and it is important to keep in mind that the geometry
and the supporting gauge potentials depend on the integers m1, n1 and j in addition to n2.

We obtained the saddle point action (2.50) by extremizing the combination (2.47) that appears in
the exponent of (2.41). Following [9, 11, 31, 12], we will regard (2.50) as the saddle point action of a
Zn2 orbifold background. If we write this action as

π

n2

[√
∆ + i

(
q · ReAθ − p · ReÃθ

)]
, (3.3)

where

q · ReAθ − p · ReÃθ = −j `− 2m1 n+ 2n1m , (3.4)

then the question is what are the constant real parts of the gauge potentials (Aθ, Ãθ) that support
the orbifold background.

To address this question, we will use an N = 2 language, label the gauge potentials as (AIθ, ÃθI),
where I = 0, 1, . . . , n, and consider a specific N = 2 model.

3.1 Gauge potentials and S-duality

We consider the following N = 2 model,

F (Y ) = −Y
1Y aηabY

b

Y 0
, a = 2, . . . , n (3.5)

where ηab is a constant symmetric matrix. For the moment, we work with a type II tree-level prepo-
tential and will discuss the effect of adding loop corrections below. We denote the electric-magnetic
charges in the type IIA basis by (qI , p

I), while in the heterotic basis they will be denoted by QI and
PI . Both sets are related as follows,

QI = (q0, p
1, qa) ,

PI = (p0,−q1, p
a) .

(3.6)

The charge bilinears (m,n, `) are expressed as follows in terms of the charges [30],

m = PI OIJ PJ = p0q1 + paηabp
b ,

n = QIM IJ QJ = −q0p
1 +

1

4
qaη

abqb ,

` = QI PI = q0p
0 − q1p

1 + qap
a ,

(3.7)

where we introduced the constant matrices

M IJ =

 0 −1
2

−1
2 0

0 1
4 η

ab

 , OIJ =

 0 −1
2

−1
2 0

0 ηab

 . (3.8)
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In the following, we work in the type IIA basis, and we define the constant real parts of the gauge
potentials (AIθ, ÃθI) to be

ReA0
θ = 2m1p

1 − jp0 ,

ReA1
θ = 2n1p

0 + jp1 ,

ReAaθ = − 1

2
m1η

abqb −
1

2
jpa ,

ReÃθ0 = 0 ,

ReÃθ1 = 0 ,

ReÃθa = − 2n1ηabp
b +

1

2
jqa .

(3.9)

Note that these expressions depend on the integers (m1, n1, j), but not on the integers n2 and m2.
One readily verifies that

qI ReAIθ − pI ReÃθI = −j `− 2m1 n+ 2n1m , (3.10)

in accordance with the saddle point expression (3.4).
We claim that the gauge potentials (AIθ, ÃθI) defined by (3.9) transform as a symplectic vector

under S-duality. Let us first consider the action of the T-generator of S-duality on the charges (qI , p
I),

which is represented by the SL(2,Z) matrix(
1 s
0 1

)
, s ∈ Z, (3.11)

and results in the transformation law (see, for instance, Eq. 3.6 in [32])

p0 → p0 , p1 → p1 + sp0 , pa → pa ,

q0 → q0 − sq1 , q1 → q1 , qa → qa − 2sηabp
b .

(3.12)

The gauge potentials (AIθ, ÃθI) defined by (3.9) should transform precisely in the same manner as the
charges (qI , p

I), i.e.

ReA0
θ → ReA0

θ , ReA1
θ → ReA1

θ + sReA0
θ , ReAaθ → ReAaθ ,

ReÃθ0 → ReÃθ0 − sReÃθ1 , ReÃθ1 → ReÃθ1 , ReÃθa → ReÃθa − 2sηabReAbθ .
(3.13)

To verify the transformation behaviour (3.13) under the action of the T-generator of S-duality, we
need to determine the transformation behaviour of the quantities that enter in (3.13). The charge
bilinears (m,n, `) transforms as follows,

m→ m ,

n→ n− s `+ s2m , s ∈ Z ,

`→ `− 2sm .

(3.14)

The invariance of the microscopic result (2.41) under the transformation (3.14) is implemented by
demanding the following transformation of the integers (m1, n1,m2, n2, j),

m1 → m1 , n1 → n1 − sj − s2m1 , j → j + 2sm1 , m2 → m2 , n2 → n2 . (3.15)

With this at hand, it is straightforward to check that the real parts of the gauge potentials (3.9)
indeed transform as in (3.13). Owing to the symplectic product structure, this immediately implies
that (3.3) is invariant under (3.14) and (3.15). Note that the transformation (3.15) leaves the locus
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(2.7) invariant when supplemented by the action2 of the T-generator on the triplet (ρ, σ, v). We will
return to the invariance of the microscopic result (2.41) under the action of the T-generator below.

Next, let us consider consider the action of the S-generator of S-duality on the charges (qI , p
I),

which is represented by the SL(2,Z) matrix(
0 1
−1 0

)
, (3.16)

and results in (see, for instance, Eq. 3.6 in [32])

p0 → −p1 , p1 → p0 , pa → 1

2
ηabqb ,

q0 → −q1 , q1 → q0 , qa → −2ηabp
b .

(3.17)

The gauge potentials (AIθ, ÃθI) defined by (3.9) should transform precisely in the same manner as the
charges (qI , p

I), i.e.

ReA0
θ → −ReA1

θ , ReA1
θ → ReA0

θ , ReAaθ →
1

2
ηabReÃθb ,

ReÃθ0 → −ReÃθ1 , ReÃθ1 → ReÃθ0 , ReÃθa → −2ηabReAbθ .
(3.18)

To verify the transformation behaviour (3.18) under the action of the S-generator of S-duality, we
need to determine the transformation behaviour of the quantities that enter in (3.18). The charge
bilinears (m,n, `) transforms as follows,

m→ n , n→ m , `→ −`. (3.19)

Demanding that the integers (m1, n1, j) transform as

m1 ↔ −n1 , j → −j , (3.20)

we establish the transformation behaviour (3.18) under the action of the S-generator of S-duality.
Observe that if we further supplement (3.19) with the transformation law

m2 → m2 , n2 → n2 , (3.21)

then the combined transformation (3.20) and (3.21) leaves the locus (2.7) invariant, provided also
that ρ↔ σ and v → −v. The latter correctly implements the action of the S-generator on the triplet
(ρ, σ, v), cf. footnote 2.

Thus, we have shown that the real parts of the gauge potentials (AIθ, ÃθI) given in (3.9) transform
as a symplectic vector under S-duality, and that their symplectic product with the charge vector
(qI , p

I) yields the correct invariant expected from the saddle point expression (3.4).
Finally, let us display the expressions for the gauge potentials (3.9) for the case when a = 1, c =

−1, d = 1, b = 0,Σ = 0, in which case the parameters (m1, n1,m2, n2, j) given in (2.9) take the values
(−δ, 0, 0, γ, 1). Then,

ReA0
θ = − 2δp1 − p0 ,

ReA1
θ = p1 ,

ReAaθ =
1

2
δηabqb −

1

2
pa ,

ReÃθ0 = 0 ,

ReÃθ1 = 0 ,

ReÃθa =
1

2
qa ,

(3.22)

2 Under an S-duality transformation

(
a b
c d

)
∈ SL(2,Z), the vector

vσ
ρ

 transforms as

vσ
ρ

 → M

vσ
ρ

, where

M =

ad+ bc −bd −ac
−2cd d2 c2

−2ab b2 a2

.
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and (3.4) is given by

q · ReAθ − p · ReÃθ = −`+ 2δ n . (3.23)

Including loop corrections to the N = 2 prepotential (3.5) does not modify the discussion of S-duality
above. It will however affect the result of the extremization (3.3). If we include a one-loop correction
of the form

F (Y ) = −Y
1Y aηabY

b

Y 0
− i

2π
log η24

(Y 1

Y 0

)
, (3.24)

then the value of (3.3) will be modified according to Section 2.3.2. For the case when a = 1, c =
−1, d = 1, b = 0,Σ = 0, the loop corrections to (3.3) will read

π

γ

[√
m+ 4√
m

√
∆ + i

(
q · ReAθ − p · ReÃθ

)
− 2iα

]
. (3.25)

Comparing with the extremization result (2.58) that was obtained by taking into account the presence
of the η24 terms in (2.41), we see that the saddle point value receives contributions from the symplectic
product of the real parts of the gauge potentials with the charge vector (3.23), and from the loop
corrections to the N = 2 prepotential.

3.2 Invariance under the T-generator

Let us now show that the microscopic result (2.32) is invariant under the T-transformation (3.14) of
the charge bilinears (m,n, `). Using (2.29), the exponents in (2.32) are invariant under the combined
transformation (3.14) and (3.15) when supplemented by the transformation

τ → τ − s , (3.26)

which is the reflection of the T-generator action on the variables ρ, σ, v after we have integrated over
ρ by residue. The transformation (3.26) also leaves the τ -contour of integration (2.23) invariant, since
the shift

`

2m
→ `

2m
− s (3.27)

induced by (3.14) gets compensated by the shift in τ1. The invariance of the contour arises from our
initial choice of a charge dependent contour (2.3), as in [23].

Since (2.32) involves a sum over the integers in the set (2.5) as well as over Σ, we also need
their transformation properties under the action of the T-generator. Their transformation properties
should be such that, when using the expressions (2.9), they result in the transformation (3.15). The
following set of transformations achieves this: the Greek entries α, β, γ, δ are inert under the action
of the T-generator, while the Latin entries a, b, c, d transform as(

a b
c d

)
−→

(
a b
c d

)(
1 δs
0 1

)
=

(
a b+ aδs
c d+ cδs

)
, (3.28)

and Σ transforms as

Σ→ Σ− β(ad+ bc)s− βδacs2 . (3.29)

Using these expressions as well as (2.18), we obtain for the transformation behaviour of ρ′0 and σ′0,

ρ′0 → ρ′0 + 2abβs+ a2βδs2 ,

σ′0 → σ′0 + 2cdβs+ c2βδs2 ,
(3.30)

where the shifts are integer valued, so that

η24(ρ′0) η24(σ′0)→ η24(ρ′0) η24(σ′0) . (3.31)
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Note that a, c and the Greek entries α, β, γ, δ are inert under the action of the T-generator. Now
consider a fixed sector (a, c, α, β, γ, δ): the only independent integers that transform are b ∈ Z and
Σ ∈ Z/|ac|Z. For a given s, the integer b transforms by a uniform shift aδs, and hence we have
a bijection from Z into Z in a given sector (a, c, α, β, γ, δ). The transformation law of Σ is also an
integer shift which also depends on b. The prescribed order of summation [5], first Σ then b, implies
that the transformation of Σ is 1-to-1 and therefore the sum is invariant.

More generally, we may infer the transformation law of the 9 integers α, β, γ, δ, a, b, c, d,Σ under
general S-duality transformations from the transformation law of the 5 integers m1, n1,m2, n2, j under
the T-generator and the S-generator by ‘inverting’ the relations (2.9), as follows. Recall that a > 0, c <
0, γ > 0. We use the following gcd rules,

gcd(n2, 0) = n2 > 0 , gcd(−ac,−a) = a > 0 , gcd(−ac, c) = −c > 0 . (3.32)

Since n2 6= 0, we have gcd(n2,−m1) 6= 0. Using the expressions (2.9) and recalling that gcd(γ, δ) = 1,
we infer the relations

−ac = gcd(n2,−m1) , (3.33)

as well as

γ =
n2

gcd(n2,−m1)
,

δ = − m1

gcd(n2,−m1)
.

(3.34)

Since α ∈ Z/γZ, (3.34) uniquely specifies α and β in terms of n2 and m1 via the relation αδ−βγ = 1.
Using (3.33), and recalling the relation j = 1 + 2bc, we obtain

c = − gcd

(
gcd(n2,−m1),

j − 1

2

)
, (3.35)

as well as

a =
gcd(n2,−m1)

gcd
(

gcd(n2,−m1), j−1
2

) . (3.36)

Using the relation (2.8) together with j = 1 + 2bc = 2ad− 1, we infer that m1n1 +m2n2 = abcd, and
hence

bd =
1− j2

4 gcd(n2,−m1)
, (3.37)

from which it follows that

d = gcd

(
1− j2

4 gcd(n2,−m1)
,
j + 1

2

)
, (3.38)

and hence

b =

1−j2
4 gcd(n2,−m1)

gcd
(

1−j2
4 gcd(n2,−m1) ,

j+1
2

) . (3.39)

Finally, coming back to (2.9), Σ can be expressed as

Σ = −n1 + bdα

γ
. (3.40)

Using the map worked out above, this shows that Σ can be written in terms of the 4 integers n1,m1, n2

and j. Thus, the 9 integers α, β, γ, δ, a, b, c, d,Σ can be expressed purely in terms of m1, n1, n2, j. Note
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that this map does not involve the fifth integer m2. This observation will be relevant for the analysis
of the quantum entropy function below.

Let us then verify that the T-transformation (3.15), when combined with (3.29), reproduces the
transformation law (3.28) and keeps the Greek entries α, β, γ, δ inert. It follows immediately from
(3.34), (3.33) and (3.37) that

γ → γ , δ → δ , α→ α , β → β , ac→ ac , bd→ bd+ jδs+ acδ2s2 . (3.41)

Thus, the Greek entries α, β, γ, δ are indeed invariant under the T-transformation. Introducing the
notation

q = gcd

(
gcd(n2,−m1),

j − 1

2

)
,

q′ = gcd

(
gcd(n2,−m1),

j − 1

2
+m1s

)
,

(3.42)

we obtain that under the T-transformation,

a =
gcd(n2,−m1)

q
→ a′ =

gcd(n2,−m1)

q′
= a

q

q′
, (3.43)

i.e. aq = a′q′. From (3.42), any prime factor of q divides gcd(n2,−m1) and j−1
2 , and therefore is a

prime factor of q′. Similarly, every prime factor of q′ divides q, and hence q = q′. This shows that a
does not transform. It then follows from ac→ ac that also c is invariant.

Next, using that under the T-transformation,

ad =
1

2
(j + 1)→ ad+m1s , (3.44)

and dividing by a > 0, we obtain

d→ d+
m1

a
s = d+ cδs . (3.45)

Likewise, using (3.44), we infer

bc = j − ad→ bc+m1s , (3.46)

and dividing by c, we obtain

b→ b+
m1

c
s = d+ aδs . (3.47)

This reproduces the transformation of the Latin entries given in (3.28). We also observe that, using
n1 + γΣ = −bdα and m2 + δΣ = −bdβ, the integer Σ can be written as

Σ = n1β −m2α , (3.48)

which shows that the T-transformation of n1 induces the transformation given in (3.29).
We do not test the invariance of the microscopic expression (2.32) under the S-generator of the

S-duality group, because the microscopic expression (2.32) is guaranteed to equal the 1
4 BPS single-

centred degeneracy only for n ≥ m [3].

4 The quantum entropy function

In this section we relate the quantum entropy function for single-centred four-dimensional 1
4 BPS

black holes in toroidally compactified string theory to the microscopic degeneracy formula (2.4). To
do so, we set up the quantum entropy function in the N = 2 formalism, review some of its salient
features, and then we specialise to the N = 4 case.
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We consider N = 2 supergravity theories in four dimensions, describing the coupling of nV N = 2
vector multiplets and of nH N = 2 hyper multiplets to N = 2 supergravity in the presence of Weyl
square interactions. For latter use, we introduce

χ = 2(nV − nH + 1). (4.1)

The quantum entropy function W is defined [33, 8] as a path integral with a Wilson line insertion
in a class of four-dimensional Euclidean backgrounds B. Thus, W =

∑
BWB where WB denotes

the functional integral, with suitable boundary conditions imposed, over all fields in string theory in
the space-time background B. The backgrounds in question are backgrounds that asymptote to a
specific AdS2 × S2 solution fixed by the attractor mechanism [34, 35, 36]. The latter is supported
by Abelian gauge fields as well as constant scalar fields. The class of backgrounds we will consider
comprises Euclidean AdS2 × S2 space-times and orbifolds thereof [9, 11, 31, 12]. Further, the fields
in the functional integral are required to asymptote to values consistent with the specific attractor
AdS2 × S2 background in question.

For four-dimensional BPS black holes in the N = 2 supergravity theories mentioned above, super-
symmetric localization3 reduces the N = 2 quantum entropy function W1(q, p) to a finite dimensional
integral of the form [9, 38, 39, 40]

W1(q, p) = N
ˆ
C
dφµ(φ, p)Z1−loop(φ) eπ[4 ImF (φ+ip)−q·φ] , (4.2)

where q · φ = qI φ
I , with I = 0, . . . , nV . The normalization N is not fixed by localization but

should be determined by either computing the expectation value of the identity operator, i.e. without
the Wilson line insertion, or by comparison with the microscopic degeneracies. Here, W1 denotes
the functional integral over all fields in string theory in an Euclidean background described by an
AdS2 × S2 space-time, with the fields subjected to the boundary conditions mentioned above. The
localization manifold is labelled by nV + 1 parameters {φI}. Note that the integral in (4.2) requires
specifying a contour C. The measure µ(φ) arises as a result of the localization procedure implemented
on the field configuration space. The term Z1−loop(φ) denotes the one-loop determinant over non-BPS
directions orthogonal to the localization locus and receives contributions from bulk modes as well as
large diffeomorphisms [41]. The function F entering in (4.2) is the holomorphic function F (Y,Υ) that
defines the N = 2 Wilsonian effective action. It depends on complex scalar fields Y I and Υ. The
latter resides in a scalar chiral multiplet associated with the Weyl multiplet. F (φ+ ip) and F (Y,Υ)
are related by

F (φ+ ip) = F
(
Y = 1

2(φ+ ip),Υ = −64
)
. (4.3)

For later use, we define the quantity

e−K = i
(
Ȳ IFI − Y I F̄I

)
, (4.4)

where FI = ∂F (Y,Υ)/∂Y I .
The 1-loop determinant factor Z1−loop around localizing backgrounds consisting of Zn2 orbifolds

of AdS2×S2 has been determined very recently in [41] and shown to receive contributions from both
bulk modes as well as large diffeomorphisms. For N = 2 supergravity theories based on nV vector
multiplets and nH hypermultiplets, the contribution to Z1−loop from the bulk modes is given by

ZN=2
bulk = e−

n2χ
24

(iπ−2 logn2−24ζ′(−1)) e−(1−n2
χ
24

)K , (4.5)

while the contribution from large diffeomorphisms is

ZN=2
bdry =

1

n2
e−K . (4.6)

3Some aspects of the localization framework in supergravity (in particular certain choices of boundary conditions)
still deserve further scrutiny, primarily because the path-integral is defined on a non-compact space [37]. Assuming such
subtleties can be addressed, the result one obtains takes the form given in (4.2).
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Thus, we infer that in N = 2 supergravity theories, Z1−loop is given by

ZN=2
1−loop =

1

n2
e−

n2χ
24

(iπ−2 logn2−24ζ′(−1)) e−(2−n2
χ
24

)K . (4.7)

When n2 = 1, which corresponds to the unorbifolded case, Z1−loop takes the form given earlier in
[42, 43, 44] (up to the pure constant that can be absorbed in the normalization of the path integral).
On the other hand, for N = 4 supergravity theories with NV N = 4 vector multiplets, the contribution
to Z1−loop from the bulk modes is given by [41]

ZN=4
bulk = eK , (4.8)

which is independent of the number of N = 4 vector multiplets, while the contribution from large
diffeomorphisms is the same as in N = 2 theories and given by

ZN=4
bdry =

1

n2
e−K . (4.9)

Thus, for N = 4 supergravity theories, Z1−loop is given by

ZN=4
1−loop =

1

n2
. (4.10)

Finally, for N = 8 supergravity, Z1−loop is given by [41]

ZN=8
1−loop =

1

n2
e4K . (4.11)

We note that, if we set n2 = 1 and if we evaluate K on the BPS attractor at the two-derivative level,
in which case e−K|∗ = A

4πGN
, the exponent in Z1−loop precisely yields the logarithmic area correction

to the BPS black hole entropy [45, 46],

S =
A

4GN
+ # log

A

GN
, (4.12)

where

# =

{ −4 N = 8 ,
0 N = 4 ,

2− χ
24 N = 2 .

(4.13)

Let us now turn to the measure µ in (4.2). A proposal for the approximate form of the measure µ
was given in [47, 32] using arguments based on symplectic covariance. A different argument in favor
of this proposal was given in [48] and is related to the logaritmic corrections (4.13), as follows. Let
us denote the exponent in (4.2) by

H(φ, p, q) = 4 ImF (φ+ ip)− q · φ , (4.14)

and consider its extremization,
∂H(φ, p, q)

∂φI
= 0 . (4.15)

Let us assume that for a given set of black hole charges (qI , p
I) there exists only one non-inflective crit-

ical point φ∗, corresponding to BPS attractor values such that H(φ∗, p, q) > 0. Expanding H(φ, p, q)
around the critical point φ∗, we obtain

H(φ, p, q) = H(φ∗, p, q) +
1

2

∂2H

∂φI∂φJ

∣∣∣
φ∗
δφI δφJ +O((δφ)3) ,

= H(φ∗, p, q) +
1

2

∂2(4 ImF )

∂φI∂φJ

∣∣∣
φ∗
δφI δφJ +O((δφ)3) .

(4.16)

19



This equals

H(φ, p, q) = H(φ∗, p, q) +
1

2
ImFIJ

∣∣
φ∗
δφI δφJ +O((δφ)3) , (4.17)

where FIJ = ∂2F/∂Y I∂Y J . Next, we evaluate (4.2) by taking µZ1−loop at the attractor point (4.15)
and by integrating over the fluctuations δφI ∈ C in Gaussian approximation,

W1(q, p) ≈ N

(
µ Z1−loop√
|det ImFKL|

)∣∣∣∣∣
φ∗

eπH(φ∗,p,q). (4.18)

For this to reproduce the logarithmic corrections in (4.13), µ has to be proportional to
√
| det ImFKL|.

The proposal

µ =
√
|det ImFKL| , (4.19)

is based on the N = 2 Wilsonian action, which is encoded in a holomorphic function F . However, as
also discussed in [47, 32], one needs to allow for the inclusion of non-holomorphic terms that are neces-
sary to ensure that quantities such as H in (4.18) are invariant under duality symmetries. A systematic
way to incorporate these non-holomorphic terms is provided by the framework of deformed special ge-
ometry [49], which is based on a non-holomorphic function F̂ (Y, Ȳ ,Υ, Ῡ) = F (Y,Υ)+2iΩ(Y, Ȳ ,Υ, Ῡ),
where Ω is a real function that is homogeneous of second degree. The non-holomorphic terms are
encoded in Ω. The presence of Ω leads to various modifications of (4.19), as discussed in [47, 32] and
reviewed in [48]. One such modification is that (4.19) becomes multiplied by e4πΩ. Based on these
arguments, we will take

√
|det ImFKL| e4πΩ as a candidate for the measure in the quantum entropy

function for 1
4 BPS black holes in N = 4 heterotic string theory below. Note that the proposal for

the measure in [47] (cf. (4.6) in that paper) involves additional terms that we will drop in the N = 4
context.

Let us now discuss the N = 4 supergravity theory obtained from compactifying heterotic string
theory on a six-dimensional torus. The resulting supergravity theory is based on the N = 4 gravity
multiplet as well as on NV = 22 N = 4 vector multiplets. The N = 4 gravity multiplet contains 6
Abelian gauge fields as well as 2 real scalar fields that make up the axio-dilaton, while each of the 22
N = 4 vector multiplets contains 1 Abelian gauge field as well as 6 real scalar fields. There are thus
28 = 6+22 Abelian gauge fields in total. We will use an N = 2 description of this N = 4 supergravity
theory and discuss the quantum entropy function for this theory using an N = 2 language. As
emphasized in [41], all the N = 2 multiplets that arise in the decomposition of the N = 4 multiplets
have to be taken into account when determining Z1−loop. An N = 4 vector multiplet is decomposed
into one N = 2 vector multiplet and one N = 2 hypermultiplet. In the context of BPS black holes,
the complex scalar fields residing in the N = 2 vector multiplets are subjected to the attractor
mechanism, while those residing in the hypermultiplets are set to arbitrary constant values. On the
localizing manifold, the former give rise to the coordinates {φa, a = 2, . . . , 23}, while the latter remain
fixed to a constant off-shell and do not affect the localization locus. The N = 4 gravity multiplet
decomposes into the N = 2 gravity multiplet, two N = 2 spin-3

2 multiplets and one N = 2 vector
multiplet. An N = 2 spin-3

2 multiplet contains 2 Abelian gauge fields. We will switch off the charges
associated with the 4 Abelian gauge fields residing in the N = 2 spin-3

2 multiplets, that is, we will only
retain the electric-magnetic charges (qI , p

I) where I = 0, . . . , 23, associated to the 24 Abelian gauge
fields that reside in the N = 2 gravity multiplet and in the NV + 1 = 23 N = 2 vector multiplets that
arise in the above decomposition. Likewise, we will retain the 24 complex scalar fields Y I that reside
in the N = 2 vector multiplets and that are subjected to the attractor mechanism. The associated
N = 2 holomorphic function F (Y,Υ) takes the form

F (Y,Υ) = F (0)(Y ) + 2i ω(Y,Υ) ,

F (0)(Y ) = − Y 1Y aηabY
b

Y 0
, ω(Y,Υ) =

1

256π
Υ log η24(iS) , S = −iY

1

Y 0
,

(4.20)
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where a = 2, . . . , 23 and ηab is a constant symmetric matrix. On the other hand, the real function Ω
takes the form

4πΩ(Y, Ȳ ) = − log(S + S̄)12 . (4.21)

Evaluating the candidate measure using e.g. (4.11) in [47] gives√
| det ImFKL| e4πΩ =

√
|det[−ηab]|

2|Y 0|2(S + S̄)2

√
e−2K − 4|(S + S̄)2DS∂SΩ|2 , (4.22)

where DS∂SΩ = ∂2
SΩ + 2(S + S̄)−1∂SΩ. In [47], this candidate measure was derived starting from

a symplectic invariant measure and further imposing the magnetic attractor equations to change
variables as dY IdF̄I → dY I

√
|det ImFKL| e4πΩ. However, the choice of this measure is only defined

up to a symplectic invariant function. In order to match with the microscopic counting, we should
choose an appropriate such function whose net effect is to produce a measure that retains only the
first term under the square root in (4.22). Hence, our proposal for the measure µ in the quantum
entropy function of 1

4 BPS black holes in toroidally compactified heterotic string theory is

µ =

√
| det[−ηab]|

2|Y 0|2(S + S̄)2
e−K , (4.23)

where we are instructed to set Y I = 1
2(φI + ipI) and Υ = −64.

Using the N = 4, n2 = 1 result Z1−loop = 1 given in (4.10), we obtain

W1(q, p) = N
ˆ
C
dφ µ̃1 e

π[4 ImF (0)(φ+ip)−q·φ] , (4.24)

where

µ̃1 =

√
|det[−ηab]|

2|Y 0|2(S + S̄)2

e−K

η24(iS) η24(iS̄)
. (4.25)

Note that the exponent in (4.24) is given in terms of F (0), so that we regard the η24 terms as being
part of the measure. This point of view will be justified below when we consider the dependence of
the integrand in (4.24) on the axio-dilaton S.

The exponent in (4.24) admits an immediate generalization to the case when the background is a
Zn2 orbifold of the AdS2 × S2 space-time described by the Euclidean metric (3.1). On the orbifold,
we expect

4 ImF (0)(φ+ ip)− q · φ → 1

n2

[
4 ImF (0)(φ+ ip)− q · φ+ i

(
q · ReAθ − p · ReÃθ

)]
, (4.26)

where (ReAθ,ReÃθ) denote the constant real parts of the gauge potentials (Aθ, Ãθ) that are induced
by the orbifold action, as described in Section 3. The orbifold action will also affect the one-loop
determinant and the measure factor, cf. (4.10). The net effect will be a change of µ̃1 in (4.24) to a
new measure

µ̃1 → µ̃n2 , (4.27)

whose form will be inferred from the microscopic expression (2.41) shortly. Now recall that a Zn2

orbifold is supported by gauge potentials (3.9) that depend on the integers m1, n1, j. The orbifold is
therefore labelled by the 4 integers m1, n1, n2, j, and we will denote its contribution to the quantum
entropy function by Wn2;m1,n1,j with

Wn2;m1,n1,j(q, p) = (−1)`N
ˆ
C
dφ µ̃n2 e

π
n2

[4 ImF (0)(φ+ip)−q·φ+i(q·ReAθ−p·ReÃθ)] . (4.28)

Our chosen normalization ensures that the unorbifolded case corresponding to n2 = 1,m1 = n1 =
0, j = 1 reduces to (4.24), i.e. W1;0,0,1 = W1. Once the orbifold contributions are computed, one
should sum over all Wn2;m1,n1,j to obtain the degeneracies from the quantum entropy function.

We now proceed with the evaluation of Wn2;m1,n1,j by integrating out the scalar fields φa. We
will first focus on W1 given in (4.24). Since the factor e−K in µ̃1 depends on these scalar fields, the
integration cannot be performed exactly. We approximate the result by evaluating e−K on the saddle
point values for the φa, obtained by extremizing the exponent in (4.24).
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4.1 The quantum entropy function on AdS2 × S2

The saddle point values of the φI are obtained by solving the attractor equations

4
∂

∂φI
ImF (0)(φ+ ip) = qI . (4.29)

Solving for φa with a = 2, . . . , 23 we obtain the following saddle point values,

φa∗ = − 1

S + S̄

(
ηabqb + i(S − S̄)pa

)
, (4.30)

where ηabηbc = δac . This yields the saddle point values Y a
∗ = 1

2 (φa∗ + ipa). Hence we obtain

e−K|∗ =
1

|Y 0|2(S + S̄)

(
(p0)2n+ (p1)2m+ p0p1`

)
+ 2|Y 0|2(S + S̄)

(
∂Sω

(Y 0)2
+

∂S̄ω̄

(Ȳ 0)2

)
,

(4.31)

where the charge bilinears are given by (3.7).
Next we rewrite Y 0 as [47]

Y 0 =
1

2

(
φ0 + ip0

)
=
p1 + iS̄p0

S + S̄
, (4.32)

so that

e−K|∗ =
(S + S̄)

|p1 + iS̄p0|2
(
(p0)2n+ (p1)2m+ p0p1`

)
+ 2|p1 + iS̄p0|2(S + S̄)

(
∂Sω

(p1 + iS̄p0)2
+

∂S̄ω̄

(p1 − iS̄p0)2

)
.

(4.33)

From now on, to simplify the resulting expressions, we set

p0 = 0 . (4.34)

We will therefore work with the following saddle point expressions,

e−K|∗ = (S + S̄) (m+ 2 ∂Sω + 2 ∂S̄ω̄) ,

µ̃1|∗ =

√
| det[−ηab]|

2|Y 0|2(S + S̄)

m+ 2 ∂Sω + 2 ∂S̄ω̄

η24(iS) η24(iS̄)
.

(4.35)

Then, setting τ = iS̄ = τ1 + iτ2 and changing variables as

dφ0 ∧ dφ1 = −2i
|Y 0|2

τ2
dτ ∧ dτ̄ , (4.36)

we obtain

dφ0 ∧ dφ1 µ̃1|∗ = − i
2
dτ ∧ dτ̄

√
|det[−ηab]|

τ2
2

m+ E2(τ) + E2(−τ̄)

η24(τ) η24(−τ̄)
, (4.37)

where

E2(τ) =
1

2πi

d

dτ
log η24(τ). (4.38)

Note that the dependence on |Y 0|2 has cancelled out, and hence so has the dependence on p1. Under
this change of variables, the contour C also changes, but for notational simplicity we will denote the
new contour also by C.
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Thus, using the approximate expression (4.35) for the measure, we obtain the following approxi-
mate expression for the quantum entropy function contribution W1 in the N = 4 setting,

W1(q, p) = −N i

2

√
| det[−ηab]|

ˆ
C

dτ ∧ dτ̄
τ2

2

dφa
m+ E2(τ) + E2(−τ̄)

η24(τ) η24(−τ̄)
eπ[4 ImF (0)(φ+ip)−q·φ] . (4.39)

Next, using the expression for F (0) given in (4.20), we integrate out the φa in (4.39) (a = 2, . . . , 23),
which are Gaussian integrals. Each φa integral yields a factor

1
√
τ2
, (4.40)

and we obtain

W1(q, p) = 212N
ˆ
C

dτ ∧ dτ̄
(τ − τ̄)13

m+ E2(τ) + E2(−τ̄)

η24(τ) η24(−τ̄)
e
π
τ2

(n−`τ1+m|τ |2) , (4.41)

where the contour C now describes a contour in (τ1, τ2)-space.
We now compare (4.41) with the microscopic result (2.21). The condition n2 = 1 implies a =

−c = d = 1, b = 0,−β = γ = 1, α = δ = 0,Σ = 0 (cf. (2.5)), and hence m1 = n1 = m2 = 0, j = 1.
Both expressions agree provided we set N = 2−12, as already observed in [28].

This agreement is remarkable, for the following reason. The N = 2 measure (4.22) was obtained
in [47] from a symplectic principle and imposing the magnetic attractor equations. We then further
approximate 24 of the remaining integrals by setting 22 scalars at their saddle point values, which
leads us to the measure (4.35) depending only on S and S̄. It would be very interesting to understand
how such a measure arises from first principles in an N = 4 setting.

By comparison, the contour C in (4.41) is determined to be the contour Ĉ which then micro-
scopically specifies a complex integration contour for (φ0, φ1). This microscopic data has not been
determined directly by the supergravity localization procedure, and it would be valuable to do so
in the future. On this contour, W1 can be brought to the form (2.41) by adding a total derivative
term, as discussed in Subsection 2.2. Neglecting the exponentially suppressed contributions that are
encoded in R, cf. (2.32), the resulting expression reads

W1(q, p) =
1

2iπ

1

212

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)2

(
26 + 2π

m|τ |2 + n− `τ1

τ2

)
eπ[4ImF̂ (φ+ip)−q·φ]|φa∗ , (4.42)

where the φa are evaluated on the attractor value (4.30), and where we introduced the non-holomorphic
function [50]

F̂ (Y, Ȳ ) = −Y
1Y aηabY

b

Y 0
− 3i

π
log
(
|η2(τ)|2 τ2

)
, τ =

Y 1

Y 0
. (4.43)

This corresponds to a deformation of F (0) by a non-holomorphic term Ψ(τ, τ̄) = log
(
|η2(τ)|2 τ2

)
and

is an example of deformed special geometry [49].
The saddle point evaluation of (4.42) yields the semi-classical entropy[

π
(

4 ImF (0)(φ+ ip)− q · φ
)
− 12 log

(
|η2(τ)|2τ2

) ]
∗
, (4.44)

which is the Wald entropy corrected by a non-holomorphic term [50].
Note that while in the above we assumed that p0 = 0 when deriving W1, the microscopic result

(2.21) is, of course, also valid when p0 6= 0.

4.2 The quantum entropy function on orbifolds of AdS2 × S2

Next, we turn to Wn2;m1,n1,j given in (4.28). We integrate out the φa in saddle point approximation,
as was done for W1. Each φa integral now yields a factor

√
n2√
τ2
. (4.45)
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Then, using (4.36) as well as (3.4), we obtain (using the normalization N and contour Ĉ determined
above from W1)

Wn2;m1,n1,j(q, p) = 2i
(−1)` n11

2√
det[ηab]

ˆ
Ĉ

dτ ∧ dτ̄
(τ − τ̄)12

|Y 0|2 µ̃n2 |∗ e
π
n2

[n−`τ1+m|τ |2+2i(− 1
2
j `−m1 n+n1m)] , (4.46)

where µ̃n2 |∗ denotes the measure µ̃n2 evaluated on the saddle point values φa∗ given in (4.30). We now
compare (4.46) with the microscopic result (2.21). The comparison shows that the macroscopic result
is more naturally expressed in terms of the 9 integers α, β, γ, δ, a, b, c, d and Σ that are subject to the
constraints displayed in (2.5), as

µ̃n2 |∗ =
γ12

n25
2

√
|det[−ηab]|

2|Y 0|2 (S + S̄)

m+ a2E2(ρ′0) + c2E2(σ′0)

η24(ρ′0) η24(σ′0)
, (4.47)

although, as discussed in Section 3.2, this can be equivalently formulated in terms of the 4 integers
m1, n1, n2 and j. The expression (4.47) reduces to the one for µ̃1|∗ given in (4.35). To account for the

factor γ12

n25
2

in (4.47), we write it as

1

n2

1

(n2 ac)12
. (4.48)

The first factor 1
n2

is accounted for by the expression for Z1−loop (4.10). The second factor can

be accounted for by returning to the candidate measure
√
|det ImFKL| e4πΩ discussed above and

replacing it by √∣∣∣∣det

(
ImFKL
n2 |ac|

)∣∣∣∣ e4πΩ . (4.49)

This is similar to what was proposed very recently in [41] in the context of the quantum entropy
function for 1

8 BPS black holes in N = 8 supergravity. However, our N = 4 story is more involved,
as the orbifold saddle points are labeled by 4 integers. It is striking that these four numbers are
all that is needed to write down the quantum entropy function, including the measure µ̃n2 |∗. This
points to the fact that the orbifolds labeled by m1, n1, n2 and j are sufficient to capture the wall-
crossing phenomenon from the supergravity path integral, although it is clear we do not have a first
principle understanding of the specific combinations of integers that enter (4.47), especially through
the quantities ρ′0 and σ′0.

Adding a total derivative, and neglecting the exponentially suppressed contributions that are
encoded in R (cf. (2.32)), we can write (4.46) as

Wn2;m1,n1,j(q, p) =
eiπϕ

γ

(−1)`

4π(2iac)13

ˆ
Ĉ

dτ ∧ dτ̄
τ2

2

(
26 +

2π

n2

m|τ |2 − `τ1 + n

τ2

)
×

e
π
n2

[4ImF (0)(φ+ip)−q·φ]
φa∗
−12 log(η2(ρ′0)η2(σ′0)τ2)

,

(4.50)

where ϕ is given in (2.29). The expression (4.50) is well-suited to provide an alternative gravitational
description based on 2D Euclidean wormholes. We expand on this in the next section.

5 Wormhole interpretation

We return to the Euclidean line element (3.1) and bring the two-dimensional part

ds2
2 = v∗

(
(r2 − 1)dθ2 +

dr2

r2 − 1

)
, θ ∼= θ +

2π

n2
, r > 1 , (5.1)
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to the form (5.6) given below. This can be done as follows [51]. First, by performing the rescaling
r → n2 r and θ → θ/n2 [12], the line element (5.1) becomes

ds2
2 = v∗

(
(r2 − s2)dθ2 +

dr2

r2 − s2

)
, θ ∼= θ + 2π , s =

1

n2
. (5.2)

Next, defining

ρ =
1

2s
log

r + s

r − s
, ρ > 0 , (5.3)

we obtain

ds2
2 = v∗

s2

sinh2(sρ)

(
dθ2 + dρ2

)
, θ ∼= θ + 2π , ρ > 0 . (5.4)

Next, using the map [51]

tan
(s

2
(σ + iT )

)
= tanh

(s
2

(ρ+ iθ)
)

(5.5)

with −π < sσ < 0 and −∞ < T <∞, we obtain the line element

ds2
2 = v∗

s2

sin2(sσ)

(
dT 2 + dσ2

)
, −π < sσ < 0 , −∞ < T <∞ , s =

1

n2
. (5.6)

When s = 1, this line element describes a strip of width π that represents global AdS2.
Both line elements (5.1) and (5.6), together with a constant dilaton Φ0 = 1

8πG
(2)
N

, are solutions of 2D

Euclidean JT gravity. The appearance of this theory can be understood from a dimensional reduction
of the 4D theory as follows. As explained in [33], the near-horizon geometry (3.1) (and its two-
dimensional counterpart (5.1)) relevant for the quantum entropy function is obtained by considering
the near-horizon near-extremal limit of a non-extremal 4D black hole. In the near-horizon region and
close to extremality, we can consider the reduction of the 4D gravity theory on a two-sphere whose
size is given by a linear perturbation Φ around the extremal value v∗. This perturbation plays the
role of the dilaton in the effective 2D theory, and the action after dimensional reduction is, to first
order in Φ, given by [52]

SJT = − 1

8πG
(2)
N

[
1

2

ˆ
M
d2x
√
gR+

ˆ
∂M

dt
√
hK

]
− 1

2

ˆ
M
d2x
√
gΦ
(
R+

2

v∗

)
−
ˆ
∂M

dt
√
hΦ
(
K− 1

√
v∗

)
,

(5.7)
where K is the extrinsic curvature of the manifold M and h is the induced metric on the boundary
∂M . Evaluating this action on the orbifolded disc geometry (5.1) gives

IJT = − 1

4n2G
(2)
N

, (5.8)

while the on-shell action of the orbifolded strip with line element (5.6) vanishes. This shows that the
Bekenstein-Hawking entropy of the 4D black hole is recovered by the orbifolded disc geometry as

− IJT =
2π

n2
Φ0 =

πv∗

n2G
(4)
N

, (5.9)

where we used the KK relation 1/G
(2)
N = vol(S2)/G

(4)
N = 4πv∗/G

(4)
N to relate the 2D and 4D Newton

constants. The contribution to the path integral from the geometry (5.6) is suppressed since it has
vanishing Euler characteristic. Observe that the entropy (5.9) equals the leading term in the exponent
of the quantum entropy function (4.50) evaluated at the extremum,

π

n2
[4ImF (0)(φ+ ip)− q · φ]∗ =

πv∗

n2G
(4)
N

. (5.10)
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The Bekenstein-Hawking entropy above receives higher-derivative corrections. Focusing on the
case n2 = 1 for the moment, we propose to identify the additional contributions to the exponent
in (4.42) as arising from additional fields living on the orbifolded strip (5.6), namely 24 chiral and
24 anti-chiral massless periodic scalar fields. To motivate this, we periodically identify the strip
coordinate

T + 2πτ2 ∗ ∼= T , (5.11)

and study the effect of adding the matter fields on the geometry (5.6). Observe that we impose a fixed
periodicity given in (2.48) and specified by the 4D attractor equations. This is necessary to compare
results in the 2D picture to the extremum of the 4D quantum entropy function.

As discussed in [18], the matter fields backreact on the geometry. The equation R+ 2
v∗

= 0 remains
unchanged, but the dilaton equation of motion now acquires a source term due to the scalar fields,

∇µ∇νΦ− gµν�Φ +
1

v∗
gµνΦ = −〈Tµν〉 , (5.12)

where the matter stress-tensor Tµν receives a classical and a quantum contribution [18], 〈Tµν〉 =
T class
µν + T quantum

µν . The classical contribution can be obtained by solving the massless wave equation
for the scalars. We will restrict ourselves to backreacted configurations which are time-independent,
in which case the mode expansion of each bosonic scalar collapses to a constant and ensures that
T class
µν = 0. Note that this corresponds to the absence of imaginary source terms deforming the

JT action [18]. The quantum contribution to 〈Tµν〉 can be computed by first going to the cylinder
geometry ds2

cyl = dT 2 + dσ2 and then mapping the result to the strip geometry. In doing so, one
generically picks up a contribution from the conformal anomaly. In our setting, the two sets of the
24 periodic scalars precisely constitute the degrees of freedom of critical closed bosonic string theory,
which ensures the absence of the left and right conformal anomalies. Then the contribution to the
stress-tensor is a one-loop effect made possible by the periodic identification (5.11), and we assume
that there are no contributions from higher-loop effects. In total, the backreaction of the scalars
renders the dilaton non-constant as [18]

Φ(σ) = −24 E(τ2 ∗)
(

1−
σ + π

2

tanσ

)
, (5.13)

where we have chosen the integration constant so that Φ is periodic. Here

E(x) =
∑
n≥1

1

4π sinh2(πnx)
− 1

24π
, (5.14)

is a charge-dependent constant since τ2 ∗ =
√

∆
2m according to (2.48). The resulting non-constant dilaton

background yields a finite on-shell value for the action and can be interpreted as a 2D Euclidean
wormhole solution, as discussed in [18]. In the semi-classical limit of large τ2 ∗, this on-shell action is
exponentially suppressed relative to (5.9). This semi-classical limit also ensures that Φ� Φ0 (so long
as one stays away from the endpoints of the σ interval), which is the regime where the dimensionally
reduced 4D gravity theory is well approximated by JT gravity.

The path integral of the scalar fields on the geometry (5.6) with the identification (5.11) produces
the one-loop partition functions

1

η24(iτ2 ∗)

1

η24(iτ2 ∗)
, (5.15)

which can be complexified as τ2 ∗ → −iτ∗ and τ2 ∗ → iτ̄∗, respectively, to produce a contribution of

η−24(τ∗) η
−24(−τ̄∗) , (5.16)

which corresponds precisely to the ω and ω̄ contributions at the extremum of the 4D quantum entropy
function, where ω is defined in (4.20). Our picture therefore suggests that the 2D Euclidean wormholes
provide an alternative way to obtain the contribution to the 4D quantum entropy function coming
from loop corrections to the supergravity prepotential. Going further, the partition functions (5.15)
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also include a zero-mode contribution of 1/
√
τ2 ∗ for each pair of left- and right-movers, which correctly

reproduces the non-holomorphic correction log(τ2 ∗)
−12 given in (4.21).

Putting the various contributions together, we find that the 2D wormhole picture at s = 1 accounts
for the corrections to the Bekenstein-Hawking entropy,

1

4G
(2)
N

+ log η−24(τ∗) + log η−24(−τ̄∗) + log(τ2 ∗)
−12 , (5.17)

which nicely match the exponent in the integrand of the 4D quantum entropy function (4.42) at
the extremum. Observe that such a comparison is explicit in the covariant formulation (4.42) of the
localized supergravity path integral rather than in the formulation (4.41), which provides a physical
motivation for the addition of the total derivative term that expresses the quantum entropy function
in terms of the deformed special geometry given in (4.43).

To discuss the n2 6= 1 interpretation, we should understand how the Bekenstein-Hawking entropy
and the saddle point value τ∗ are modified when orbifolding. The former was discussed for general
s = 1/n2 above and the orbifold simply suppresses the contribution by n2. For the latter, we switch to
a 4D point of view where we propose that the two sets of chiral and anti-chiral matter fields are each
anchored at different antipodal points of the 2-sphere as a consequence of supersymmetry [53, 54].
The argument of the Dedekind functions in (4.50) consist of τ and τ̄ dressed by the Greek, Latin and
Σ integers characterizing the orbifold. The change in the arguments as one moves between antipodal
points is given by the operation

τ → τ̄ ,

(
a b
c d

)
→
(

0 −1
1 0

)(
a b
c d

)
, Σ→ −Σ . (5.18)

At this stage we do not have a good understanding of the precise dressing of τ and τ̄ leading to the
ρ′0 and σ′0 arguments demanded by the microscopic counting in (2.18). Nevertheless, our wormhole
picture leads to valuable insights into two puzzles. The first is the question of how the Euclidean
wormholes of [55, 19] contribute to the N = 4 counting formula. The second has to do with instanton
contributions to N = 4 BPS black hole microstates encoded in the Dedekind functions. What we
have seen is that the usual interpretation in terms of marginal decays of two-centred states [2, 22]
can be equivalently thought of as contributions from 2D wormholes in the AdS2 factor of the near-
horizon geometry of the single-centred 1

4 BPS black hole. We stress however that the wormholes we
have discussed should not be thought of as additional saddle points to the quantum entropy function
path integral. Rather, they provide an alternative space-time interpretation of the deformed special
geometry (4.43) entering the degeneracy formula in the covariant picture. We will come back to this
point in the discussion.

We now have two equivalent macroscopic descriptions of N = 4 BPS black hole microstates, one
in terms of the quantum entropy function in 4D N = 4 supergravity and the other in terms of 2D
Euclidean wormholes. Each of these admits a holographic dual and we will now comment on the
equivalence between them.

6 Relating DFF and Liouville type actions in one dimension

For our holographic investigations, we first consider a special class of time-dependent perturbations
of the attractor geometry given in [16]. These perturbations involve fluctuations of the size of the S2

factor while keeping all other scalars at their attractor values. They have been analyzed in [14, 15, 16]
who found that their effect can be holographically encoded in a Lorentzian 1D DFF type model [13],
whose action is of the form

ˆ
dt

[
(ν ′)2

ν
+
a

ν

]
. (6.1)

Here, ν(t) is the time-dependent perturbation of the size of the S2, a ∈ R is defined in terms of
the non-extremality parameter as well as the radius of the AdS2 factor in the attractor background,
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and the action is written in Poincaré time. Converting to global time coordinates and redefining
dt→ α(t) dt, the action of the holographic model reads [56]

SDFF =

ˆ
dt

[
(ν ′)2

αν
+ α

(a
ν

+ b ν
)]

, (6.2)

where b ∈ R is induced by the change to global time coordinate. Setting α(t) = 1, taking a < 0, b < 0,
and substituting ν(t) = x2(t) shows that (6.2) can be brought to the form of a DFF action [13],

SDFF =

ˆ
dt

[
4(x′)2 −

(
|a|
x2

+ |b|x2

)]
. (6.3)

When a, b > 0, the parameter b in (6.2) can be absorbed by scaling ν →
√

a
b ν and α → α√

b
, which

gives

SDFF =
√
a

ˆ
dt

[
(ν ′)2

αν
+ α

(
1

ν
+ ν

)]
. (6.4)

On the other hand, Liouville type models have recently been shown to arise in the study of
holographic duals of JT gravity [57, 58] and in the study of certain perturbations of the 2D dilaton
in the AdS2 geometry (5.6) underlying the Euclidean wormhole description [55, 19]. We now show
that the Lorentzian DFF model (6.4) can be rewritten as the Liouville model shown to underlie the
description of 2D Euclidean wormholes [55, 19].

When considering the time perturbation of the size of the S2, one must set a > 0 in (6.2), cf. Eq.
(3.94) in [16]. Therefore, in the following, we will take a > 0 and b > 0 and simply set a = b = 1 in
view of the scaling freedom mentioned above (6.4). We then relate the DFF type action (6.4) to the
following Liouville type action

SLiouv =

ˆ
dt

[
1

2
(l′)2 + 2e−l

]
, (6.5)

where l(t) encodes the perturbation of the 2D dilaton [55, 19].
To relate ν(t) to l(t) we compare the terms in the actions (6.4) and (6.5), and infer the relations

α

(
1

ν
+ ν

)
= 2e−l ,

(ν ′)2

αν
=

1

2
(l′)2 .

(6.6)

The first equation determines α(t) in terms of ν(t) and l(t). On the other hand, by combining these
two equations we obtain

(ν ′)2

(
1

ν2
+ 1

)
= 4

[(
e−

1
2
l
)′]2

, (6.7)

whose solution expresses ν(t) in terms of l(t) through

− log

(
1 +
√

1 + ν2

ν

)
+
√

1 + ν2 = ±2 e−
1
2
l , (6.8)

and α(t) is determined by the first equation in (6.6). Observe that the correspondence between the
DFF and Liouville type models involves a non-trivial reparametrization of time.

The equivalence between Liouville and DFF type actions complements the equivalence between
the 4D quantum entropy function and the 2D Euclidean wormhole picture we have proposed in the
previous section. We see this as a suggestive holographic counterpart of the alternative macroscopic
accounting of the N = 4 BPS black hole microstates based on Euclidean wormholes.
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7 Conclusions

We have shown that the exact microscopic degeneracy formula extracted from the inverse of the Igusa
cusp form lends itself to two rewritings (2.4) and (2.6), each endowed with its own distinct macroscopic
interpretation.

The formula (2.4) expresses the single-centred degeneracy as a Rademacher series controlled by a
finite number of polar degeneracies corresponding to negative discriminant states. The macroscopic
interpretation of (2.4) is in terms of the quantum entropy function, whose semi-classical limit describes
the Wald entropy of a single-centred black hole in the presence of R2 interactions. These interactions
are conveniently encoded in the N = 2 Wilsonian holomorphic prepotential F = F (0) + 2iω, cf.
(4.2). Furthermore, the polar degeneracies are interpreted macroscopically as two-centred 1

4 BPS
bound states together with a continued fraction structure [25] associated with their decays at walls of
marginal stability in the axio-dilaton moduli space. The polar degeneracies come from the degeneracies
of the individual 1

2 BPS centres and are generated by the Dedekind functions arising from the instanton
correction ω. The full quantum entropy function correctly reproduces the microscopic degeneracies
(2.4) upon summing over the individual orbifolded background contributions Wn2;m1,n1,j provided we
set the measure on the localizing manifold according to (4.47). This agreement relies on the 1-to-1
map obtained in Section 3.2 between the four integers (n2,m1, n1, j) characterizing the orbifolds and
the eight integers characterizing the set P together with Σ. It is remarkable that, just as in the case of
1
8 BPS black holes in N = 8 supergravity [41], such orbifolds are the only gravitational backgrounds
needed to recover the microscopic single-centred degeneracies extracted from 1/Φ10. This fact points
to a vanishing contribution of other types of backgrounds to the quantum entropy function, similar
to the situation studied in [59, 60] for supersymmetric indices.

The formula (2.6) is more naturally intepreted macroscopically in terms of a 2D theory of gravity.
The action of the theory is that of JT gravity (5.7) coupled to the field content of critical closed
bosonic string theory on Euclidean AdS2 (or an orbifold thereof) with specific boundary conditions.
The partition function of the 2D theory receives a classical contribution from the 2D disc geometry,
which is precisely the semi-classical entropy obtained in the quantum entropy function formalism at
the two-derivative level and encoded in the prepotential F (0). The bosonic string scalars enter at
the one-loop level and their effect on the partition function is to generate holomorphic contributions
proportional to Dedekind functions as well as non-holomorphic contributions. In the quantum entropy
function, these are precisely the instanton correction ω and the non-holomorphic correction Ω. This
also prompts us to interpret the instanton and non-holomorphic contributions as being due to 2D
Euclidean wormholes. Let us remark that in the case with maximal supersymmetry analyzed in [41],
such corrections are forbidden by the high amount of supersymmetry. We therefore do not expect a
corresponding 2D interpretation to be relevant in the N = 8 supergravity setting.

This interpretation is also consistent with the associated 1D holographic dual models. The model
capturing perturbations of the size of the S2 factor in the four-dimensional black hole near-horizon
geometry is a Lorentzian DFF type model with action (6.4). This action can be reformulated via an
appropriate time reparametrization as a Liouville type model with action (6.5), which is holographi-
cally dual to perturbations of the 2D dilaton on the global Euclidean AdS2 strip. These perturbations
source 2D Euclidean wormholes.

While the microscopic degeneracies of single-centred 1
4 BPS black holes are now well understood,

our analysis highlights a couple of interesting open problems. From the quantum entropy function
perspective, the main issue that remains is to obtain a first principle derivation of the localization
measure given in (4.47). While we have explained how this measure can be obtained from a saddle
point approximation of the N = 2 symplectic invariant measure proposed in [47], the latter is only
defined up to the inclusion of symplectically invariant factors. Symplectic invariance alone therefore
cannot suffice in fixing the measure and guarantee an agreement between the quantum entropy func-
tion and the microscopic degeneracies. It would be most interesting to understand how (4.47) arises
naturally in the N = 4 setting. To this end, the formulation (4.50) of the quantum entropy function
may prove useful. From the 2D wormhole perspective, it is crucial to go beyond the identification of
the various contributions to the quantum entropy function in a semi-classical approximation, and to
clarify the role of wormhole configurations at the quantum level. We hope to report on these questions
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in the future.
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